Preliminaries

Lecture-2

Eigen Vectors and Eigen Values

The eigen vector, x , of a matrix A is a special vector, with the following property

$$
A x=\lambda x \quad \text { Where ë is called eigen value }
$$

To find eigen values of a matrix A first find the roots of:

$$
\operatorname{det}(A-\lambda I)=0
$$

Then solve the following linear system for each eigen value to find corresponding eigen vector

$$
(A-\lambda I) x=0
$$

Example

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
0 & 3 & 4 \\
0 & 0 & 7
\end{array}\right]
$$

Eigen Values

$$
\lambda_{1}=7, \lambda_{2}=3, \lambda_{3}=-1
$$

$\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 4 \\ 4\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \quad$ Eigen Vectors

Eigen Values

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=0 \\
\operatorname{det}\left[\begin{array}{ccc}
-1 & 2 & 0 \\
0 & 3 & 4 \\
0 & 0 & 7
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=0 \\
\left.\operatorname{det}\left[\begin{array}{ccc}
-1-\lambda & 2 & 0 \\
0 & 3-\lambda & 4 \\
0 & 0 & 7-\lambda
\end{array}\right]\right)=0 \\
(-1-\lambda)((3-\lambda)(7-\lambda)-0)=0 \\
(-1-\lambda)(3-\lambda)(7-\lambda)=0 \\
\lambda=-1, \quad \lambda=3, \quad \lambda=7
\end{gathered}
$$

$\operatorname{trace}(A)=\sum_{i=1}^{n} A_{i i}$
$\operatorname{trace}(A)=\sum_{i=1}^{n} \lambda_{i}$ where λ_{i} are eigen valu es
$\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}^{n}$
$\operatorname{det} A=0$ if and only if A is singular
$\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$
$\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$
$Q Q^{T}=Q^{T} Q=I, Q$ is orthogonal
$Q^{-1}=Q^{T}$
$\operatorname{det} Q=\operatorname{det} Q^{T}= \pm 1$

Rotation matrices are Orthogonal (orthonormal) Matrices

$\left(R_{\theta}^{Z}\right)^{-1}=\left[\begin{array}{ccc}\cos \Theta & \sin \Theta & 0 \\ -\sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{ccc}\cos \Theta & \sin \Theta & 0 \\ -\sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left(R_{\theta}^{Z}\right)^{-1}=\left(R_{\theta}^{Z}\right)^{T}$
$\left(R_{\theta}^{Z}\right)\left(R_{\theta}^{Z}\right)^{T}=I$

Positive-definite

A symetric $\mathrm{n} \times \mathrm{n}$ matrix is positive definite if $X^{T} A X>0$.

- If all eigenvalues of a symmetric matrix are nonnegative, it is said to be Positive semi-definite
- If all eigenvalues of a symmetric matrix are nonnegative, it is said to be Positive semi-definite
- If a matrix has both positive and negative eigenvalues, it is said to be indefinite

Matrix Factorization

$A=L U, \mathrm{LU}$ decomposition, L is a Lower triangular, and U is a upper triangular
$A=C U, \mathrm{QR}$ decompoistion, C is orthonorma 1 ,
U is upper trinagular matrix

Singular Value Decomposition (SVD)

Theorem: Any m by n matrix A, for which $m \geq n$,can be written as

Singular Value Decomposition (SVD)

- For some linear systems $\mathrm{Ax}=\mathrm{b}$, Gaussian Elimination or LU decomposition does not work, because matrix A is singular, or very close to singular. SVD will not only diagnose for you, but it will solve it.

Singular Value Decomposition (SVD)

If A is square, then O_{1}, Σ, O_{2} are all square.

$$
\begin{aligned}
& O_{1}^{-1}=O_{1}^{T} \\
& O_{2}^{-1}=O_{2}^{T} \\
& \Sigma^{-1}=\operatorname{diag}\left(\frac{1}{w_{j}}\right) \\
& A^{-1}=O_{2} \operatorname{diag}\left(\frac{1}{w_{j}}\right) O_{1}
\end{aligned}
$$

Singular Value Decomposition (SVD)

The condition number of a matrix is the ratio of the largest of the w_{j} to the smallest of w_{j}. A matrix is singular if the condition number is infinite, it is ill-conditioned if the condition number is too large.

Singular Value Decomposition (SVD)

$$
A x=b
$$

- If A is singular, some subspace of " x " maps to zero; the dimension of the null space is called "nullity".
- Subspace of " b " which can be reached by " A " is called range of "A", the dimension of range is called "rank" of A.

Singular Value Decomposition (SVD)

- If A is non-singular its rank is " n ".
- If A is singular its rank <n.
- Rank+nullity=n

Singular Value Decomposition (SVD)

- SVD constructs orthonormal basses of null space and range.
- Columns of O_{1} with non-zero w_{j} spans range.
- Columns of O_{2} with zero w_{j} spans null space.

Solution of Linear System

- How to solve $\mathrm{Ax}=\mathrm{b}$, when A is singular?
- If " b " is in the range of " A " then system has many solutions.
- Replace $\frac{1}{w_{j}}$ by zero if $w_{j}=0$

$$
x=O_{2}\left[\operatorname{diag}\left(\frac{1}{w_{j}}\right)\right] O_{1}^{T} b
$$

Solution of Linear System

If b is not in the range of A, above eq still gives the solution, which is the best possible solution, it minimizes:

$$
r \equiv|A x-b|
$$

Cholesky Factorization

A positive-definite symmetric matrix A can be written:

$$
\begin{aligned}
& A=L D L^{T} \\
& A=L D^{\frac{1}{2}} D^{\frac{1}{2}} L^{T}=\bar{L} \bar{L}^{T}=R^{T} R
\end{aligned}
$$

L is unit lower triangular matrix
D is a diagonal matrix with strict
Positive elements
\bar{L}, \bar{R} are general lower triangular
and general upper triangular matrices

Spectral Decomposition of A Symmetric Matrix

$$
\begin{aligned}
& A u_{i}=\lambda_{i} u_{i} \\
& A=U \mathrm{~A} U^{T}=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}
\end{aligned}
$$

Norms

$\|X\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$, vector norm
$\left\|\left|\mid X \|_{2}=\left(\sum_{i=1}^{n} x\right)_{i}^{2}\right)^{\frac{1}{2}}=\left(X^{T} X\right)^{\frac{1}{2}}\right.$, vector norm
$\|\mathbf{A}\|=\max \| \|_{\|x\|=1} \mathbf{A} X \|$, matrix norm
$\|\mathbf{A}\|_{\infty}=\max \sum_{j=1}^{n}\left|a_{i j}\right|$

Norms

Condition number
$k(A)=\|A\|\left\|A^{-1}\right\|$
The matrix A is well- conidtioned if $\mathrm{K}(\mathrm{A})$ is close to one and is not well-conditioned, when $\mathrm{K}(\mathrm{A})$ is significantly greater than one.

1-D Functions

Finding the zero of a function

Bisection Method

- Find a solution to $f(x)=0$ on the interval [a,b], where $f(a)<0$ and $f(b)>0$ have opposite signs.
- Compute the mid point,m, of [a,b], if $f(m)=0$, then done
- else if $f(m)>0$, then $b=m$, else $a=m$

$$
\left|p_{n}-p\right| \leq \frac{b-a}{2^{n}}
$$

Bisection Method

Newton's Method

Suppose that the function f is twicecontinously
differentiable on the interval $[a, b]$; that is $f \in C^{2}[a, b]$.
$f^{\prime}(\bar{x}) \neq 0,|\bar{x}-p|$ is small. Taylor series around \bar{x}
$f(x)=f(\bar{x})+(x-\bar{x}) f^{\prime}(\bar{x})+\frac{(x-\bar{x})^{2}}{2} f^{\prime}(\xi(p))$,
$\xi(x)$ lies between x and \bar{x}.

$$
\begin{aligned}
& 0 \approx f(\bar{x})+(p-\bar{x}) f^{\prime}(\bar{x}) \quad|\bar{x}-p| \text { is small. } \\
& p=\bar{x}-\frac{f(\bar{x})}{f^{\prime}(\bar{x})} \\
& p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}
\end{aligned}
$$

Newtons' Methos

$f^{\prime}\left(p_{n}\right)=\frac{f\left(p_{n}\right)-f\left(p_{n-1}\right)}{p_{n}-p_{n-1}}$
$f^{\prime}\left(p_{n}\right)=\frac{0-f\left(p_{n-1}\right)}{p_{n}-p_{n-1}}$
$p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n}\right)}$

Zero of the tangent line

Secent Method

If derivative can not be computed
Use finite difference approximation

$$
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)\left(p_{n-1}-p_{n-2}\right)}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}
$$

Theorem

Let $f \in C^{2}[a, b]$. If $p \in[a, b]$ is such that $f(p)=0$ and $f^{\prime}(p) \neq 0$, then there exists $\delta>0$ such that Netwon's method generates a sequence p_{n} converging to p for any initial approximation $p_{0} \in[p-\delta, p+\delta]$.

