Recap

Objective: Find the densest region

Region of interest
Center of mass
Mean Shift vector
Recap

Objective: Find the densest region

Distribution of identical billiard balls
Recap

Objective: Find the densest region
Distribution of identical billiard balls
Recap

Objective: Find the densest region
Distribution of identical billiard balls

Region of interest
Center of mass
Mean Shift vector
Recap

Objective: Find the densest region
Distribution of identical billiard balls

Active Contours
a.k.a. Snakes
Goal

- Segmentation of images
 - Used in other contexts, i.e. registration
- Find a closed or open boundary between regions

Overview

- Minimize some energy
- Boundary based (BB) methods
- Region based (RB) methods
- Combination of BB and RB
Boundary from edge detection

Does not always work
How to improve

- Integrate information over image plane
- Use Gestalt cues
 - Smoothness
 - Closure
- Get operator to help!

How can we integrate additional information

Humans integrate high level knowledge
A simpler problem

Let's find the best path between two boundary points.

Which path is the best?
Discrete grid

- Contour should be near edge.
 - Strength of gradient.
- Contour should be smooth (good continuation).
 - Low curvature
 - Low change of direction of gradient.

Smoothness

- *Discrete Curvature*: if you go from \(p(j-1) \) to \(p(j) \) to \(p(j+1) \) how much did direction change?
 - Be careful with discrete distances.
- Change of direction of gradient from \(p(j-1) \) to \(p(j) \)
Related cost function

- Path: \(p(1), p(2), \ldots p(n) \).

\[
\sum_{j=1}^{n} d(p(j), p(j+1)) \ast [g(p(j)) + \lambda f(p(j-1), p(j))]
\]

- where
 - \(d(.) \) is distance between consecutive grid points ie, 1 or \(\sqrt{2} \).
 - \(g(.) \) measures strength of gradient
 - \(\lambda \) is some parameter
 - \(f \) measures smoothness, curvature.

How to solve...

- Mapping the problem to graph

Weight represents cost of going from one pixel to another. Next term in sum.
Dijkstra’s shortest path algorithm

- init node costs to \(p \), set \(p = \text{seed point} \), \(\text{cost}(p) = 0 \)
- expand \(p \) as follows:
 - for each of \(p \)'s neighbors \(q \) that are not expanded
 - set \(\text{cost}(q) = \min(\ \text{cost}(p) + \text{cpq}, \ \text{cost}(q)) \)
 - if \(q \)'s cost changed, make \(q \) point back to \(p \)
 - put \(q \) on the ACTIVE list (if not already there)
Dijkstra’s shortest path algorithm

- init node costs to , set \(p = \) seed point, \(\text{cost}(p) = 0 \)
- expand \(p \) as follows:
 - for each of \(p \)'s neighbors \(q \) that are not expanded
 - set \(\text{cost}(q) = \min(\text{cost}(p) + c_{pq}, \text{cost}(q)) \)
 - if \(q \)'s cost changed, make \(q \) point back to \(p \)
 - put \(q \) on the ACTIVE list (if not already there)
- set \(r = \) node with minimum cost on the ACTIVE list
- repeat Step 2 for \(p = r \)

Intelligent scissors

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions (\(t_0 \), \(t_1 \), and \(t_2 \)) are shown in green.
Blending

A harder problem

- Deformable models
 - Internal forces (prior)
 - External forces (observation, image)
 - (1973) Widrow’s “rubbermask”
Two types of deformable models

- Parametric: curve $x(s)$, $s = [0,1]$ is parameter, or polyline x_i, $i=1,…,N$, i is parameter
 - Snakes (Here is some confusion: Snakes are also called "nonparametric" in the sense that very little prior is included)
 - Active shape models (Sometimes called “parametric” because the shape is trained on examples using a PCA model)

- Geometric
 - Level sets

Evolution of contour

- Snake Model (1987) [Kass-Witkin-Terzopoulos]
 - Planar parameterized curve $C:[0,1] \rightarrow \mathbb{R}^2$
 - A cost function defined along that curve

$$E[(C)(p)] = \alpha \int_0^1 E_{int}(C(p))dp + \beta \int_0^1 E_{image}(C(p))dp + \gamma \int_0^1 E_{cont}(C(p))dp$$
Image Energies

\[E_{sn}^* = \int_0^1 E_{\text{snake}} (v(s)) \, ds = \int_0^1 E_{\text{int}} (v(s)) \, ds + \int_0^1 E_{\text{image}} (v(s)) \, ds + \int_0^1 E_{\text{ext}} (v(s)) \, ds \]

- The internal term stands for regularity/smoothness along the curve
- The image term guides the active contour towards the desired image properties
- The external term can be used to account for user-defined constraints, or prior knowledge
- The lowest potential of such a cost function refers to an equilibrium of these terms

The internal term

\[E_{\text{int}}(C(p)) = w_{\text{tension}}(C(p)) \left| \frac{\partial C}{\partial p}(p) \right|^2 + w_{\text{stiffness}}(C(p)) \left| \frac{\partial^2 C}{\partial p^2}(p) \right|^2 \]

- The first order derivative makes the snake behave as a membrane
- The second order derivative makes the snake act like a thin plate
The image term

\[E_{\text{img}}(C(p)) = w_{\text{line}}E_{\text{line}}(C(p)) + w_{\text{edge}}E_{\text{edge}}(C(p)) + w_{\text{term}}E_{\text{term}}(C(p)) \]

- Can guide the snake to
 - Iso-photos \(E_{\text{line}}(C(p)) = I(C(p)) \)
 - Edges \(E_{\text{edge}}(C(p)) = |\nabla I(C(p))|^2 \)
 - Terminations

Relation between image and energy
In Summary

- **Internal forces**
 - Holds curve together
 - Prevents it from bending
- **External forces**
 - Attract curve to edges
- Analogous to Tichonov Regularisation (see Li: Markov Random Field, page 38)
 - First two terms = prior energy,
 - Third term = likelihood energy

\[
E(X) = \int_0^1 \left[\frac{1}{2} \alpha(s) X_s^2 + \frac{1}{2} b(s) X_{ss}^2 + P(X(s)) \right] ds
\]
Example forces

\[P(x, y) = -w | \nabla[G_\sigma(x, y) * I(x, y)] |^2 \] Edges

\[P(x, y) = -w | G_\sigma(x, y) * I(x, y) | \] Iso-phote

- Start with large sigma, decrease after some iterations.

Minimization

Variational Calculus

\[x, \eta : [0,1] \rightarrow \mathbb{R}^2 \]

\[x(0) = x_0 \]

\[x(1) = x_1 \]

\[\eta(0) = \eta(1) \]

\[\eta'(0) = \eta'(1) \]

\[C(x) = \int_0^1 F(x, x', x'') ds \]

\[C(x + \varepsilon \eta) = \int_0^1 F(x + \varepsilon \eta, x' + \varepsilon \eta', x'' + \varepsilon \eta''') ds \]
Minimization

Variational Calculus

\[C(x + s\eta) = \int_0^1 F(x + s\eta, x', x'' + s\eta'') ds \]

\[\frac{\partial C}{\partial \eta} = \int_0^1 \left(\frac{\partial F}{\partial x} \eta + \frac{\partial F}{\partial x'} \eta' + \frac{\partial F}{\partial x''} \eta'' \right) ds \]

\[\int_0^1 \frac{\partial F}{\partial x'} \eta ds = \int_0^1 \left(\frac{\partial}{\partial s} \frac{\partial F}{\partial x'} \right) \eta ds = -\int_0^1 \left(\frac{\partial^2 F}{\partial s \partial x'} \right) \eta ds \]

\[\frac{\partial C}{\partial \eta}(x + s\eta) = 0, \forall \eta \Rightarrow \frac{\partial F}{\partial x} - \frac{\partial}{\partial s} \frac{\partial F}{\partial x'} + \frac{\partial^2 F}{\partial s^2} \frac{\partial^2 F}{\partial x'^2} = 0 \]

Euler

- Euler Equation from variational calculus (assume closed curve)
 \[\frac{\partial}{\partial s} (\alpha X_s) - \frac{\partial^2}{\partial s^2} (\beta X_{ss}) - \nabla P(X) = 0 \]
- \(F\text{(internal)} + F\text{(external)} = 0 \)
Evolving Contour

\[\alpha \left(\frac{\partial^2 C}{\partial p^2}(p) - \frac{\partial^m C}{\partial p^m}(p) \right) - \beta \nabla E_{\text{img}}(C(p)) = 0 \]

- is used to update the position of an initial curve towards the desired image properties
 - Initial the curve, using a certain number of control points as well as a set of basic functions,
 - Update the positions of the control points by solving the above equation
 - Re-parameterize the evolving contour, and continue the process until convergence of the process…

Pros and Cons

Pros
- Low complexity
- Easy to introduce prior knowledge
- Can account for open as well as closed structures
- A well established technique, numerous publications it works
- User Interactivity

Cons
- Selection on the parameter space and the sampling rule affects the final segmentation result
- Estimation of the internal geometric properties of the curve in particular higher order derivatives
- Quite sensitive to the initial conditions,
- Changes of topology
Results