Motion Estimation

Why estimate motion?

Lots of uses
* Motion Detection
e Track object behavior
» Correct for camera jitter (stabilization)
» Align images (mosaics)
« 3D shape reconstruction
¢ Video Compression




Optical flow

M easurement of motion at every pixel

Optical flow

An image from Hamburg Taxi Sequence
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Video Mosaics
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Video Mosaics




Video Mosaics

Video Compression




Geo Registration

Results superimposed with the reference image

Video Segmentation




Structure From Motion
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Optical flow

M easurement of motion at every pixel




Problem definition: optical flow
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How to estimate pixel motion from image H to image 1?

* Solve pixel correspondence problem
— given a pixel in H, look forpixels of the inl

Key assumptions

e color constancy: a pointin H looks the same in |
— For grayscale images, this is brightness constancy
« small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)

(z,y)
\gisplacement = (u,v)
(z -it u,y + v)

Let’s look at these constraints more closely
¢ brightness constancy: Q: what's the equation?

¢ small motion: (u and v are less than 1 pixel)
— suppose we take the Taylor series expansion of I:

I(z+u,y+v) = I(x, y)+%u+g—£v+higher order terms
~ I(2,y) + 9Lu + %v




Optical flow equation

Combining these two equations
O=I(z+u,y+v)— H(x,y)
~ I(z,y) + Iew + Iyv — H(z, y)
~ (I(z,y) — H(z,y)) + Leu + Iyv
~ It + Ipu+ Iyv
~ I+ VI [uv]

shorthand: I, = %

In the limit as u and v go to zero, this becomes exact

0=1+ Vi[5 3

Optical flow equation

O=10L+VI:[uv]
Q: how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

* The component of the flow in the gradient direction is determined
¢ The component of the flow parallel to an edge is unknown




Aperture problem

Aperture problem




Solving the aperture problem

How to get more equations for a pixel?
» Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!

0 = Ii(p;) + VI(py) - [u ]

I:(p1) Iy(p1) Ii(p1)
I:(p2) Iy(p2) | |uw | _ _ | It(p2)
: : v :
I:(p25) Iy(p2s) Ii(p2s)
A d b
25x2 2x1 25x1

RGB version

How to get more equations for a pixel?
« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel’s neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25*3 equations per pixel!

[ L:(p1)[0] Iy(p1)[O] ] [ Ii(p1)[O] ]
L(p[1] L(pp[1] Ii(p1)[1]
Ia:(p_:l)[Q] Iy(p_1)[2] [ " ] It(p_l)[Q]
Lo(p23)[0] Iy(pas)[0] | L ” I(p25)[0]
I(p25)[1] Iy(p2s5)[1] I(p2s)[1]

| Ix(p25)[2] Iy(p2s)[2] | | It(p25)[2] |

A d b
75%x2 2x1 75x1
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Lukas-Kanade flow

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad — b|]?
25x2 2x1 25x1

Solution: solve least squares problem
e minimum least squares solution given by solution (in d) of:

(AT A) d= ATh

2x2 2x1 2x1

Yo Aply Y Iy w| _ | Xl
Y Ily > Iyly v | > Iyl

AT A ATp

¢ The summations are over all pixels in the K x K window
¢ This technique was first proposed by Lukas & Kanade (1981)
— described in Trucco & Verri reading

Conditions for solvability

¢ Optimal (u, v) satisfies Lucas-Kanade equation

Yo Irly ZIny wol_ Yo I dy
Z[a;fy EIny v | ZIyIt

AT A ATy

When is This Solvable?
e ATA should be invertible
« ATA should not be too small due to noise
— eigenvalues A, and A, of ATA should not be too small
* ATA should be well-conditioned
— A,/ A, should not be too large (A, = larger eigenvalue)
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Eigenvectors of ATA

wa=[ 8 B ] -2 (3w - seienr
Suppose (x,y) is on an edge. What is ATA?
» gradients along edge all point the same direction
» gradients away from edge have small magnitude
(> vievn™) ~kvivi®
(> vievn®)vi =k|vI|VI
« VIis an eigenvector with eigenvalue k[|VI||

« What's the other eigenvector of ATA?
— let N be perpendicular to VI

(> vievnT)N=o0

— N is the second eigenvector with eigenvalue 0
The eigenvectors of ATA relate to edge direction and magnitude

S vivnt
— large gradients, all the same
—large A;, small A,

12



Low texture region

S vivnt
— gradients have small magnitude
—small A,, small A,

High textured region

S vivnt "
— gradients are different, large magnitudes -~ -
—large A, large A,
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Observation

This is a two image problem BUT
« Can measure sensitivity by just looking at one of the images!

« This tells us which pixels are easy to track, which are hard
— very useful later on when we do feature tracking...

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?
e Suppose ATA is easily invertible
e Suppose there is not much noise in the image

When our assumptions are violated
¢ Brightness constancy is not satisfied
¢ The motion is not small
* A point does not move like its neighbors
— window size is too large
— what is the ideal window size?

14



Improving accuracy

Recall our small motion assumption
0=I(x~+u,y+v)— H(z,y)
~ I(z,y) + Lyu+ Iyv — H(z, y)

This is not exact
¢ To do better, we need to add higher order terms back in:

= I(:L', y) + Ipu + va —+ higher order terms — H(.CL', y)

This is a polynomial root finding problem

¢ Can solve using Newton’s method
— Also known as Newton-Raphson method

¢ Lukas-Kanade method does one iteration of Newton's method
— Better results are obtained via more iterations

lterative Refinement

Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence
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Reuvisiting the small motion assumption

Is this motion small enough?
» Probably not—it's much larger than one pixel (2" order terms dominate)
e How might we solve this problem?

Reduce the resolution!
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Coarse-to-fine optical flow estimation

u=1.25 pixels
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u=5 pixels

image H

u=10 pixels’
Gaussian pyramid of image H

Gaussian pyramid of image |

Coarse-to-fine optical flow estimation

» run iterative L-K 4_-

lwarp & upsample

—’ run iterative L-K €+— -

I

image H

\

Gaussian pyramid of image H

Gaussian pyramid of image |
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Multi-resolution Lucas Kanade Algorithm

» Compute ‘simple” LK at highest level
¢ Atlevel i
* Take flow u,_,, v, from level i-1
* bilinear interpolate it to create u,", v,*
matrices of twice resolution for level i
» multiply o, v," by 2
* compute /, from a block displaced by
u, (). v (xy)
» Apply LK to get , (x, v). v, '(x, y) (the
correction in flow)

» Add corrections u,"v,", ie.u, = u, tou,,

Optical Flow Results

Lucas-Kanade
without pyramids

Fails in areas of large
motion

18



Optical Flow Results

Lucas-Kanade with Pyramids

Optical flow Results
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Suggested Readings

* Chapter 8, Emanuele Trucco, Alessandro Verri, “Introductory
Techniques for 3-D Computer Vision”

20



