Multi-View Geometry

Review: Perspective Projection

Review: Perspective Projection

Points go to Points Lines go to Lines Planes go to whole image or Half-planes

Polygons go to Polygons

By Rigid Body Transformation:

$$\begin{bmatrix} X^{(C)} \\ Y^{(C)} \\ Z^{(C)} \\ 1 \end{bmatrix} = \begin{bmatrix} R_{3\times3} & T_{3\times1} \\ 0_{1\times3} & 1 \end{bmatrix} \begin{bmatrix} X^{(W)} \\ Y^{(W)} \\ Z^{(W)} \\ 1 \end{bmatrix} \Rightarrow M^{(C)} = DM^{(W)}$$

Recovering 3D from images

What cues in the image provide 3D information?

Visual cues

Shading

Merle Norman Cosmetics, Los Angeles

Visual cues

Shading

Texture

The Visual Cliff, by William Vandivert, 1960

Visual cues

Shading

Texture

Focus

From The Art of Photography, Canon

Visual cues

Shading

Texture

Focus

Motion

Visual cues

Shading

Texture

Focus

Motion

Shape From X

• X = shading, texture, focus, motion, ...

Multi-View Geometry

Relates

- 3D World Points
- Camera Centers
- Camera Orientations

Multi-View Geometry

Relates

- 3D World Points
- Camera Centers
- Camera Orientations
- Camera Intrinsic Parameters
- Image Points

Stereo scene point image plane optical center

Stereo

Basic Principle: Triangulation

- Gives reconstruction as intersection of two rays
- Requires
 - calibration
 - point correspondence

Stereo Constraints

• p

p'?

Given p in left image, where can the corresponding point p' in right image be?

Epipolar Constraint

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O' of the two cameras, and the two images p and p' of P all lie in the same plane.

All epipolar lines contain epipole, the image of other camera center.

From Geometry to Algebra

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O' of the two cameras, and the two images p and p' of P all lie in the same plane.

From Geometry to Algebra

The epipolar constraint: these vectors are coplanar:

$$\overrightarrow{Op}\cdot [\overrightarrow{OO'}\times \overrightarrow{O'p'}]=0$$

$$\overrightarrow{Op} \cdot [\overrightarrow{OO'} \times \overrightarrow{O'p'}] = 0$$

p,p' are image coordinates of P in c1 and c2...

c2 is related to c1 by rotation R and translation t

$$p \cdot [t \times (\mathcal{R}p')] = 0$$

Linear Constraint: Should be able to express as matrix multiplication.

Review: Matrix Form of Cross Product

The vector cross product also acts on two vectors and returns a third vector. Geometrically, this new vector is constructed such that its projection onto either of the two input vectors is zero.

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}$$

$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \vec{c} \quad \vec{b} \cdot \vec{c} = 0$$

Review: Matrix Form of Cross Product

$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \vec{c} \quad \vec{a} \cdot \vec{c} = 0$$

$$[a_x] = \begin{bmatrix} \mathbf{0} & -a_z & a_y \\ a_z & \mathbf{0} & -a_x \\ -a_y & a_x & \mathbf{0} \end{bmatrix}$$

$$\vec{a} \times \vec{b} = [a_x]\vec{b}$$

$$\vec{a} \times \vec{b} = [a_x]\vec{b}$$

Matrix Form

$$p \cdot [t \times (\mathcal{R}p')] = 0$$

$$\vec{a} \times \vec{b} = [a_x]\vec{b}$$

$$p^T[t_x]\Re p' = 0$$

$$\varepsilon = [t_x]\Re$$

$$\boldsymbol{p}^T \mathcal{E} \boldsymbol{p}' = 0$$

The Essential Matrix

Matrix that relates image of point in one camera to a second camera, given translation and rotation.

$$\boldsymbol{\varepsilon} = [t_x] \Re$$

$$\boldsymbol{p}^T \mathcal{E} \boldsymbol{p}' = 0$$

$$\vec{a} \times \vec{b} = [a_x] \vec{b}$$