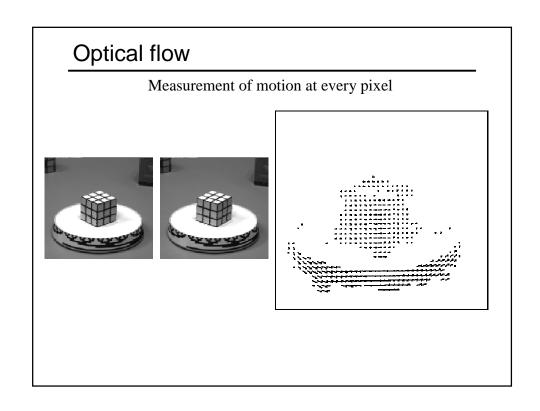
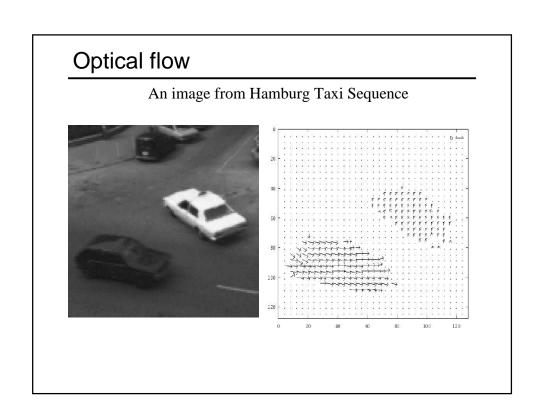
Motion Estimation

Why estimate motion?

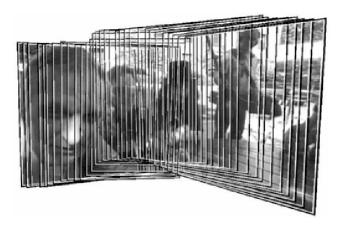
Lots of uses

- Motion Detection
- Track object behavior
- Correct for camera jitter (stabilization)
- Align images (mosaics)
- 3D shape reconstruction
- Video Compression



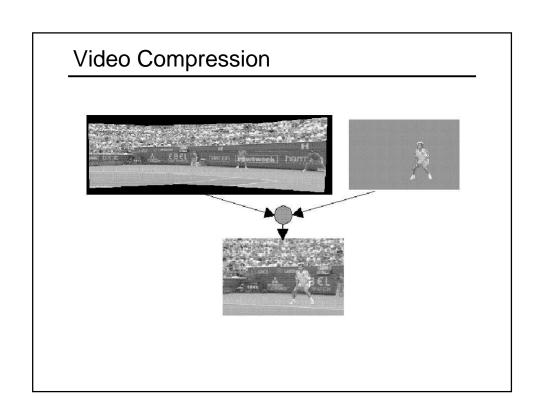


Video Mosaics



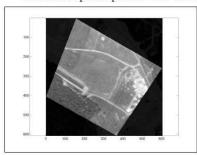
Video Mosaics

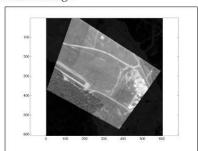
Video Mosaics



Geo Registration

Results superimposed with the reference image



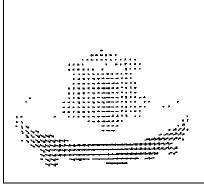


Video Segmentation

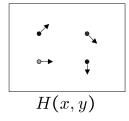
Structure From Motion

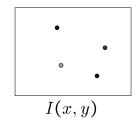
Optical flow

Measurement of motion at every pixel



Problem definition: optical flow





How to estimate pixel motion from image H to image I?

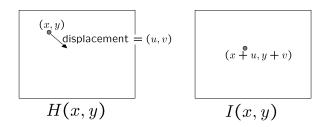
- Solve pixel correspondence problem
 - given a pixel in H, look for nearby pixels of the same color in I

Key assumptions

- color constancy: a point in H looks the same in I
 - For grayscale images, this is brightness constancy
- small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)



Let's look at these constraints more closely

- brightness constancy: Q: what's the equation?
- small motion: (u and v are less than 1 pixel)
 - suppose we take the Taylor series expansion of I:

$$\begin{split} I(x+u,y+v) &= I(x,y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \text{higher order terms} \\ &\approx I(x,y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v \end{split}$$

Optical flow equation

Combining these two equations

shorthand:
$$I_x = \frac{\partial I}{\partial x}$$

$$\approx I(x,y) + I_x u + I_y v - H(x,y)$$

0 = I(x + u, y + v) - H(x, y)

$$\approx (I(x,y) - H(x,y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$

In the limit as u and v go to zero, this becomes exact

$$0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \ \frac{\partial y}{\partial t} \right]$$

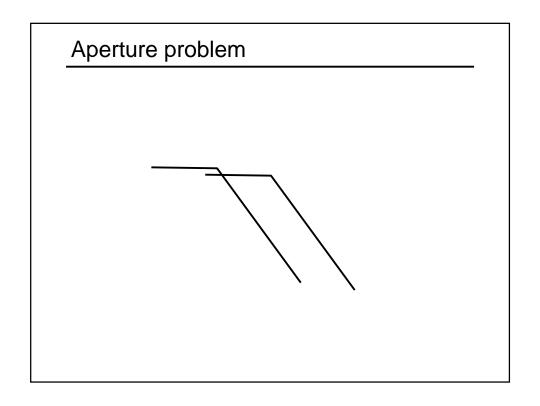
Optical flow equation

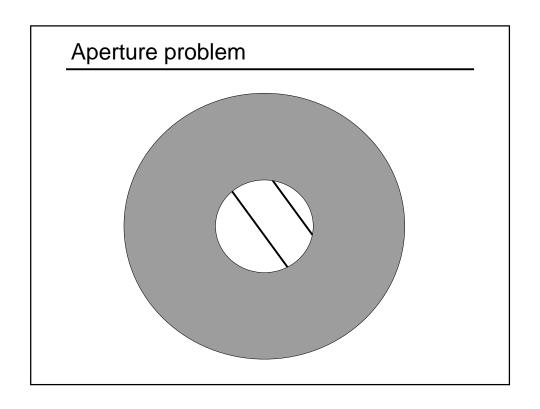
$$0 = I_t + \nabla I \cdot [u \ v]$$

Q: how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

- · The component of the flow in the gradient direction is determined
- The component of the flow parallel to an edge is unknown





Solving the aperture problem

How to get more equations for a pixel?

- · Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - » If we use a 5x5 window, that gives us 25 equations per pixel!

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

$$A \qquad d \qquad b$$

$$25 \times 2 \qquad 2 \times 1 \qquad 25 \times 1$$

RGB version

How to get more equations for a pixel?

- · Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - » If we use a 5x5 window, that gives us 25*3 equations per pixel!

$$0 = I_t(\mathbf{p_i})[0, 1, 2] + \nabla I(\mathbf{p_i})[0, 1, 2] \cdot [u \ v]$$

$$\begin{bmatrix} I_{x}(\mathbf{p_{1}})[0] & I_{y}(\mathbf{p_{1}})[0] \\ I_{x}(\mathbf{p_{1}})[1] & I_{y}(\mathbf{p_{1}})[1] \\ I_{x}(\mathbf{p_{1}})[2] & I_{y}(\mathbf{p_{1}})[2] \\ \vdots & \vdots & \vdots \\ I_{x}(\mathbf{p_{25}})[0] & I_{y}(\mathbf{p_{25}})[0] \\ I_{x}(\mathbf{p_{25}})[1] & I_{y}(\mathbf{p_{25}})[1] \\ I_{x}(\mathbf{p_{25}})[2] & I_{y}(\mathbf{p_{25}})[2] \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{t}(\mathbf{p_{1}})[0] \\ I_{t}(\mathbf{p_{1}})[1] \\ I_{t}(\mathbf{p_{1}})[2] \\ \vdots \\ I_{t}(\mathbf{p_{25}})[0] \\ I_{t}(\mathbf{p_{25}})[1] \\ I_{t}(\mathbf{p_{25}})[2] \end{bmatrix}$$

$$A \qquad d \qquad b \\ 75 \times 2 \qquad 2 \times 1 \qquad 75 \times 1$$

Lukas-Kanade flow

Prob: we have more equations than unknowns

$$\begin{array}{ccc}
A & d = b \\
25\times2 & 2\times1 & 25\times1
\end{array}$$
 minimize $||Ad - b||^2$

Solution: solve least squares problem

• minimum least squares solution given by solution (in d) of:

$$(A^T A) \underset{2 \times 2}{d} = A^T b$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad A^T b$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lukas & Kanade (1981)
 - described in Trucco & Verri reading

Conditions for solvability

· Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad A^T b$$

When is This Solvable?

- A^TA should be invertible
- A^TA should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of $\mathbf{A}^T\mathbf{A}$ should not be too small
- ATA should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

Eigenvectors of ATA

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} \ I_{y}] = \sum \nabla I(\nabla I)^{T}$$

Suppose (x,y) is on an edge. What is A^TA ?

- · gradients along edge all point the same direction
- · gradients away from edge have small magnitude

$$\left(\sum \nabla I(\nabla I)^{T}\right) \approx k \nabla I \nabla I^{T}$$
$$\left(\sum \nabla I(\nabla I)^{T}\right) \nabla I = k \|\nabla I\| \nabla I$$

- ∇I is an eigenvector with eigenvalue $|k||\nabla I||$
- What's the other eigenvector of A^TA?
 - let N be perpendicular to ∇I

$$\left(\sum \nabla I(\nabla I)^T\right)N = 0$$

- N is the second eigenvector with eigenvalue 0

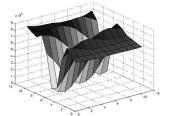
The eigenvectors of A^TA relate to edge direction and magnitude

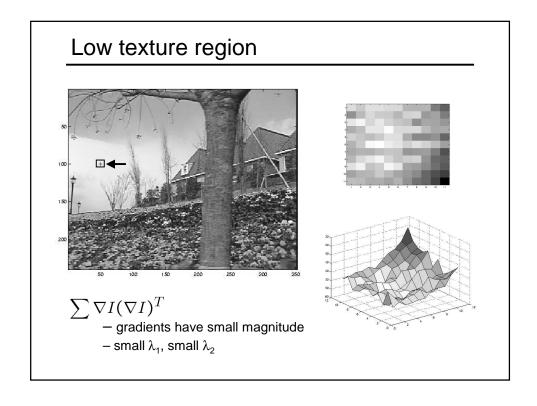
Edge

$$\sum \nabla I(\nabla I)^T$$

- large gradients, all the same
- large λ_1 , small λ_2









Observation

This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images!
- · This tells us which pixels are easy to track, which are hard
 - very useful later on when we do feature tracking...

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose ATA is easily invertible
- Suppose there is not much noise in the image

When our assumptions are violated

- Brightness constancy is not satisfied
- The motion is not small
- A point does **not** move like its neighbors
 - window size is too large
 - what is the ideal window size?

Improving accuracy

Recall our small motion assumption

$$0 = I(x + u, y + v) - H(x, y)$$
$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

This is not exact

• To do better, we need to add higher order terms back in:

$$= I(x,y) + I_x u + I_y v + \text{higher order terms} - H(x,y)$$

This is a polynomial root finding problem

- Can solve using Newton's method
 - Also known as Newton-Raphson method
- · Lukas-Kanade method does one iteration of Newton's method
 - Better results are obtained via more iterations

Iterative Refinement

Iterative Lukas-Kanade Algorithm

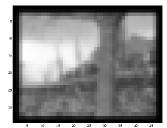
- 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
- 2. Warp H towards I using the estimated flow field
 - use image warping techniques
- 3. Repeat until convergence

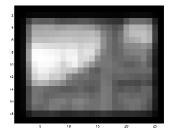
Revisiting the small motion assumption

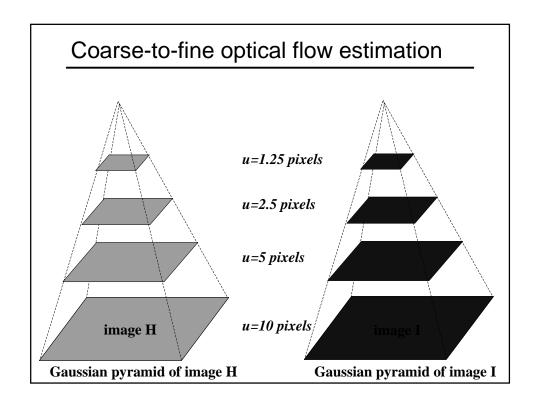
Is this motion small enough?

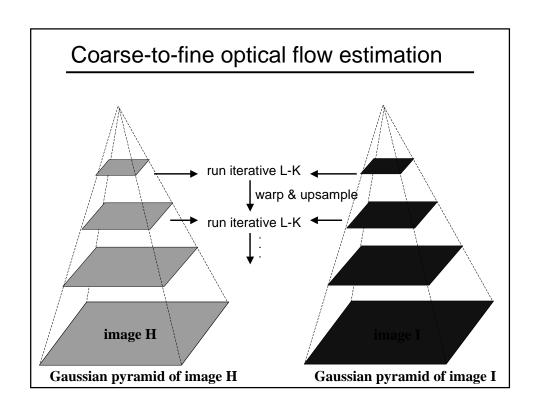
- Probably not—it's much larger than one pixel (2nd order terms dominate)
- How might we solve this problem?

Reduce the resolution!



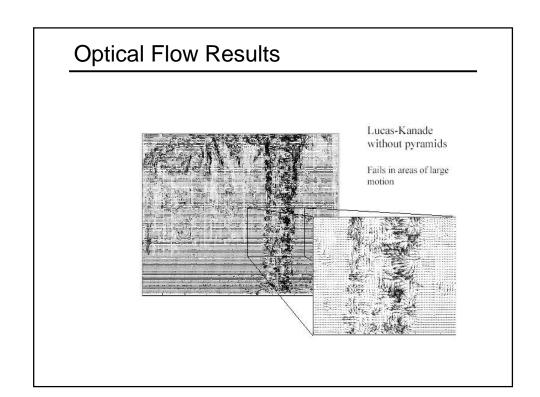




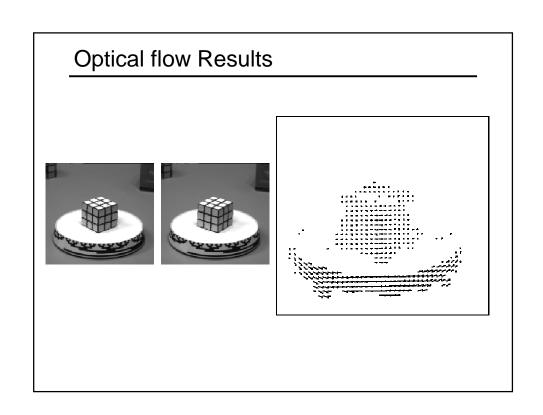


Multi-resolution Lucas Kanade Algorithm

- · Compute 'simple' LK at highest level
- At level i
 - Take flow u_{i-1} , v_{i-1} from level i-1
 - bilinear interpolate it to create u_i^* , v_i^* matrices of twice resolution for level i
 - multiply u_i^* , v_i^* by 2
 - compute f_t from a block displaced by $u_i^*(x,y), v_i^*(x,y)$
 - Apply LK to get u_i '(x, y), v_i '(x, y) (the correction in flow)
 - Add corrections $u_i' v_i'$, i.e. $u_i = u_i^* + u_i'$, $v_i = v_i^* + v_i'$.



Optical Flow Results Lucas-Kanade with Pyramids



Suggested Readings

 Chapter 8, Emanuele Trucco, Alessandro Verri, "Introductory Techniques for 3-D Computer Vision"