Deformable Contours
Deformable Contours
Deformable Contours

- Minimize the Energy Functional

\[E = \int \left[\alpha(s)E_{\text{cont}} + \beta(s)E_{\text{curv}} + \gamma(s)E_{\text{image}} \right] ds \]

- Where the integral is taken along the contour \(c \) and each of the energy terms in the functional is a function of \(c \) or the derivatives of \(c \) with respect to \(s \). The parameters \(\alpha, \beta, \) and \(\gamma \) control the relative influence of the corresponding energy term, and can vary along \(c \).
Deformable Contours

- Continuity

\[E_{cont} = \left\| \frac{dc}{ds} \right\|^2 \]

\[E_{cont} = \left\| p_i - p_{i-1} \right\|^2 \quad \text{Discrete Approximation} \]

\[E_{cont} = \left(\bar{d} - \left\| p_i - p_{i-1} \right\| \right)^2 \quad \text{A better form} \]
Deformable Contours

- Curvature (Smoothness)

\[E_{\text{curv}} = \left\| \frac{d^2 c}{ds^2} \right\|^2 \]

\[E_{\text{cont}} = \left\| p_{i-1} - 2p_i + p_{i+1} \right\|^2 \text{ Discrete Approximation} \]
Deformable Contours

- **Image (Edge Attraction)**

\[E_{curv} = -\| \Delta I \| \]
Greedy Algorithm (Williams & Shah)

Let \(I \) be the intensity image and \(p_j, \ldots p_k \) be the initial positions of the snake points.

While a fraction greater than \(f \) of the snake points move in an iteration:
1. For each \(i \), find the location of \(N(p_i) \) for which the functional is minimum and move the snake point \(p_i \) to that location.
2. For each \(i \), estimate the curvature \(k \) of the snake and look for local maxima. Set \(\beta(j)=0 \) for all \(p_j \) at which the curvature has a local maximum and is above certain threshold and at which the image gradient is above certain threshold.
3. Update the value of the average distance
Suggested Reading

- Chapter 5, Emanuele Trucco, Alessandro Verri, "Introductory Techniques for 3-D Computer Vision"
Programming Assignment #2

\[\frac{\partial}{\partial x} G_\sigma = -\frac{x}{2\pi\sigma^4} e^{\frac{x^2 + y^2}{2\sigma^2}} \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Y</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0011</td>
<td>0</td>
<td>-0.0011</td>
<td>-0.0005</td>
</tr>
<tr>
<td>0.0007</td>
<td>0.0058</td>
<td>0.0131</td>
<td>0</td>
<td>-0.0131</td>
<td>-0.0058</td>
</tr>
<tr>
<td>0.0032</td>
<td>0.0261</td>
<td>0.0585</td>
<td>0</td>
<td>-0.0585</td>
<td>-0.0261</td>
</tr>
<tr>
<td>0.0053</td>
<td>0.0431</td>
<td>0.0965</td>
<td>0</td>
<td>-0.0965</td>
<td>-0.0431</td>
</tr>
<tr>
<td>0.0032</td>
<td>0.0261</td>
<td>0.0585</td>
<td>0</td>
<td>-0.0585</td>
<td>-0.0261</td>
</tr>
<tr>
<td>0.0007</td>
<td>0.0058</td>
<td>0.0131</td>
<td>0</td>
<td>-0.0131</td>
<td>-0.0058</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0011</td>
<td>0</td>
<td>-0.0011</td>
<td>-0.0005</td>
</tr>
</tbody>
</table>
Programming Assignment #2

\[\frac{\partial}{\partial y} G_\sigma = -\frac{y}{2\pi\sigma^4} e^{-\frac{x^2+y^2}{2\sigma^2}} \]
Programming Assignment #2

\[S_x = \left(\frac{\partial}{\partial x} G_\sigma \right) * I \]

\[S_y = \left(\frac{\partial}{\partial y} G_\sigma \right) * I \]

\[|\Delta| = \sqrt{S_x^2 + S_y^2} \]
Programming Assignment #2

Least Square Fitting

Let the line be: \(y = ax + b \)

Solve

\[
\begin{bmatrix}
\sum_{i} x_i y_i \\
\sum_{i} y_i
\end{bmatrix}
=
\begin{bmatrix}
\sum_{i} x_i^2 & \sum_{i} x_i \\
\sum_{i} x_i & n
\end{bmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix}
\]
Programming Assignment #2

Maximum Likelihood Fitting

Let the line be: \(ax + by + c = 0 \)

Find the Eigen Vectors \(
\begin{bmatrix}
a \\
b
\end{bmatrix}
\)

of the matrix

\[
\begin{bmatrix}
\sum x_i^2 - \left(\frac{\sum x_i}{n} \right)^2 & \sum x_i y_i - \left(\frac{\sum x_i}{n} \right) \left(\frac{\sum y_i}{n} \right) \\
\sum x_i y_i - \left(\frac{\sum x_i}{n} \right) \left(\frac{\sum y_i}{n} \right) & \sum y_i^2 - \left(\frac{\sum y_i}{n} \right)^2
\end{bmatrix}
\]

Compute \(c = -a \frac{\sum x_i}{n} - b \frac{\sum y_i}{n} \)