An Introduction to Graph-Cut

By: Paul Scovanner

- Overview
 - Min-cut
 - Normalized-Cut
 - Applications
An Introduction to Graph-Cut

- Graph-cut is an algorithm that finds a globally optimal segmentation solution.
- Also known as Min-cut.
- Equivalent to Max-flow. [1]

[1] Wu and Leahy: An Optimal Graph Theoretic Approach to Data Clustering:…

What is a “cut”?

A graph $G = (V,E)$ can be partitioned into two disjoint sets, A, B, $A \cup B = V$, $A \cap B = 0$ by simply removing edges connecting the two parts.

The degree of dissimilarity between these two pieces can be computed as total weight of the edges that have been removed. In graph theoretic language it is called the cut:

$$
cut(A, B) = \sum_{u \in A, v \in B} w(u,v) \quad [2].
$$

Example cut

$G = (V, E)$

$\text{cut}(A, B) =$

Finding the Minimum-cut

- A source node and a sink node
- Directed edge (Arc) $<i, j>$ from node i to node j
- Each arc $<i, j>$ has a nonnegative capacity $\text{cap}(i, j)$
- $\text{cap}(i, j) = 0$ for non-exist arcs

$G = (<V, E>)$
Flow is a real value function f that assigns a real value $f(i,j)$ to each arc $<i,j>$ under:
- Capacity constraint: $f(i,j) \leq cap(i,j)$
- Mass balance constraint:
 $$\sum_{i \neq s, t} f(i,j) - \sum_{k \neq s, t} f(k,i) = \begin{cases}
 0 & i \in V - \{s,t\} \\
 |f| & i = s \\
 -|f| & i = t
\end{cases}$$

$|f|$ is the value of flow f

An example of flow

- maximum flow is the flow has maximum value among all possible flow functions
Finding the Minimum-cut

- A cut is a partition of node set V which has two subsets S and T
- A cut is a s-t cut if $s \in S, t \in T$

![Diagram of s-t cut and not a s-t cut]

Finding the Minimum-cut

- $cap([S, T]) = \sum_{i,j \in E \atop i \in S, j \in T} cap(i, j)$

![Diagram with $cap([S, T]) = 2 + 3 = 5$]

- Minimum cut is the s-t cut whose capacity is minimum among all possible s-t cuts
Finding the Minimum-cut

\[f([S,T]) = \sum_{\langle i,j \rangle \in E \cap \delta(S \cup T)} f(i,j) - \sum_{\langle j,i \rangle \in E \cap \delta(S \cup T)} f(j,i) \]

- \(f([S,T]) = 2 + 1 - 1 = 2 \)

The problem with Min-cut

Need to account for cluster similarity
Normalized-cut

- Instead use *normalized cut* ($Ncut$).

\[
Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(A, B)}{assoc(B, V)}
\]

\[
assoc(A, V) = \sum_{u \in A, t \in V} w(u, t)
\]

\[
Nassoc(A, B) = \left(\frac{assoc(A, A)}{assoc(A, V)} + \frac{assoc(B, B)}{assoc(B, V)} \right)
\]

\[
Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(A, B)}{assoc(B, V)}
\]

\[
= \frac{assoc(A, V) - assoc(A, A)}{assoc(A, V)} + \frac{assoc(B, V) - assoc(B, B)}{assoc(B, V)}
\]

\[
= 2 - \left(\frac{assoc(A, A)}{assoc(A, V)} + \frac{assoc(B, B)}{assoc(B, V)} \right)
\]

\[
= 2 - Nassoc(A, B)
\]
Pixel labeling problem

Given

\[S = \{1, \ldots, n\} \quad \mathcal{N} \subset S \times S \]

\[\mathcal{L} = \{l_1, \ldots, l_m\} \]

Assignment cost for giving a particular label to a particular node. Written as \(D \).

Separation cost for assigning a particular pair of labels to neighboring nodes. Written as \(V \).

Find

Labeling \(f = (f_1, \ldots, f_n) \)

Such that the sum of the assignment costs and separation costs (the energy \(E \)) is small

Energy Minimization

- Optimizing the labeling problem can be thought of as minimizing some energy function.

\[
E(f) = \sum_{p \in P} D_p(f_p) + \sum_{p, q \in \mathcal{N}} V_{p, q}(f_p, f_q)
\]

\[
D_p(f_p) \quad \text{measure of image discrepancy}
\]

\[
\sum_{p, q \in \mathcal{N}} V_{p, q}(f_p, f_q) \quad \text{measure of smoothness or other visual constraints}
\]
The Labeling Problem

Common idea behind many Computer Vision problems
Assign labels to pixels based on noisy measurements (input images)
In the presence of uncertainties, find the best Labeling!

(Stereo, 3D Reconstruction, Segmentation, Image Restoration)

Choices of V
Robust

- **Potts model**

 $v(\alpha, \beta)$

- **Truncated linear model**

 $v(\alpha, \beta)$

Not robust

- **Linear model**

 $v(\alpha, \beta)$

- **Quadratic model**

 $v(\alpha, \beta)$
What do graph cuts provide?

- For less interesting V, polynomial algorithm for global minimum!
- For a particularly interesting V, approximation algorithm
 - Proof of NP hardness
- For many choices of V, algorithms that find a “strong” local minimum
- Very strong experimental results

Graph Cut based Segmentation

![Tiger segmentation example](image)
Graph Cut based Segmentation

User Guided Segmentation;
Specifies hard constraints.

3D Applications

2D and Time

Some Results

Input Image Efros and Freeman '01 (Image Quilting) Graph-cut

Some Results

Synthesized Texture (Initialization) Step 2 Step 3
Synthesis of Texture Step 4 Step 5 Step 6
Synthesized Texture (After 5 steps of Refinement)

Some Results

[5] Rother, Kolmogorov and Blake: "GrabCut" - Interactive Foreground Extraction using Iterated Graph Cuts
Some Results

Some Results
So far weight measurement has been distance, but could also use appearance, texture, or other information to calculate similarity measure.