Lecture-11

Theorems 5.3 and 5.2
Algorithms 5.1, 5.2

Theorem 5.3

1. The directions are indeed conjugate.

2. Therefore, the algorithm terminates in n steps (from Theorem 5.1).

3. The residuals are mutually orthogonal.

4. Each direction p_k and r_k is contained in Krylov subspace of r_0 degree k.
Theorem 5.3

Suppose that the kth iteration generated by the conjugate gradient method is not the solution point x^*. The following four properties hold:

1. \[r_i^T r_i = 0 \quad \text{for} \quad i = 0, \ldots, k - 1 \]
2. \[\text{span}\{r_0, r_1, \ldots, r_i\} = \text{span}\{r_0, A r_0, \ldots, A^i r_0\} \]
3. \[\text{span}\{p_0, p_1, \ldots, p_i\} = \text{span}\{r_0, A r_0, \ldots, A^i r_0\} \]
4. \[p_i^T A p_i = 0 \quad \text{for} \quad i = 0, \ldots, k - 1 \]

Therefore, the sequence \(\{x_k\} \) converges to x^* in at most n steps.

Proof

1. \[r_i^T r_i = 0 \quad \text{for} \quad i = 0, \ldots, k - 1 \]
2. \[\text{span}\{r_0, r_1, \ldots, r_i\} = \text{span}\{r_0, A r_0, \ldots, A^i r_0\} \]
3. \[\text{span}\{p_0, p_1, \ldots, p_i\} = \text{span}\{r_0, A r_0, \ldots, A^i r_0\} \]
4. \[p_i^T A p_i = 0 \quad \text{for} \quad i = 0, \ldots, k - 1 \]

- Use induction on (2) and (3)
 - First prove (2)
 - Then prove (3) using (2)
- Prove (4) by induction using (3) and Theorem 5.2
- Prove (1) using (4) and Theorem 5.2
Proof

\[
 r_i^T r_i = 0 \quad \text{for } i = 0, \ldots, k-1 \quad (1)
\]
\[
 \text{span}\{r_0, r_1, \ldots, r_k\} = \text{span}\{a_0, A r_0, \ldots, A^k r_0\} \quad (2)
\]
\[
 \text{span}\{p_1, p_2, \ldots, p_k\} = \text{span}\{a_0, A r_0, \ldots, A^k r_0\} \quad (3)
\]
\[
 p_i^T A p_i = 0 \quad \text{for } i = 0, \ldots, k-1 \quad (4)
\]

(2) And (3)

Induction: \(k=0 \)

\[
 \text{span}\{r_0\} = \text{span}\{r_0\} \quad (2)
\]

\[
 \text{span}\{p_0\} = \text{span}\{r_0\} \quad (3) \quad p_0 = -r_0
\]

Proof

\[
 r_i^T r_i = 0 \quad \text{for } i = 0, \ldots, k-1 \quad (1)
\]
\[
 \text{span}\{r_0, r_1, \ldots, r_k\} = \text{span}\{a_0, A r_0, \ldots, A^k r_0\} \quad (2)
\]
\[
 \text{span}\{p_1, p_2, \ldots, p_k\} = \text{span}\{a_0, A r_0, \ldots, A^k r_0\} \quad (3)
\]
\[
 p_i^T A p_i = 0 \quad \text{for } i = 0, \ldots, k-1 \quad (4)
\]

Assume (2) and (3) are true for \(k \), prove for \(k+1 \)

To prove (2), by induction:

\[
 r_k \in \text{span}\{a_0, A r_0, \ldots, A^k r_0\} \quad p_k \in \text{span}\{a_0, A r_0, \ldots, A^k r_0\}
\]

\[
 A p_k \in \text{span}\{a_0, A^2 r_0, \ldots, A^{k+1} r_0\} \quad \text{By multiplying with } A
\]

\[
 r_{k+1} = r_k + \alpha_k A p_k \quad \text{Therefore} \quad r_{k+1} \in \text{span}\{a_0, A r_0, \ldots, A^{k+1} r_0\}
\]

By combining this with induction hypothesis on (2)

\[
 \text{span}\{r_0, r_1, \ldots, r_{k+1}\} \subseteq \text{span}\{a_0, A r_0, \ldots, A^{k+1} r_0\}
\]
Proof

\[r_i^T r_i = 0 \quad \text{for } i = 0, \ldots, k-1 \quad (1) \]

\[\text{span}\{v_i, r_i, \ldots, k\} = \text{span}\{v_0, A_0, \ldots, A^k v_0\} \quad (2) \]

\[\text{span}\{p_i, p_i, \ldots, p_k\} = \text{span}\{v_0, A_0, \ldots, A^k v_0\} \quad (3) \]

\[\text{span}\{p_i, Ap_i, \ldots, Ap_k\} = 0 \quad \text{for } i = 0, \ldots, k-1 \quad (4) \]

To prove the reverse inclusion

\[A^{k+i} r_0 = A(A^{k} r_0) \in \text{span} \{Ap_0, Ap_1, \ldots, Ap_k\} \]

Induction on (3)

Since

\[Ap_i = \frac{(r_{i+1} - r_i)}{\alpha}, \text{ for } i = 0, \ldots, k \quad \text{Because} \quad r_{k+1} = r_k + \alpha \cdot Ap_k \]

Therefore

\[A^{k+i} r_0 \in \text{span} \{v_0, r_0, \ldots, r_{k+1}\} \]

\[\text{span}\{v_0, A_0, \ldots, A^{k+i} r_0\} \subseteq \text{span}\{v_0, r_0, \ldots, r_k, r_{k+i}\} \quad \text{Induction hypothesis on (2)} \]

Therefore

\[\text{span}\{v_0, r_0, \ldots, r_k, r_{k+1}\} = \text{span}\{v_0, A_0, \ldots, A^{k+i} r_0\} \quad \text{QED (2)} \]

Proof

\[r_i^T r_i = 0 \quad \text{for } i = 0, \ldots, k-1 \quad (1) \]

\[\text{span}\{v_i, r_i, \ldots, k\} = \text{span}\{v_0, A_0, \ldots, A^k v_0\} \quad (2) \]

\[\text{span}\{p_i, p_i, \ldots, p_k\} = \text{span}\{v_0, A_0, \ldots, A^k v_0\} \quad (3) \]

\[\text{span}\{p_i, Ap_i, \ldots, Ap_k\} = 0 \quad \text{for } i = 0, \ldots, k-1 \quad (4) \]

Show (3) holds if \(k \) is replaced by \(k+1 \)

\[\text{span}\{p_0, p_1, \ldots, p_k, p_{k+1}\} \]

\[= \text{span}\{p_0, p_1, \ldots, p_k, r_{k+1}\} \quad p_{k+1} \leftarrow -r_{k+1} + \beta \cdot Ap_k \quad \text{Induction hypo for (3)} \]

\[= \text{span}\{r_0, A_0, \ldots, A^k r_0, r_{k+1}\} \quad \text{By (2)} \]

\[= \text{span}\{r_0, r_1, \ldots, r_k, r_{k+1}\} \quad \text{By (2) for } k+1 \]

\[= \text{span}\{r_0, A_0, \ldots, A^{k+1} r_0\} \quad \text{QED (3)} \]
Proof

\[r_k^T r_i = 0 \quad \text{for } i = 0, \ldots, k - 1 \] (1)
\[\text{span}\{g_i, r_i, \ldots, r_k\} = \text{span}\{g_0, A r_0, \ldots, A^r_0\} \] (2)
\[\text{span}\{p_0, p_i, \ldots, p_k\} = \text{span}\{g_0, A r_0, \ldots, A^r_0\} \] (3)
\[p_i^T A p_i = 0 \quad \text{for } i = 0, \ldots, k - 1 \] (4)

Now Conjugacy (4):

(4) Holds for \(k = 1 \) \[p_1^T A p_0 = 0 \] (4)

By definition:
\[p_{k+1} = -r^T_{k+1} \beta_{k+1} p_k \]

\[p_i^T A p_i = -r_i^T A p_i + \beta_i p_i^T A p_i \quad \text{for } i = 0, 1, \ldots, k \] (F)

By definition:
\[\beta_i = -r_i^T A p_i / p_i^T A p_i \]

Due to this the right side becomes Zero for \(i = k \)

By induction hypothesis on (4) the vectors are conjugate up to \(p_k \)

Therefore \[r_{k+1}^T p_i = 0 \quad \text{for } i = 0, \ldots, k \] By Theorem 5.2

Proof

\[r_k^T r_i = 0 \quad \text{for } i = 0, \ldots, k - 1 \] (1)
\[\text{span}\{g_i, r_i, \ldots, r_k\} = \text{span}\{g_0, A r_0, \ldots, A^r_0\} \] (2)
\[\text{span}\{p_0, p_i, \ldots, p_k\} = \text{span}\{g_0, A r_0, \ldots, A^r_0\} \] (3)
\[p_i^T A p_i = 0 \quad \text{for } i = 0, \ldots, k - 1 \] (4)

\[p_i^T A p_i = -r_i^T A p_i + \beta_i p_i^T A p_i \quad \text{for } i = 0, 1, \ldots, k \] (F)

\[r_{k+1}^T p_i = 0 \quad \text{for } i = 0, \ldots, k \] (B)

By applying (3)
\[A p_i \in \text{span}\{g_0, A r_0, \ldots, A^{r-1} p_i\} \subseteq \text{span}\{A r_0, A^2 r_0, \ldots, A^{r+1} r_0\} \] (C)

So the first term vanishes in (F). Due to induction hypothesis on (4) the second term vanishes as well. Hence QED (4).

So the direction set generated by CG method is indeed a conjugate direction set.

According to Theorem 5.1 the algorithm terminates in at most \(n \) steps.
Proof

\[r_i^T r_i = 0 \quad \text{for } i = 0, \ldots, k - 1 \] \hspace{1cm} (1)

\[\text{span}\{ r_0, r_1, \ldots, r_k \} = \text{span}\{ e_0, A e_0, \ldots, A^k e_0 \} \] \hspace{1cm} (2)

\[\text{span}\{ p_0, p_1, \ldots, p_k \} = \text{span}\{ e_0, A e_0, \ldots, A^k e_0 \} \] \hspace{1cm} (3)

\[p_i^T A p_i = 0 \quad \text{for } i = 0, \ldots, k - 1 \] \hspace{1cm} (4)

Now (1)

Since the direction set is conjugate because of (3), by theorem 5.2

\[r_k^T p_i = 0 \quad \text{for } i = 0, \ldots, k - 1, \quad k = 1, 2, \ldots, n - 1 \]

By definition

\[p_i = -r_i + \beta_i p_{i-1} \quad \text{and} \quad p_{k+1} = -r_{k+1} + \beta_{k+1} p_k \]

\[r_k^T p_i = 0 = r_k^T (-r_i + \beta_i p_{i-1}) = -r_k^T r_i + \beta_i r_k^T p_{i-1} = -r_k^T r_i \]

\[r_i^T r_i = 0 \quad \text{for } i = 0, \ldots, k - 1, \quad k = 1, 2, \ldots, n - 1 \] \hspace{1cm} \text{QED (1)}

Theorem 5.2

Let \(x_0 \) be any starting point and suppose that the sequence \(\{x_k\} \) is generated by the conjugate direction algorithm. Then

\[r_k^T p_i = 0 \quad \text{for } i = 0, \ldots, k - 1 \]

and \(x_k \) is minimizer of \(f(x) \) over the set

\[\text{span}\{ e_0, A e_0, \ldots, A^k e_0 \} \] \hspace{1cm} (3)
Proof

First show that a point \(x \) minimizes \(f(x) \) over the set (3) if and only if
\[
 r(x)^T p_i = 0 \quad \text{for } i = 0, \ldots, k-1
\]
(3)

Let
Since \(f(x) \) is strictly convex quadratic, it has a unique minimizer:
\[
 \frac{\partial h(\sigma^i)}{\partial \sigma^i} = 0, \quad i = 0, \ldots, k-1
\]
\[
 \nabla \phi(x_0 + \sigma_0 p_0 + \cdots + \sigma_{k-1} p_{k-1})^T p_i = 0 \quad i = 0, \ldots, k-1
\]
Chain rule
\[
r(x) \text{ is the residual}
\]
\[
r(x)^T p_i = 0 \quad i = 0, \ldots, k-1
\]

Proof

\[
 \nabla \phi(x) = Ax - b = r(x) \quad x_{k+1} = x_k + \alpha_k p_k
\]
\[
r_{k+1} = r_k + \alpha_k A p_k
\]
\[
r_k = r_{k-1} + \alpha_{k-1} A p_{k-1}
\]
(A)

Use induction:
Prove true for \(k=1 \):
From (A)
\[
 r_1 = r_0 + \alpha_0 A p_0
\]
\[
r_1^T p_0 = (r_0 + \alpha_0 A p_0)^T p_0
\]
\[
 \text{if} \quad r_1^T p_0 = 0 \quad \text{Then} \quad \alpha_k = -\frac{r_k^T p_k}{p_k^T A p_k}
\]
But, \(x \) is a 1-D minimizer of quadratic function.
Proof

\[r_k^T p_i = 0 \quad \text{for} \quad i = 0, \ldots, k - 1 \]

Assume true for \(k - 1 \)

\[r_k^T p_i = 0 \quad \text{for} \quad i = 0, \ldots, k - 2 \]

\[r_k = r_{k-1} + \alpha_{k-1} A p_{k-1} \]

\[p_{k-1}^T r_k = p_{k-1}^T r_{k-1} + \alpha_{k-1} p_{k-1}^T A p_{k-1} = 0 \]

By multiplication

\[p_{k-1}^T r_k = 0 \]

then \(\alpha_{k-1} \) is given

\[\alpha_{k-1} = \frac{r_{k-1}^T p_{k-1}}{p_{k-1}^T A p_{k-1}} \]

That is 1-D minimizer of quadratic function.

For other vectors \(p_i \)

\[p_i^T r_k = p_i^T r_{k-1} + \alpha_{k-1} p_i^T A p_{k-1} = 0 \quad i = 0, \ldots, k - 2 \]

Conjugacy

This implies we have minimized quadratic function in \(k - 1 \) variables

Therefore \(r_k^T p_i = 0 \) \quad for \(i = 0, \ldots, k - 1 \)

QED

How do we select conjugate directions

- Eigenvalues of \(A \) are mutually orthogonal and conjugate wrt to \(A \).
- Gram-Schmidt process can be modified to produce conjugate directions instead of orthogonal vectors.
- Both approaches are expensive.
Basic Properties of the CG

Each direction is chosen to be a linear combination of the steepest descent direction and the previous direction.

\[p_k = -\nabla \phi_k + \beta_k p_{k-1} \]

Or

\[p_k = -r_k + \beta_k p_{k-1} \]

Where \(\beta_k \) is determined such that \(p_k \) and \(p_{k-1} \) must be conjugate

Therefore

\[p_k^T A p_k = -r_k^T A r_k + \beta_k p_{k-1}^T A p_{k-1} \]
\[\beta_k = \frac{r_k^T A p_k}{p_{k-1}^T A p_{k-1}} \]

It does not need to know all previous directions, only one previous direction is required.

\(p_k \) is automatically conjugate to all previous directions!

Algorithm 5.1

Given \(x_0 \):

set \(r_0 \leftarrow Ax_0 - b, \ p_0 \leftarrow -r_0, \ k \leftarrow 0 \)

While \(r_k \neq 0 \):

\[\alpha_k \leftarrow -\frac{r_k^T p_k}{p_k^T A p_k} \]
\[x_{k+1} \leftarrow x_k + \alpha_k p_k \]
\[r_{k+1} \leftarrow A x_{k+1} - b \]
\[\beta_{k+1} \leftarrow \frac{r_{k+1}^T A p_k}{p_k^T A p_k} \]
\[p_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} p_k \]
\[k \leftarrow k + 1 \]

End(while)

\(p_0 \) is steepest descent

\[\nabla \phi(x) = Ax - b = r(x) \]