Introduction To Boosting

Presentation by Alex Kachurin

Feb. 13, 2006

1. Boosting
 - Overview
 - Definition
 - Discrete AdaBoost algorithm
 - Boosting as greedy minimization technique

2. AdaBoost for face detection
 - Integral image and Haar features
 - AdaBoost applied to Face Detection
 - Cascaded AdaBoost
 - ROC curves
 - Comparison to other methods
Introduction to Boosting

- 3. Open problems
 - Basic vs. extended feature set
 - Statistical view of Boosting
 - Boosting variant: RealBoost
 - Boosting variant: LogitBoost
 - Other boosting variants
 - Hypothesis pruning

Boosting Overview

- Introduced by Freund and Shapire, 1996
- Classify objects (2 or more classes)
- Combine simple rules to form an ensemble
- The performance of an ensemble is better than that of each individual rule.
- Each rule should have an error rate slightly better than 50%

Y.Freund and R.E. Shapire. Experiments with a new boosting algorithm
Boosting, definitions

- X – a (high dimension) sample set
- Y – a set of labels
- $P(X) = \Pr(y(X) = 1)$ probability distribution
- Training set X_t with the same probability distribution as X
- Weak classifiers $h(X)$
- Produce a strong classifier:

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

Discrete AdaBoost algorithm

```
Algorithm 2.1 The AdaBoost algorithm [70].
1. Input: $S = \{(x_1, y_1), \ldots, (x_N, y_N)\}$, Number of iterations $T$
2. Initialize: $d_n^{(1)} = 1/N$ for all $n = 1, \ldots, N$
3. Do for $t = 1, \ldots, T$:
   (a) Train classifier with respect to the weighted sample set $(S, d^{(t)})$ and obtain hypothesis $h_t : x \mapsto \{-1, +1\}$, i.e. $h_t = \mathcal{L}(S, d^{(t)})$
   (b) Calculate the weighted training error $\varepsilon_t$ of $h_t$:
       $$\varepsilon_t = \sum_{n=1}^{N} d_n^{(t)} I(y_n \neq h_t(x_n))$$
   (c) Set:
       $$\alpha_t = \frac{1}{2} \log \frac{1 - \varepsilon_t}{\varepsilon_t}$$
   (d) Update weights:
       $$d_n^{(t+1)} = d_n^{(t)} \exp \left(-\alpha_t y_n h_t(x_n)\right) / Z_t$$
       where $Z_t$ is a normalization constant, such that $\sum_{n=1}^{N} d_n^{(t+1)} = 1.$
4. Break if $\varepsilon_t = 0$ or $\varepsilon_t \geq \frac{1}{2}$ and set $T = t - 1.$
5. Output: $f_T(x) = \sum_{t=1}^{T} \frac{\alpha_t}{Z_T} h_t(x)$
```

Ron Meir, Gunar Raetch. An introduction to Boosting and Leveraging
Boosting illustrated

At each stage, the algorithm greedily
minimizes the following function:

\[G^{AB} = \sum_{n=1}^{N} d_n \exp(-y_n (\alpha h_t(x_n) + f_{t-1}(x_n))) \]

\[f_{t+1}(x_n) = \sum_{i=1}^{t} \alpha_i h_i(x_n) \]

\[M(x_n) = -y_n (\alpha h_t(x_n) + f_{t-1}(x_n)) \]

M(x) defines margin over training set, same as SVM
AdaBoost for face detection

- A database of frontal faces (with minor rotations and translations)
- Two classes - face (1) and nonface (0)
- Training set – about 5000 faces and 10000 nonfaces
- Apply AdaBoost to produce a strong classifier with detection rate of about 98%

Integral image and Haar-like features

- Integral image – sum of all pixels above and to the left of a point \((x,y)\)
- Integral image may be computed recursively in \(O(n)\)
- Haar-like features use integral image values.
- Basic set includes 4 types of haar-like features
- To produce a weak classifier, subtract a threshold from feature value and use a \text{sign()} function!

Paul Viola, Michael Jones. Robust Real Time Object Detection
AdaBoost for Face Detection

- Given example images \(\{x_1, y_1\}, \ldots, (x_m, y_m) \) where \(y_i = 0, 1 \) for negative and positive examples respectively.
- Initialize weights \(w_{1,j} = \frac{1}{m} \) for \(y_i = 0, 1 \) respectively, where \(m \) and \(T \) are the number of negatives and positives respectively.
- For \(t = 1, \ldots, T \):
 1. Normalize the weights,
 \[w_{t,j} = \frac{w_{t-1,j}}{\sum_{j=1}^{N} w_{t-1,j}} \]
 so that \(w_t \) is a probability distribution.
 2. For each feature, \(j \), train a classifier \(h_j \) which is restricted to using a single feature. The error is evaluated with respect to \(w_t \),
 \[e_t = \sum_{i} w_t |h_j(x_i) - y_i| \]
 3. Choose the classifier, \(h_t \), with the lowest error \(e_t \).
 4. Update the weights:
 \[w_{t+1,j} = w_{t,j} \beta_t^{1-e_t} \]
 where \(e_t = 0 \) if example \(x_i \) is classified correctly, \(e_t = 1 \) otherwise, and
 \[\beta_t = \frac{1}{\sum_t w_t} \]
- The final strong classifier is:
 \[h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \geq \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases} \]
 where \(\alpha_t = \log \frac{1}{\beta_t} \)

Interpreting features

- Eyes area is generally darker than nose area
- The forehead area should be lighter than eyes area
Boosting cascades

- Faster processing
- Hopefully, better performance

Cascaded AdaBoost

- User selects values for f, the maximum acceptable false positive rate per layer and d, the minimum acceptable detection rate per layer.
- User selects target overall false positive rate, F_{target}.
- $P = \text{set of positive examples}$
- $N = \text{set of negative examples}$
- $F_0 = 1.0, D_0 = 1.0$
- $i = 0$
- while $F_i > F_{target}$
 - $i \leftarrow i + 1$
 - $n_i = 0; F_i = F_{i-1}$
 - while $F_i > f \times F_{i-1}$
 - $n_i \leftarrow n_i + 1$
 - Use P and N to train a classifier with n_i features using AdaBoost
 - Evaluate current cascaded classifier on validation set to determine F_i and D_i
 - Decrease threshold for the ith classifier until the current cascaded classifier has a detection rate of at least $d \times D_{i-1}$ (this also affects F_i)
 - $N \leftarrow \emptyset$
 - If $F_i > F_{target}$ then evaluate the current cascaded detector on the set of non-face images and put any false detections into the set N
Interpreting results

AdaBoost compared to other classification methods

<table>
<thead>
<tr>
<th>Detector</th>
<th>False detections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Viola-Jones</td>
<td>78.3%</td>
</tr>
<tr>
<td>Rowley-Baluja-Kanade</td>
<td>83.7%</td>
</tr>
<tr>
<td>Schneiderman-Kanade</td>
<td>83.7%</td>
</tr>
<tr>
<td>Roth-Yang-Ahuja</td>
<td></td>
</tr>
</tbody>
</table>

Viola-Jones AdaBoost
Rowley-Baluja-Kanade Neural networks
Schneiderman-Kanade Statistics, Bayesian
Roth-Yang-Ahuja PAC learner, linear features
AdaBoost Performance Observations

- Increasing number of training images significantly improves detection.
- Increasing number of features somewhat improves detection (5% improvement after increasing number of features from 20 to 80)
- Time complexity:
 \[T = O(n^*N^*t) \]
 - \(n \) – total number of training images
 - \(N \) – total number of features
 - \(t \) – number of features in the strong classifier

AdaBoost, open issues

- Basic vs. extended Haar feature set

OpenCV library
http://sourceforge.net/
/projects/opencvlibrary/
Statistical view of boosting

- Consider the following criterion:
 \[J(F) = E(e^{-yF(x)}) \]

- Theorem: the Discrete AdaBoost method fits an additive logistic regression by using adaptive Newton updates to minimize \(E(J(F)) \)

AdaBoost variants: RealBoost

Real AdaBoost

1. Start with weights \(w_i = 1/N, i = 1, 2, \ldots, N \).
2. Repeat for \(m = 1, 2, \ldots, M \):

 a. Fit the class probability estimate \(p_m(x) = \hat{P}_y(y = 1|x) \in [0,1] \) using weights \(w_i \) on the training data.

 b. Set \(f_m(x) \leftarrow \frac{1}{2} \log \frac{p_m(x)}{1-p_m(x)} \in R \).

 c. Set \(w_i \leftarrow w_i \exp[-y_i f_m(x_i)], i = 1, 2, \ldots, N \), and renormalize so that \(\sum_i w_i = 1 \).
3. Output the classifier \(\text{sign} \sum_{m=1}^{M} f_m(x) \)

- Better performance than discrete AdaBoost after 200 iterations
- Also minimizes \(E(J(F)) \) using Newton-like steps
AdaBoost variants: LogitBoost

LogitBoost (2 classes)

1. Start with weights $w_1 = 1/N$ for $i = 1, 2, \ldots, N$, $F(x) = 0$ and probability estimates $p(x_i) = \frac{1}{2}$.

2. Repeat for $m = 1, 2, \ldots, M$:
 a. Compute the working response and weights

 $$
 x_i = \frac{y_i - p(x_i)}{p(x_i)(1 - p(x_i))}
 $$

 $$
 w_i = \frac{p(x_i)(1 - p(x_i))}{p(x_i) - p(x_i)}
 $$

 b. Fit the function $f_m(x)$ by a weighted least-squares regression of z_i to x_i using weights w_i.
 c. Update $F(x) \leftarrow F(x) + \frac{1}{2} f_m(x)$ and $p(x)$ via (28).

3. Output the classifier $\text{sign}(F(x)) = \text{sign}(\sum_{m=1}^M f_m(x))$

AdaBoost- other variants

- **FloatBoost** - uses extended feature set, different target function and floating search method to locate a minimum. Very computationally expensive.

Conclusion

- AdaBoost allows to rapidly classify images
- Faster than any existing detector
- Comparable in accuracy to other methods
- Many improvement algorithms exist