Recognizing Facial Expressions

Lecture-13

Homework, Due November 11

- Lecture 9, slide 17, slide 22
- Lecture 12, page 21 and 22 (three problems).
Program II, Due November 16

• Implement Mean shift Algorithm for tracking
 – Assume that the object location is given in the first frame of the seq
 – Demonstrate your program on known test seqs
 – Demonstrate your program on unknown test seqs in the lab
 – Write a short report: method, problems, results, observations.

Facial expressions reflect the emotional stage of a person.

Recognizing facial expression from video sequences is a challenging problem.

Applications
 – Perceptual user interface
 – Video compression (MPEG-4)
 – Synthesis of facial expressions
Facial Expressions

• Joy
 – The eyebrows are relaxed. The mouth is open, and mouth corners pulled back toward ears.

• Sadness
 – The inner eyebrows are bent upward. The eyes are slightly closed. The mouth is relaxed.

• Anger
 – The inner eyebrows are pulled downward and together. The eyes are wide open. The lips are pressed against each other.

• Fear
 – The eyebrows are raised and pulled together. The inner eyebrows are bent upward. The eyes are tense and alert.

• Disgust
 – The eyebrows and eyelids are relaxed. The upper lip is raised and curled, often asymmetrically.

• Surprise
 – The eyebrows are raised. The upper eyelids are wide open, the lower relaxed. The jaw is open.
FACIAL EXPRESSIONS

RAISE EYE BROWS SMILE

Copyright Mubarak Shah 2003

FACIAL EXPRESSIONS

DISGUST ANGER

Copyright Mubarak Shah 2003
Black and Yacoob Algorithm

- Given the location of the face, eyes, brows, and mouth estimate the rigid motion of the face using pseudo perspective motion model.
- Use the face motion to register images through warping.
- Estimate relative motion of face features (eyes, mouth, brows).
- The estimated feature motions are used to predict locations of features in the next frame, and the process is repeated.
- The estimated motion is used to classify the facial expressions.
Affine

\[u(x, y) = a_1 x + a_2 y + b_1 \]
\[v(x, y) = a_3 x + a_4 y + b_2 \]

\[
\begin{bmatrix}
 u(x, y) \\
 v(x, y)
\end{bmatrix} =
\begin{bmatrix}
 x & y & 0 & 0 & b_1 \\
 0 & 0 & x & y & 1
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 a_4 \\
 b_2
\end{bmatrix}
\]

Copyright Mubarak Shah 2003

Affine

\[u(x, y) = a_1 x + a_2 y + b_1 \]
\[v(x, y) = a_3 x + a_4 y + b_2 \]

Expansion or contraction

\[\text{divergence} = u_x + v_y = a_1 + a_4 \]

Rotation around Z

\[\text{curl} = -(u_y - v_x) = -(a_2 - a_3) \]

Squashing or stretching

\[\text{deformation} = (u_x - v_y) = (a_1 - a_4) \]

Copyright Mubarak Shah 2003
Pseudo Perspective

\[u(x, y) = a_1 + a_2 x + a_3 y + a_4 x^2 + a_5 x y \]
\[v(x, y) = a_6 + a_7 x + a_8 y + a_4 x y + a_5 y^2 \]

\(a_4 = \text{yaw: rotation around y-axis} \)
\(a_5 = \text{pitch: rotation around x-axis} \)

\[
\begin{bmatrix}
 u(x, y) \\
 v(x, y)
\end{bmatrix} =
\begin{bmatrix}
 1 & x & x^2 & xy & 0 & 0 & 0 \\
 0 & 0 & xy & x^2 & 1 & x & y
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 a_4 \\
 a_5 \\
 a_6 \\
 a_7 \\
 a_8
\end{bmatrix}
\]
Affine with Curvature

\[u(x, y) = a_1 x + a_2 y + b_1 \]
\[v(x, y) = a_3 x + a_4 y + b_2 + cx^2 \]

Rules for Classifying Expressions

• Anger
 – B: inward lowering of brows and mouth contraction
 – E: outward raising of brows and mouth expansion

• Disgust
 – B: mouth horizontal expansion and lowering of brows
 – E: mouth contraction and raising of brows

• Happiness
 – B: upward curving of mouth and expansion or horizontal deformation
 – E: downward curving of mouth and contraction or horizontal deformation
Rules for Classifying Expressions

• Surprise
 – B: raising brows and vertical expansion of mouth
 – E: lowering brows and vertical contraction of mouth

• Sadness
 – B: downward curving of mouth and upward-inward motion in the inner parts of brows
 – E: upward curving of mouth and downward-outward motion in inner parts of brows

• Fear
 – B: expansion of mouth and raising-inwards inner parts of brows
 – E: contraction of mouth and lowering inner parts of brows

Smile Expression

Upward-outward motion of mouth corners results in –ve curvature

Horizontal and overall vertical stretching result in +ve div & def.

Some upward trans is caused by raising of lower and upper lips due to stretching of the mouth (a3 is –ve).
Smile

Figure 6: Smile experiments: facial expression tracking

Smile Mouth Parameters

Figure 7: Smile mouth parameters. The translation, solid and dashed lines indicate horizontal and vertical motion respectively.

Copyright Mubarak Shah 2003
Anger

Figure 10: Anger experiment facial expression tracking, frames every 15 frames.

Copyright Mubarak Shah 2003

Anger Motion Parameters

Figure 11: Anger motion parameters: the solid line indicates the right eye or brow while the dashed line indicates the left eye or brow.
Surprise

Surprise Motion Parameters

[Diagrams showing motion parameters for different facial features like mouth, brows, and eyes, with graphs illustrating trends and changes over time.]
Blinking

Figure 14: Blinking experiment: facial feature tracking. Features every four frames.

Blinking Motion Parameters for Eyes

Copyright Mubarak Shah 2003
Rotation

Rotate Face motion parameters

P₀ rot y
P₁ rot X

Copyright Mubarak Shah 2003
Rotation Motion Parameters

![Graphs showing motion parameters for Mouth and Brows](image)

Table 3: The mid-level predicates derived from deformation and motion parameter estimates.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Threshold</th>
<th>Derived Predicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>> 0.25</td>
<td>Mouth rightward</td>
</tr>
<tr>
<td></td>
<td>< -0.25</td>
<td>Mouth leftward</td>
</tr>
<tr>
<td>b_0</td>
<td>< -0.1</td>
<td>Mouth upturned</td>
</tr>
<tr>
<td></td>
<td>> 0.1</td>
<td>Mouth downturned</td>
</tr>
<tr>
<td>D_{M}</td>
<td>> 0.07</td>
<td>Mouth expansion</td>
</tr>
<tr>
<td></td>
<td>< -0.02</td>
<td>Mouth constriction</td>
</tr>
<tr>
<td>$D_{M}f$</td>
<td>> 0.005</td>
<td>Mouth front-to-back deformation</td>
</tr>
<tr>
<td></td>
<td>< -0.005</td>
<td>Mouth back-to-front deformation</td>
</tr>
<tr>
<td>C_{Mef}</td>
<td>> 0.005</td>
<td>Mouth clockwise rotation</td>
</tr>
<tr>
<td></td>
<td>< -0.005</td>
<td>Mouth counterclockwise rotation</td>
</tr>
<tr>
<td>c</td>
<td>< -0.0004</td>
<td>Mouth carving or "X" line</td>
</tr>
<tr>
<td></td>
<td>> 0.0001</td>
<td>Mouth carving downstroke</td>
</tr>
</tbody>
</table>

Mid-level predicates for Mouth

Copyright Mubarak Shah 2003
Mid-level predicates for Head

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Threshold</th>
<th>Derived Predicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_h</td>
<td>> 0.5</td>
<td>Head rightward</td>
</tr>
<tr>
<td></td>
<td>< -0.5</td>
<td>Head leftward</td>
</tr>
<tr>
<td>a_n</td>
<td>< 0.1</td>
<td>Head upward</td>
</tr>
<tr>
<td></td>
<td>> 0.5</td>
<td>Head downward</td>
</tr>
<tr>
<td>f_{Pr}</td>
<td>> 0.08</td>
<td>Head opening</td>
</tr>
<tr>
<td></td>
<td>< -0.01</td>
<td>Head contraction</td>
</tr>
<tr>
<td>f_{Dg}</td>
<td>> 0.01</td>
<td>Head horizontal deformation</td>
</tr>
<tr>
<td></td>
<td>< -0.01</td>
<td>Head vertical deformation</td>
</tr>
<tr>
<td>C_d</td>
<td>> 0.005</td>
<td>Head ocular rotation</td>
</tr>
<tr>
<td></td>
<td>< -0.005</td>
<td>Head move/look/eye rotation</td>
</tr>
<tr>
<td>p_n</td>
<td>< -0.0005</td>
<td>Head moving rightward around the neck</td>
</tr>
<tr>
<td></td>
<td>> 0.0005</td>
<td>Head moving leftward around the neck</td>
</tr>
<tr>
<td>p_r</td>
<td>< -0.0005</td>
<td>Head moving forward</td>
</tr>
<tr>
<td></td>
<td>> 0.0005</td>
<td>Head moving backward</td>
</tr>
</tbody>
</table>

Parameter values used for classifying expressions
Forty Test Subjects

Results

<table>
<thead>
<tr>
<th>Expression</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surprise</td>
<td>91%</td>
</tr>
<tr>
<td>Happiness</td>
<td>95%</td>
</tr>
<tr>
<td>Anger</td>
<td>90%</td>
</tr>
<tr>
<td>Disgust</td>
<td>93%</td>
</tr>
<tr>
<td>Fear</td>
<td>83%</td>
</tr>
<tr>
<td>Sadness</td>
<td>100%</td>
</tr>
</tbody>
</table>
Beginning of Anger Expression
Frames from 10 Video Clips

Results

<table>
<thead>
<tr>
<th>Expression</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surprise</td>
<td>86%</td>
</tr>
<tr>
<td>Happiness</td>
<td>95%</td>
</tr>
<tr>
<td>Anger</td>
<td>80%</td>
</tr>
<tr>
<td>Disgust</td>
<td>50%</td>
</tr>
<tr>
<td>Fear</td>
<td>100%</td>
</tr>
<tr>
<td>Sadness</td>
<td>60%</td>
</tr>
</tbody>
</table>

Copyright Mubarak Shah 2003