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Lecture-3

Search Directions

Homework Due 1/25/01

• 2.1, 2.2, 2.3, 2.8, 2.13, 2.14
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Rate of Convergence
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First Order necessary conditions
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Second order sufficient 
conditions
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Convex Function
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Convex Function
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Model Algorithm for Smooth 
Functions

• Let  xk be the current estimate of  x* .
– [Test for convergence.]   If the conditions for 

convergence are satisfied, the algorithm terminates 
with xk as a solution.

– [Compute a search direction.] Compute a non-zero n-
vector pk, the direction of search.

– [Compute a step length.]  Compute a positive scalar,     
, the step length, for which it holds that 

– [Update the estimate of the minimum.]  Set  

and go back to the  first step. 
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Steepest Descent

 

fpk −∇= Steepest descent direction
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Any descent direction-one that
makes an angle of strictly less than
90 degrees with the gradient vector 
produces a decrease in f, provided, that the 
step length is sufficiently small.

down hill direction

Newton’s Direction
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Newton’s Direction
• There is a natural step length, of 1 for 

Newton’s direction.
• If      is not p.d., the Newton’s directions may not 

be defined, because inverse may not exists.
• Even inverse exists, the descent property may not 

be satisfied.
• In that case, the search direction is modified to be 

a down hill direction.
• Newton direction gives a quadratic local 

convergence.
• The main drawback of Newton’s method is 

computation of a Hessian matrix.
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Broyden,Fletcher, Shanno

Quasi-Newton
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Instead of inverting approximation of Hessian, we can 
directly compute the approximation of inverse of Hessian:

Inverse Hessian

Conjugate Gradient
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