Lecture-14

Kalman Filter
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Main Points

Very useful tool.

It produces an optimal estimate of the
state vector based on the noisy
measurements (observations).

For the state vector it also provides
confidence (certainty) measure in terms
of a covariance matrix .

It integrates estimate of state over time.
It is a sequeniiglsiate estimator.




State-Space Model

State model error
With covariance
State-transition equation Q(k)

2(k) = d(k, k —1)z(k —1) + w(k)

State Vector
Measurement (observation) equation

y(k) =H(k)z(k) +v(k)—

Observation

I\/fopyright Mubarak Shah @)3 Noise with covariancg
easurement Vectorr(k)

Kalman Filter Equations

State Prediction 2b (k) — (I)(k, k _1)231 (k _1)
Covariance Prediction P, (k) =d(k,k -1)P, (k _1)q)T (k,k=1)+Q(k)
Kalman Gain K (k) =P, (K)HT (K)(H(K)P, (K)HT (k) + R(K))™

State-update Z,(k) =27, (k) + K(K)[y(k)-H(k)z, (k)]

Covariance-update pa (k) _ Pb (k) _ K(k) H (k)Pb (k)

Copyright Mubarak Shah 2003




Two Special Cases

.Steady State  P(k,k-1)=®

Qk)=Q
H(k)=H
R(k)=R
- Recursive least squares
d(k,k-1) =1
~ Q(k)=0
Comments

* In some cases, state transition equation
and the observation equation both may be
non-linear.

* We need to linearize these equation using
Taylor series.
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Extended Kalman Filter

z(k) =f(z(k-1))+w(k)

y(k) =h(z(k)) + v(k)
PP {1 ) PR
A D T SR D2k

Taylor series
S h(k) ~ h(ib(k))ﬂ(;(z#(ﬂ‘)”(z(k)—
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z,(k-1))

Extended Kalman Filter

2(k) = f(z(k —1)) + w(k)
of (z(k —1)
6z(k —1)
2(k) = DK,k —~1)z(k —1) + u(k) + w(K)
u(k) = (2, (k -1)) - d(k, k -1)2, (k —1)
of (z(k -1))
oz(k 1)
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(k) =f(2,(k 1)) + (z(k-1)-2, (k1)) + w(k)

Dd(k,k-1) =




Extended Kalman Filter

y(k) =h(z(k)) + v(k)

y(k) =hz, (k) + D2ED 40y 5 k1)1 v(k)
oz2(K)

y(k) = H(k)z(k) + v(k)

y(k) =y (k) —h(z, (k) + H(K)Z, (k)

ONICCY)
6z (k)
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Multi-Frame Feature Tracking

Application of Kalman Filter
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« Assume feature points have been
detected in each frame.

» We want to track features in multiple
frames.

« Kalman filter can estimate the position and
uncertainty of feature in the next frame.
— Where to look for a feature
— how large a region should be searched
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P, =X, V. [ Location

Vv, = [uk,vk]T Velocity

Z= [Xk, Yis U,(,Vk]T State Vector
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System Model

P =Pt Vi t+éia

noise
Vi =V T —
2 =® 2, +W,

W, = F}
Tl

ubarak Shah 2003

0
1
0
1

Measurement Model

[t 00 qfn],
Y“Zlog 10 ofv, |"*

Measuremernt matrix
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Kalman Filter Equations

State Prediction 2b (k) = (I)(k, k _1)2a (k _1)
Covariance Prediction P, (k) = ®(k, k —1)P, (k ~1)d" (k,k-1)+Q(k)
Kelman Gain K(K) = P, ()HT (K)(H(K)P, (K)H (k) + R(K))*

State-update Z,(k) =7, (k) + K(K)[y (k) - H(k)Z, (k)]

Covariance-update |:)a1 (k) - Pb (k) — K(k) H (k)Pb (k)
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Kalman Filter: Relation to Least
Squares

fi(Z’yi):O

@ Taylor series

~ A of. " of. -
f' 21 i :Oz fi Zi_1 i +_I —Yi +_I Z_ZI +WI
(Z,Y:) (Zi1,Y1) ay(y y:) az( )
Yi:HiZ-i-Wi
~ of. . _%
Yi __fi(zi—l’yi)-’_gzi—l’Hi =57
of, L
Wi_g(y yi)
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Kalman Filter: Relation to Least
Squares

Estimate state such that the following is minimized:
-first term: initial estimate weighted by corresponding covariance
-second term: other measurements weighted by corresponding covariances

C=(Z2,-2)"P, " (Z,-2) +Zk:(Yi ~H,Z)'W™i(Y -H,2)

i=1

@ minimize

~ k R k
L= [Po_1 + Z H iTWi_lHi]_l[Po_lzo + Z H iTWi_lYi]
i=1 i=1

Batch Mode
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Kalman Filter: Relation to Least
Squares

. K ok
Z, = [Po_1 + Z H iTWi_lHi]_l[Po_le + Z H iTWi_lYi]
i=1 i=1

-~ k-1 ~ Kol
Z,y =[Pyt 2 HIWCH TR Z, + 3 HW Y]

i=1 i=1

Recursive Mode
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Kalman Filter: Relation to Least
Squares

Z =Z,+K Y, -HZ._)
Ky = Pk—lHTk W, + HkPk—lHkT)_l
Pk = (l - Kka)Pk—l

N Dk, k-1) =
Y, =—f"(Z,.,, +—=Z
k (ZiarYia) oz Tkt Q(k) — 0
_ ﬂ Covariance matrix for measurement
<oz Vector y
T
W k = i K~ Copyright Mubarak Shah 2003
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Kalman Filter (Least Squares)

State Prediction 2b (k) = (I)(k’ k _]_)2a(k _]_)

2, (k) =2,(k—1)

Covariance Prediction Po(K) =®(k,k-1)P, (k D)@' (k,k-1)+Q(k)
P, (k) =P, (k-1)

K(k) =P, (K)H" (K)(H(K)P, (K)H" (k) + R(K)) "

Kalman
Gain
K (k) = P, (K)H" (K)(H(K)P, (K)H" (k) + W (k))™
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Kalman Filter (Least Squares)

State-update 2a (k) = 2b (k) + K(k)[Y(k) - H(k)zb (k)]
Z (k)=2 (k-1 +K(K)[y(k)-H(K)z (k-1)]

Covariance-update

P, (k) = P, (k) = K(K)H ()P, (k)
P (k) =P (k-1)—K(K)H(K)P (k-1)

Copyright Mubarak Shah 2003

11



Computing Motion
Trajectories
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Algorithm For Computing Motion Trajectories

o Compute tokens using Moravec's interest
operator (intensity constraint).

* Remove tokens which are not interesting
with respect to motion (optical flow
constraint).

— Optical flow of a token should differ from the
mean optical flow around a small
neighborhood.
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Algorithm For Computing Motion Trajectories

* Link optical flows of a token in different
frames to obtain motion trajectories.

— Use optical flow at a token to predict its
location in the next frame.

— Search in a small neighborhood around the
predicted location in the next frame for a
token.

Smooth motion trajectories using Kalman

filter.
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Kalman Filter (Ballistic Model)

X(t) :.5axt2 +th+X0 Z:(ax,ay,vx’vy

y(t) =5a,t’ +Vt+y,  y=(x(t),y(t)

f(Z,y) = (x(t)-.5a,t* v t—x,, y(t) —.5ayt2 —V,t—Y,)
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Kalman Filter (Ballistic Model)

Z(k)=Z(k-1)+K(K)(Y(k)-H(k)Z(k-1)

K(K)=PKk-DHT (k) W(K)+H P(k-DH" (k)™

P(k) = (I -K(k)H (k))P(k-1)
Y(k):—fT(Z(k—l),y)+%Z(k—1)

of
H(k) =
k)=-

W (k) %A(k)%
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