Maximum Alliance-Free and Minimum Alliance-Cover Sets

Khurram H. Shafique and Ronald D. Dutton
School of Computer Science
University of Central Florida
Orlando, FL USA 32816
khurram@cs.ucf.edu, dutton@cs.ucf.edu

Abstract

A defensive k-alliance in a graph G = (V, E) is a set of vertices $A \subseteq V$ such that for every vertex $v \in A$, the number of neighbors v has in A is at least k more than the number of neighbors it has in V-A (where k is the strength of defensive k-alliance). An offensive k-alliance is a set of vertices $A \subseteq V$ such that for every vertex $v \in \partial A$, the number of neighbors v has in A is at least k more than the number of neighbors it has in V-A (where ∂A is the boundary of set A and is defined as N[A] - A). In this paper, we deal with two types of sets associated with these k-alliances: maximum k-alliance free and minimum k-alliance cover sets. Define a set $X \subseteq V$ to be maximum k-alliance free (for some type of k-alliance) if X does not contain any k-alliance (of that type) and is a largest such set. A set $Y \subseteq V$ is called minimum k-alliancecover (for some type of k-alliance) if Y contains at least one vertex from each k-alliance (of that type) and is a set of minimum cardinality satisfying this property. We present bounds on the cardinalities of maximum k-alliance free and minimum k-alliance cover sets and explore their inter-relation. The existence of forbidden subgraphs for graphs induced by these sets is also explored.

Keywords: Alliance, Defensive Alliance, Offensive Alliance, Alliance free Set, Alliance Cover Set, Cohesive Set.

1 Definitions and Notations

Alliances in graphs were first introduced by Hedetniemi, et. al.[3]. They proposed different types of alliances, namely (strong) defensive alliances, (strong) offensive alliances[1], global alliances[2], etc. In this paper, we consider generalizations of offensive and defensive alliances which we refer to as k-alliances,

where the strength of an alliance is related to the value of parameter k.

Consider a graph G=(V,E) without loops or multiple edges. A vertex v in set $A\subseteq V$ is said to be k- satisfied with respect to A if $\deg_A(v)\geq \deg_{V-A}(v)+k$, where $\deg_A(v)=|N(v)\cap A|=|N_A(v)|=\deg(v)-\deg_{V-A}(v)$. A set A is a defensive k- alliance if all vertices in A are k-satisfied with respect to A, where $-\Delta < k \leq \Delta$. Note that a defensive (-1)-alliance is a "defensive alliance" (as defined in [3]), and a defensive 0-alliance is a "strong defensive alliance" or "cohesive set" [4]. Similarly, a set $A\subseteq V$ is an offensive k-alliance if $\forall v\in\partial A, \deg_A(v)\geq \deg_{V-A}(v)+k$, where $-\Delta+2< k\leq \Delta$. Here, an offensive 1-alliance is an "offensive alliance" and an offensive 2-alliance is a "strong offensive alliance" (as defined in [1]).

A set $X\subseteq V$ is defensive k-alliance free (k-daf) if for all defensive k-alliances $A, A-X\neq\emptyset$, i.e., X does not contain any defensive k-alliance as a subset. A defensive k-alliance free set X is maximal if $\forall v\notin X, \ \exists S\subseteq X$ such that $S\cup\{v\}$ is a defensive k-alliance. A maximum k-daf set is a maximal k-daf set of largest cardinality. Let $\phi_k(G)$ be the cardinality of a maximum k-daf set of graph G. For simplicity of notation, we will refer to a maximum k-daf set of G as a $\phi_k(G)$ -set. If a graph G does not have a defensive k-alliance (for some k), we say that $\phi_k(G) = |V(G)| = n$, for example, $\phi_k(P_n) = n, \ \forall k > 1$. Since $\forall k_1 \geq k_2$, a defensive k_2 -alliance free set is also defensive k_1 -alliance free, we have $\phi_{k_1}(G) \geq \phi_{k_2}(G)$ if and only if $k_1 \geq k_2$.

We define a set $Y \subseteq V$ to be a defensive k-alliance cover (k-dac) if for all defensive k-alliances A, $A \cap Y \neq \emptyset$, i.e., Y contains at least one vertex from each defensive k-alliance of G. A k-dac set Y is minimal if no proper subset of Y is a defensive k-alliance cover. A minimum k-dac set is a minimal cover of smallest cardinality. Let $\zeta_k(G)$ be the cardinality of a minimum k-dac set of graph G. Once again, we will refer to a minimum k-dac set of G as a $\zeta_k(G)$ -set. When G does not have a defensive k-alliance (for some k), we say that $\zeta_k(G) = 0$.

For offensive k-alliances, we define two types of alliance free (cover) sets depending on whether or not the boundary vertices of an offensive alliance affect the definition of the set. A set $S \subseteq V$ is offensive k-alliance free (k-oaf) if for all offensive k-alliances A, $A - S \neq \emptyset$. S is weak offensive k-alliance free (k-woaf) if for all offensive k-alliances A, $N[A] - S \neq \emptyset$. Similarly, a set $T \subseteq V$ is an offensive k-alliance cover (k-oac) if for all offensive k-alliances A, $A \cap T \neq \emptyset$. T is a weak offensive k-alliance cover (k-woac) if for all offensive k-alliances A, $N[A] \cap T \neq \emptyset$. The maximum (weak) offensive k-alliance free sets and minimum (weak) offensive k-alliance cover sets are defined in the same fashion as their defensive counterparts. For a graph G, we define the following invariants

- $\phi_k(G)$ = Size of a maximum k-daf set of G
- $\zeta_k(G)$ = Size of a minimum k-dac set of G

- $\phi_k^o(G)$ = Size of a maximum k-oaf set of G
- $\zeta_k^o(G)$ = Size of a minimum k-oac set of G
- $\phi_k^w(G)$ = Size of a maximum k-woaf set of G
- $\zeta_k^w(G)$ = Size of a minimum k-woac set of G

In this paper, we explore the properties and bounds of the above defined invariants and their relationship with each other. In general we will refer to both offensive and defensive k-alliances as k-alliances. Similarly, the terms k-alliance free set and k-alliance cover set will encompass all types of alliance free sets and cover sets defined in this section. For other graph terminology and notation, we follow [6].

2 Basic Properties

Theorem 1. $X \subseteq V$ is a k-alliance cover if and only if V - X is k-alliance free.

Proof. A set X is a defensive k-alliance free set if and only if, for every defensive k-alliance A, $A-X \neq \emptyset$ if and only if, for every defensive k-alliance A, $A \cap (V-X) \neq \emptyset$ if and only if V-X is a defensive k-alliance cover.

The justification for the (weak) offensive alliance cover is similar. \Box

Corollary 2.
$$\phi_k(G) + \zeta_k(G) = \phi_k^o(G) + \zeta_k^o(G) = \phi_k^w(G) + \zeta_k^w(G) = n$$

Corollary 3.

- (i) If V' is a minimal k-dac (k-oac) then, $\forall v \in V'$, there exists a defensive (offensive) k-alliance S_v for which $S_v \cap V' = \{v\}$.
- (ii) If V' is a minimal k-wdac then, $\forall v \in V'$, there exists an offensive k-alliance S_v for which $N[S_v] \cap V' = \{v\}$.

Since, $\forall k_1 > k_2$, a k_2 -alliance free set is also a k_1 -alliance free set and every k_1 -oaf set is a k_1 -woaf set, we have the following observation.

Observation 4. For any graph G and $-\Delta < k_2 < k_1 \le \Delta$,

(i)
$$0 \le \phi_{k_2}^o(G) \le \phi_{k_1}^o(G) \le \phi_{k_1}^w(G) \le n$$

(ii)
$$0 \le \phi_{k_1}^w(G) \le \phi_{k_2}^w(G) \le n$$

(iii)
$$0 \le \phi_{k_2}(G) \le \phi_{k_1}(G) \le n$$

Also note that every k-daf set X is a k-woaf set. Suppose not, then there is an offensive k-alliance A such that $N[A] \subseteq X$. Then $\forall v \in N[A]$, $\deg_{N[A]}(v) \ge \deg_{V-N[A]}(v) + k$, which implies that N[A] is a defensive k-alliance and contradicts X being a k-daf set.

Observation 5. $\phi_k^w(G) \ge \phi_k(G)$

Suppose now a minimal k_1 -dac set Y, $k_1 > -\delta(G)$, and let $A \subseteq Y$ such that A is an offensive k_2 -alliance. Let $y \in A$, then by Corollary 3, there exists a defensive k_1 -alliance S_y such that $S_y \cap Y = \{y\}$. Hence $\exists x \in \partial A - Y$ such that $\deg_A(x) \leq \deg_{V-A}(x) + 2 - k_1$. Also, since A is an offensive k_2 -alliance, $\deg_A(x) \geq \deg_{V-A}(x) + k_2$. Combining the two inequalities, we get, $k_2 \leq 2 - k_1$. This leads to the following observation:

Observation 6. For any graph G and every k_1 , k_2 such that $k_1 > -\delta(G)$ and $k_2 > 2 - k_1$, $\phi_{k_2}^o(G) \ge \zeta_{k_1}(G)$

3 Defensive k-Alliance Free & Cover Sets

For any k, such that $-\delta(G) < k \le \Delta(G)$, we know that any independent set in a connected graph G is k-daf, therefore $\phi_k(G) \ge \beta_0(G)$, where $\beta_0(G)$ is the vertex independence number of graph G. We can further improve this bound by noting that the addition of any $\left\lceil \frac{\delta(G)}{2} \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor - 1$ vertices to an independent set will not produce a defensive k-alliance in the new set, hence, $\phi_k(G) \ge \beta_0(G) + \left\lceil \frac{\delta(G)}{2} \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor - 1$. Since, every $A \subset V$, such that $|A| \ge n - \left\lfloor \frac{\delta(G)}{2} \right\rfloor + \left\lceil \frac{k}{2} \right\rceil$, is a defensive k-alliance, $\phi_k(G) < n - \left\lfloor \frac{\delta(G)}{2} \right\rfloor + \left\lceil \frac{k}{2} \right\rceil$.

Observation 7. If G is a connected graph and $-\delta(G) < k \leq \Delta(G)$ then

$$\beta_0(G) + \left\lceil \frac{\delta(G)}{2} \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor - 1 \le \phi_k(G) < n - \left\lfloor \frac{\delta(G)}{2} \right\rfloor + \left\lceil \frac{k}{2} \right\rceil$$

Next we present the values of $\phi_k(G)$ for some common graph families.

Observation 8. If G is an Eulerian graph and $-\frac{\delta(G)}{2} < i \leq \frac{\Delta(G)}{2}$, then $\phi_{2i-1}(G) = \phi_{2i}(G)$.

Observation 9. For the complete graph K_n and -n+1 < k < n,

$$\phi_k(K_n) = \begin{cases} \left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{k}{2} \right\rceil & \text{for odd } n \\ \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{k}{2} \right\rfloor & \text{for even } n. \end{cases}$$

Observation 10. For the complete bipartite graph $K_{p,q}$, where $p \leq q$ and $-p < k \leq p$,

$$\phi_k(K_{p,q}) = \begin{cases} q + \left\lceil \frac{p}{2} \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor - 1 & \text{for odd } p \\ q + \left\lceil \frac{p}{2} \right\rceil + \left\lceil \frac{k}{2} \right\rceil - 1 & \text{for even } p. \end{cases}$$

Note that the upper and lower bounds of Observation 7 coincide for both K_n and $K_{p,q}$, when k is even. We have shown in [5] that the following lower bound holds for $\phi_k(G)$.

Theorem 11. For every connected graph G and $0 \le k \le \Delta$,

$$\phi_k(G) \ge \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{k}{2} \right\rfloor$$

We believe (but have been unable to prove) the following extension of the above theorem:

Conjecture 1. If G is a connected graph and $-\delta(G) < k \leq \Delta(G)$ then

$$\phi_k(G) \ge \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{k}{2} \right\rfloor$$

Next, we show that no forbidden subgraph characterization exists for the graphs induced by minimal k-dac sets.

Theorem 12. Let G be any graph and r an integer such that $r \geq 2$. Then, for all $k \geq 2 - r$, there is a graph G', such that G' contains G as an induced subgraph and $\zeta_k(G') = r$.

Proof. Let a graph G=(V,E) where $V=\{v_1,v_2,\ldots,v_n\}$ and construct a graph G'=(V',E') as follows: $V'=V\cup X\cup Y$, where $X=\left\{x_i^j,\ 1\leq i\leq n,\ 1\leq j\leq \max\left(2r+k,\Delta(G)-k+1\right)\right\}$ and $Y=\{y_1,y_2,\ldots,y_{2r+k-2}\}$. $E'=E\cup E_1\cup E_2$, where $E_1=\left\{v_ix_i^j,\ v_i\in V,\ x_i^j\in X\right\}$ and $E_2=\left\{x_i^jy_l,\ x_i^j\in X,\ y_l\in Y\right\}$. Thus $\delta(G')=2r+k-1$. Since by Observation 7, $\zeta_k(G')\geq \left\lfloor\frac{\delta(G')}{2}\right\rfloor-\left\lceil\frac{k}{2}\right\rceil+1$, we have $\zeta_k(G')\geq \left\lfloor\frac{2r+k-1}{2}\right\rfloor-\left\lceil\frac{k}{2}\right\rceil+1=r$.

we have $\zeta_k(G') \geq \left\lfloor \frac{2r+k-1}{2} \right\rfloor - \left\lceil \frac{k}{2} \right\rceil + 1 = r$. Now consider $C \subseteq Y$ such that |C| = r. We claim that C is a k-dac set of graph G'. Suppose not. Then there exists a defensive k-alliance $S \subseteq V' - C$ in G'. Let $v \in S$. Since $\forall x \in X$, $\deg(x) = 2r + k - 1$, if $v \in X$ then $\deg_S(v) \leq r + k - 1 < \deg_C(v) + k = r + k$, which is contrary to S being a defensive k-alliance. Hence $S \cap X = \emptyset$. Now let $v \in V$. By construction of graph G', $\forall v \in V$, $\deg_X(v) + k \geq \Delta(G) + 1 > \deg_{V'-X}(v) \geq \deg_S(v)$, again a contradiction. The only remaining case is $S \subset Y$, which is not possible as $\forall v \in S$, $\deg_S(v) = 0 < \deg_{V'-S}(y) + k \leq n(2r+k) + k$. Hence $S = \emptyset$ and C is a k-dac set. Thus $\zeta_k(G') \leq r$.

Combining the two results, we get $\zeta_k(G') = r$.

4 Offensive k-Alliance Free & Cover Sets

In this section, we study the properties of the free sets and cover sets associated with offensive k-alliances. We begin by presenting the values of $\phi_k^o(G)$ and $\phi_k^w(G)$ for some special classes of graphs.

Observation 13. For the complete graph K_n , and -n+3 < k < n

$$\phi_k^o(K_n) = \phi_k(K_n) - 1 = \left\lfloor \frac{n+k}{2} \right\rfloor - 1$$
$$\phi_k^w(K_n) = n - 1$$

Observation 14. For the complete bipartite graph $K_{p,q}$, $p \leq q$, and $-p+2 < k \leq q$

$$\phi_k^o(K_{p,q}) = \begin{cases} \left\lceil \frac{q}{2} \right\rceil + \left\lceil \frac{p}{2} \right\rceil + 2 \left\lfloor \frac{k}{2} \right\rfloor - 2 & p \ \& \ q \ both \ odd \end{cases}$$
$$\phi_k^o(K_{p,q}) = \begin{cases} \left\lceil \frac{q}{2} \right\rceil + \left\lceil \frac{p}{2} \right\rceil + 2 \left\lceil \frac{k}{2} \right\rceil - 2 & p \ \& \ q \ both \ even \end{cases}$$
$$\left\lceil \frac{q}{2} \right\rceil + \left\lceil \frac{p}{2} \right\rceil + k - 2 & otherwise \end{cases}$$
$$\phi_k^w(K_{p,q}) = n - 2, \ p, q \neq 1$$

It is interesting to note that while complete graphs attain the lower bound for $\phi_k(G)$, they have the maximum value for $\phi_k^w(G)$.

Lemma 15. If S is an offensive k_1 - alliance then

- (i) for all offensive k_2 -alliances $S' \subseteq V S$ such that $k_1 + k_2 > 0$, $\partial S \cap \partial S' = \emptyset$.
- (ii) for all defensive k_2 -alliances $S' \subseteq V S$ such that $k_1 + k_2 > 0$, $\partial S \cap S' = \emptyset$.

Theorem 16. For a connected graph G, if X is a maximal k_1 -woaf set and Y = V - X then

- (i) $\forall k_2 > -k_1$, Y is a k_2 -woaf set (and hence, X is a k_2 -woac set), and
- (ii) $\forall k_2 > \max(-k_1, -\delta(G)), Y \text{ is a } k_2 daf \text{ set (hence, } X \text{ is a } k_2 dac \text{ set)}.$

Proof. For i), let $k_2 > -k_1$ and suppose there exists an offensive k_2 -alliance S for which $N[S] \subseteq Y$. Let $x \in \partial S$. From Corollary 3, there is an offensive k_1 -alliance S_x for which $N[S_x] \cap Y = \{x\}$. If $x \in \partial S_x$, then from Lemma 15, S and S_x cannot be disjoint, a contradiction. So we must assume that $x \in S_x$. But then, $N(x) \subseteq \partial S_x \subseteq X$, which leads to a contradiction since x must have at least one neighbor in $S \subseteq Y$. Thus, Y is a k_2 -woaf set and, from Theorem 1, X is a k_2 -woac set.

For ii), let $k_2 > \max(-k_1, -\delta(G))$ and suppose there exists a defensive k_2 -alliance $S \subseteq Y$. Let $x \in S$. From Corollary 3, there exists an offensive k_1 -alliance S_x for which $N[S_x] \cap Y = \{x\}$. If $x \in \partial S_x$ then from Lemma 15, S_x and S_x cannot be disjoint, a contradiction. So we must assume that $x \in S_x$, but then $N(x) \subseteq \partial S_x \subseteq X$, which is not possible since $\deg_S(x) \ge (\deg(x) + k_2)/2 > 0$. Hence, Y is a k_2 -daf set and, from Theorem 1, X is a k_2 -dac set.

Corollary 17.

- (i) Every maximal k_1 -woof set contains a minimal k_2 -wood set, $\forall k_2 > -k_1$.
- (ii) Every maximal k_1 -woaf set contains a minimal k_2 -dac set, $\forall k_2 > \max(-k_1, -\delta(G))$.

Since every k-woaf is also l-woaf $\forall l > k$, by Theorem 1, every k-woac is also l-woac. This observation leads to the following corollary of Theorem 16.

Corollary 18. $\forall k > 0, \ \zeta_k^w(G) \leq \left\lfloor \frac{n}{2} \right\rfloor$

It is easy to prove that $\forall k \geq 0$, $\zeta_k^w(G) = \lfloor \frac{n}{2} \rfloor$ if and only if $G \approx K_2$ and k < 2.

We conclude this section by presenting a result for $\zeta_k^w(G)$ similar to the one for $\zeta_k(G)$ in Theorem 12.

Theorem 19. Let G be any graph and r an integer such that $r \geq 1$. Then there is a graph G' with $\zeta_k^w(G') = r$, which contains G as an induced subgraph.

Proof. Let a graph G=(V,E) where $V=\{v_1,v_2,\ldots,v_n\}$ and construct a graph G'=(V',E') as follows: $V'=V\cup X\cup Y$, where $X=\{x_1,x_2,\ldots,x_r\}$ and Y is the union of disjoint sets Y_1,Y_2,\ldots,Y_r , such that $\forall i,\ |Y_i|=n-k+1$. $E'=E\cup E_1\cup E_2\cup E_3$, where $E_1=\{v_ix_j,\ v_i\in V,\ x_j\in X\},\ E_2=\bigcup_{i=1}^r\{x_iy,\ \forall y\in Y_i\}$ and $E_3=\{yz|\ y,z\in Y_i,\ 1\leq i\leq r\}$. Hence, G' is obtained by adding r vertex disjoint cliques $Y_i\cup \{x_i\}$, each of order n-k+2 vertices and making each x_i adjacent to every vertex of V.

It is easy to see that X is a k-woac set of graph G', i.e. $\zeta_k^w(G') \leq |X| = r$. We claim that $\zeta_k^w(G') = r$. Suppose not and let $C \subset V$ be a k-woac set of graph G' such that |C| < r. By pigeon hole principle, there exists Y_i such that $(Y_i \cup \{x_i\}) \cap C = \emptyset$. Since $\partial Y_i = \{x_i\}$ and $\deg_{Y_i}(x_i) = n + k + 1 > \deg_{V' - Y_i}(x_i) + k = n + k$, Y_i is an offensive k-alliance in G' such that $N[Y_i] \subseteq V' - C$, which is contrary to C being a k-woac set of graph G'. Hence $\zeta_k^w(G') \geq r$.

Combining the two results, we get $\zeta_k^w(G') = r$.

5 Open Problems

1. Determine the computational complexity of finding each of $\phi_k(G)$, $\phi_k^o(G)$ and $\phi_k^w(G)$.

- 2. Find efficient algorithms for computing $\phi_k(G)$, $\phi_k^o(G)$ and $\phi_k^w(G)$.
- 3. Determine tight upper and lower bounds for $\phi_k^o(G)$ and $\phi_k^w(G)$ and characterize extremal graphs.
- 4. Determine the values of $\phi_k(G)$, $\phi_k^o(G)$ and $\phi_k^w(G)$ for other classes of graphs, for example, grid graphs.
- 5. Do results similar to Theorem 12 and Theorem 19 hold for $\zeta_k^o(G)$?
- 6. Study the cover and free sets of other alliances, e.g., dual alliances and global alliances, and their relationship.

References

- [1] O. Favaron, G. Fricke, W. Goddard, S. M. Hedetniemi, S. T. Hedetniemi, P. Kristiansen, R. C. Laskar, and D. Skaggs, "Offensive alliances in graphs." Preprint, 2002.
- [2] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, "Global defensive alliances in graphs." Preprint, 2002.
- [3] S. M. Hedetniemi, S. T. Hedetniemi, and P. Kristiansen, "Alliances in graphs." Preprint, 2000.
- [4] K. H. Shafique and R. D. Dutton, "On satisfactory partitioning of graphs," Congressus Numerantium 154 (2002), pp. 183-194.
- [5] K. H. Shafique and R. D. Dutton, "A tight bound on the cardinalities of maximum alliance-free and minimum alliance-cover sets." Preprint, 2002.
- [6] D. B. West, Introduction to Graph Theory. Prentice Hall, NJ, 2001.