Problem Statement

- Given a set of sequential images, reliably track features across the sequence, while monitoring the quality of each feature.
Paper Overview

- Feature Selection
 - Fundamental definition of the Harris corner method
- Tracking System
 - Anandan’s Approach limited to only a pure translation model
 - Ability to monitor the goodness of a feature throughout tracking process
 - Anandan’s approach using full affine parameters (deformation and translation) to measure the dissimilarity between first and the current frame
 - Keep/Abandon features based on dissimilarity measure
- Detect occlusions, disocclusions, and features that do not have real-world correspondence
- Constraint: Inter-frame displacement is small

Terminology

- Occlusions
 - Shape to Detect
 - Shape not occluded
 - Shape is occluded

- Disocclusions:
 - Areas occluded in original reference frame but visible in current view
 - Detect “J”
 - Detected “J”
 - Disocclusion
 - More Disocclusion
Terminology

- Non-real world points

Given Sequence

Antenna and mirror support bar create a feature which does not correlate to a real-world feature

- Feature Detection is unable to discern depth
- Need to monitor features to track reliably

Feature Selection

- Many feature selection options being debated in early 1990’s
 - Most measure the amount of texturedness or cornerness in a window
 - Windows with high spatial frequency content
 - High standard deviation on the spatial intensity profile
 - Presence of zero crossings of the Laplacian of the image intensity
 - Regions where second-order derivatives are above a threshold
 - Corner detection
 - Even a window rich in texture can be a poor point to track
 - Non real-world point, occlusion/disocclusion, reflective surface, shadows, etc.
 - Tracking based solely on one of the above methods will most likely be unsuccessful and error-prone
- Paper proposes a fundamental definition for feature quality
 - i.e. Harris Corner Method
 - Used for initial feature selection, not for further tracking
Feature Selection

Basic Harris Corner Method

1. Given an image
2. Smooth image with Gaussian Filter
3. Compute derivatives \((g_x)\) and \((g_y)\) for smoothed image
4. Option: Smooth derivative images \((g_x)\) and \((g_y)\)
5. For each pixel in the image space, compute the gradient moment matrix, using the \(n \times m\) neighborhood of pixels (window) around current pixel.

\[
M = \int_{W} Zw dxdy \quad \text{where,} \quad Z = \begin{bmatrix}
 g_x^2 & g_x g_y \\
 g_x g_y & g_y^2
\end{bmatrix}
\]

\(W = \text{window (neighborhood)} = n \times m = \text{i.e.} \ 5 \times 5, 25 \times 25, \text{etc.}
\)

\(w = 1, \text{OR a 2D Gaussian weighting scheme}
\)

OR,

\[
M = \begin{bmatrix}
 \sum_i \sum_j g_x^2 w & \sum_i \sum_j g_x g_y w \\
 \sum_i \sum_j g_x g_y w & \sum_i \sum_j g_y^2 w
\end{bmatrix}
\]

6. Compute the two Eigen values for the gradient moment matrix \(M\)

- Two requirements must be upheld for the matrix \(M\)
- Above the Noise Level
 - Both Eigen values must be large
- Well-Conditioned
 - Eigen values cannot differ by several orders of magnitude

7. Select the minimum Eigen value

\[
\min (\lambda_1, \lambda_2) > \lambda_{\text{threshold}}
\]

- Smaller Eigen value meets noise-level-criterion
- Well-conditioned because intensity variations are bounded by image intensity range (i.e. 0-255).

8. Store the minimum Eigen value for each pixel in the image
9. Apply a type of Non-Maximum Suppression to the Eigen values
10. Threshold Suppressed Eigen value space to reduce amount of detected interest points

Alternative Computation to 6.7:

\[
R = \det(M) + k \text{trace}(M)^2 > \text{Threshold}
\]

Feature Selection

<table>
<thead>
<tr>
<th>(\lambda_1)</th>
<th>(\lambda_2)</th>
<th>Texturedness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>Small</td>
<td>Constant intensity profile (nothing)</td>
</tr>
<tr>
<td>Small</td>
<td>Large</td>
<td>Unidirectional texture pattern (edge)</td>
</tr>
<tr>
<td>Large</td>
<td>Small</td>
<td>Unidirectional texture pattern (edge)</td>
</tr>
<tr>
<td>Large</td>
<td>Large</td>
<td>Corner, salt-and-pepper texture, (texture can be tracked reliably)</td>
</tr>
</tbody>
</table>
What is Next?

- Feature Selection used for initial detection only
- How to Track?
- Affine Motion Model
 - Last Semester Project: Anandan’s Approach

![Diagram showing starting image, warped image, and goal image with numerous iterations.]

Starting Image → Warped Image = Goal Image

- Inter-frame displacement is relatively small
- Brightness constancy constraint
- Uses
 - Image registration
 - Mosaics/Panoramic views
 - Morphing technology
 - Tracking (uses pure translation of affine motion model)
 - Measuring quality of tracked feature (complete affine model)
- Authors apply Anandan’s approach to neighborhood around features

Affine Motion Model

- Affine model for one pixel

![Diagram showing image at time t, image at time t+1, and the transformation formulae.]

\[
\begin{align*}
\text{Affine motion}: \\
&u(x, y) = a_1 x + a_2 y + b_1 \\
v(x, y) = a_3 x + a_4 y + b_2 \\
\text{Affine Transformation:} \\
x'' = (a_1 + 1)x + a_2 y + b_1 \\
y'' = a_3 x + (a_4 + 1)y + b_2
\end{align*}
\]

Affine motion parameters:

\[\{a_1, a_2, b_1, a_3, a_4, b_2\}\]
Affine Motion Model

- Affine model handles translation, rotation, rigid rotation and translation, affine, and shear.

<table>
<thead>
<tr>
<th>Translation</th>
<th>Rotation</th>
<th>Rigid</th>
<th>Shear</th>
<th>Affine</th>
</tr>
</thead>
</table>

\[
\begin{bmatrix}
 u \\ v
\end{bmatrix} = \begin{bmatrix}
 a_1 & a_2 \\ a_3 & a_4
\end{bmatrix} \begin{bmatrix}
 x \\ y
\end{bmatrix} + \begin{bmatrix}
 b_1 \\ b_2
\end{bmatrix}
\]

For a specific example:

\[
u(x, y) = a_x x + a_y y + b_1 \\
v(x, y) = a_{1x} x + a_{1y} y + b_2
\]

\[
\begin{bmatrix}
 u(x, y) \\ v(x, y)
\end{bmatrix} = \begin{bmatrix}
 x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & x & y & 1
\end{bmatrix} \begin{bmatrix}
 a_1 \\ a_2 \\ b_1 \\ a_3 \\ a_4 \\ b_2
\end{bmatrix}
\]

\[
u(x) = X(x) a
\]

where,

\[
x = \begin{bmatrix}
 x \\ y
\end{bmatrix} \quad u(x) = \begin{bmatrix}
 u(x, y) \\ v(x, y)
\end{bmatrix}
\]

\[
a^T = \begin{bmatrix}
 a_1 & a_2 & b_1 & a_3 & a_4 & b_2
\end{bmatrix}
\]

\[
X(x) = \begin{bmatrix}
 x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & x & y & 1
\end{bmatrix}
\]
Affine Motion Model

- **Optical Flow Equation**
 \[I_x u + I_y v = -I_t \rightarrow \begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -I_t \rightarrow \Delta I^T u = -I_t \]

- **Energy Functional**
 \[E(u) = \sum_w (I_t + \Delta I^T u)^2 \]
 \[E(a) = \sum_w (I_t + \Delta I^T Xa)^2 \]

- Minimize energy by taking derivative and setting it equal to zero

Affine Motion Model

\[E(a) = \sum_w (I_t + \Delta I^T Xa)^2 \]

\[\frac{\partial E}{\partial a} = 2 \sum_w (\Delta I^T X)^T (I_t + \Delta I^T Xa) = 0 \]

\[\sum_w X^T \Delta I \Delta I_t + \sum_w X^T \Delta I \Delta I^T Xa = 0 \]

\[\sum_w X^T \Delta I \Delta I^T Xa = - \sum_w X^T \Delta I \Delta I_t \]
Affine Motion Model

\[
\sum_{W} X^T \Delta I \Delta I^T X a = - \sum_{W} X^T \Delta I \Delta I, \quad \begin{array}{c} K \end{array}
\]

\[
K_{6 \times 6} a_{6 \times 1} = L_{6 \times 1} \quad \rightarrow \quad a = K^{-1} L
\]

- Update previous \(a\) with new \(a\)
 - Concatenation procedure
- Iteratively solve for affine parameters \(a\) until updates do not change or some iteration limit is reached

Affine Motion Model

- Author’s method similar to Anandan’s
 - Affine Motion
 \[
 \delta = D x + d \quad D = \begin{bmatrix} d_{xx} & d_{xy} \\ d_{yx} & d_{yy} \end{bmatrix} \quad d = \begin{bmatrix} d_x \\ d_y \end{bmatrix}
 \]
 equivalent to:
 \[
 \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}
 \]
 - Affine Transformation
 - A point \(x\) in the first image, \(I\), moves to a point \(Ax+d\) in the second image \(J\), where \(A = I + D\) and \(I\) is the \(2 \times 2\) identity matrix
 \[
 J \left(Ax + d \right) = I \left(x \right) \quad (2)
 \]
Tracking

- Given two images I and J
- Tracking means computing D and d
- Quality of computation depends on
 - Size of feature window
 - Texturedness inside the feature window
 - Amount of camera/object motion between frames
- When window is small, or when inter-frame motion is small, D is harder to estimate
 - Variations of motion within window are small
 - D is not reliable
- However, small windows are preferred for tracking
 - Less likely to straddle depth discontinuity
- Therefore, a pure translational model is used for tracking
 - D is assumed to be zero

$$\delta = d$$

Two Models of Image Motion

1. Affine Model ($D + d$)
2. Pure Translation Model (d)

- Use Pure Translation for tracking
 - Higher reliability
 - Higher accuracy
 - Inter-frame motion tends to be small
 - Less computations

- Use Affine Motion to monitor quality of features
 - Between first and current frame
 - Not computed every frame! Every n^{th} frame
Computing Image Motion

- Both motion models measure **dissimilarity** between frames
 - Find an A and d that minimizes this dissimilarity
 - Increasing number of iterations for model can improve dissimilarity parameter

\[
\epsilon = \int \int_W \left[J(Ax + d) - I(x) \right]^2 \cdot w(x) \, dx
\]

- W = window (neighborhood) = n x m = i.e. 5 x 5, 25 x 25, etc.
- w = 1, OR a 2D Gaussian weighting scheme

To minimize (3), take derivative and set equal to zero

Linearize result by a truncated Taylor series
 - Due to this truncation, method must be solved iteratively

Linearization yields,

\[
T'_{6 \times 6} \mathbf{z}_{6 \times 1} = \mathbf{a}_{6 \times 1} \quad \text{(5) Affine motion Dissimilarity}
\]

where \(\mathbf{z} \) is comprised of affine parameters, D and d

\[
\mathbf{z}^T = \begin{bmatrix} d_{xx} & d_{yx} & d_{xy} & d_{yy} & d_x & d_y \end{bmatrix}
\]

and \(\mathbf{a} \) is the error vector,

\[
\mathbf{a} = \int \int_W \left[I(x) - J(x) \right] \cdot \begin{bmatrix} xg_x \\ xg_y \\ yg_x \\ yg_y \\ g_x \\ g_y \end{bmatrix} \cdot w(x) \, dx
\]

This method of calculation requires two images and is therefore not used
Computing Image Motion

- T can be computed from one image

\[
T = \int \int w \begin{bmatrix} U & V \\ V^T & Z \end{bmatrix} w(x) dx
\]

(6)

\[
U = \begin{bmatrix}
 x^2 g_x^2 & x^2 g_x g_y & x^2 g_y^2 & x^2 g_x g_y^2 \\
 x^2 g_x g_y & x^2 g_y^2 & x^2 g_x^2 & x^2 g_y^2 \\
 x^2 g_x g_y & x^2 g_y g_x & x^2 g_x^2 & x^2 g_y^2 \\
 x^2 g_x g_y & x^2 g_y g_x & x^2 g_y^2 & x^2 g_x^2
\end{bmatrix}
\]

\[
Z = \begin{bmatrix}
 g_x^2 & g_x g_y \\
 g_y g_x & g_y^2
\end{bmatrix}
\]

\[
V^T = \begin{bmatrix}
 x g_x^2 & x g_y g_x & y g_x^2 & y g_y g_x \\
 x g_y g_x & x g_y^2 & y g_x g_y & y g_y^2 \\
 x g_x g_y & x g_y g_x & y g_x g_y & y g_y g_x \\
 x g_y g_x & x g_y g_x & y g_x g_y & y g_y g_x
\end{bmatrix}
\]

D and d interaction in matrix V
\[
\therefore \text{errors in D seep into d}
\]

Computing Image Motion

- For Pure Translation Model

\[
Zd = e
\]

(7) Pure Translation Dissimilarity

\[
Z = \begin{bmatrix}
 g_x^2 & g_x g_y \\
 g_y g_x & g_y^2
\end{bmatrix}
\]

\[
d = \begin{bmatrix}
 d_x \\
 d_y
\end{bmatrix}
\]

- Same Z used to compute Eigen values in corner detector
- Derivation by Stan Birchfield (developed KLT program)
Feature Selection
Harris Corner Detector
Tracking
Pure Translation

Select new feature

Feature Selection
Harris Corner Detector

Select new feature

Perform
\[Zd = e \]

continue update?

no

More features?

no

Not n\(^{th}\) frame?

no

Select new feature

Monitor Quality of Feature
Affine Model

\[Tz = a \]

continue update?

yes

no

Discard feature?

yes

no

Discard

More features?

yes

no

Select new feature

More features?

yes

no

no

START

A

A

Dissimilarity

- Not all features are good to track & some features are only good to track for a while
- **Dissimilarity** indicates possible change in feature (becomes a bad feature)
- Typical video spans a large number of frames
 - Pure translational model good for inter-frame tracking
 - Pure translation dissimilarity measure not good across a large number of frames
 - Affine dissimilarity better measures the quality of features across frame range

Example 1: Woody Allen’s *Manhattan*

1\(^{st}\) frame 11\(^{th}\) frame 21\(^{st}\) frame

Sign mostly translates, but does increase size by 15%

Tracked

Affine warping

1 6 11 16 21

Dashed line = Pure Translation
Solid Line = Affine Transformation
Dissimilarity

Example 2: Woody Allen’s *Manhattan*

- Glass window becomes occluded in middle frame
- Dissimilarity spike in affine transformation curve at frame 5 indicates occlusion
- Affine warping tries to deform traffic sign into a window

Convergence

- Dissimilarity looked at an entire sequence of frames
 - Many affine dissimilarity measurements computed
- Convergence: comparing the first and current frames
 - Fitting current frame (source) to first frame (destination)
 - One dissimilarity measurement
 - Iterative method
 - Leftmost column: source
 - Rightmost column: destination
 - 16% Gaussian noise added
 - Middle cols: after 4, 8, & 19 iterations

<table>
<thead>
<tr>
<th>Source</th>
<th>4th iter</th>
<th>8th iter</th>
<th>19th iter</th>
<th>Dest.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Convergence

Comparisons for previous slide

<table>
<thead>
<tr>
<th></th>
<th>True Deformation</th>
<th>Computed Deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.499 0.342 0.562</td>
<td>1.393 0.318 0.562</td>
</tr>
<tr>
<td>2</td>
<td>0.342 0.342 0.655</td>
<td>0.670 0.339 0.608</td>
</tr>
<tr>
<td>3</td>
<td>0.253 0.253 1.252</td>
<td>0.802 0.235 0.937</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>True Translation</th>
<th>Computed Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 0</td>
<td>3.8765 0.0007</td>
</tr>
<tr>
<td>2</td>
<td>2 0</td>
<td>2.0920 0.0155</td>
</tr>
<tr>
<td>3</td>
<td>3 0</td>
<td>3.8591 0.0317</td>
</tr>
</tbody>
</table>

Penny Example

Source 4th iter 8th iter 19th iter Dest.

Blobs to Cross Example

Real world image sequence
- 26 frame sequence
- Camera moves forward
- Objects become larger
- Due to depth issue, the following will occur
 - Occlusions
 - Disocclusions
 - Non-real points
- 102 features selected
- Limited # features by prohibiting overlapping feature windows during feature selection process
Monitoring Features

- Pure translation is sufficient for inter-frame tracking
 - Not for monitoring
 - All features, except two, have comparable dissimilarities
 - No way to distinguish good from bad features

Affine Motion Dissimilarity

- Good for monitoring
- Seven features have high dissimilarity, thus bad and are discarded
- Thick band of curves at bottom represents all good features (keep)

KLT Demo