CAP5415 Computer Vision Spring 2003

Khurram Hassan-Shafique

■ Minimize the Energy Functional

$$E = \int \left[\alpha(s) E_{cont} + \beta(s) E_{curv} + \gamma(s) E_{image} \right] ds$$

Where the integral is taken along the contour \mathbf{c} and each of the energy terms in the functional is a function of \mathbf{c} or the derivatives of \mathbf{c} with respect to s. The parameters α , β , and γ control the relative influence of the corresponding energy term, and can vary along \mathbf{c} .

Continuity

$$E_{cont} = \left\| \frac{d\mathbf{c}}{ds} \right\|^2$$

$$E_{cont} = ||p_i - p_{i-1}||^2$$
 Discrete Approximation

$$E_{cont} = (\overline{d} - ||p_i - p_{i-1}||)^2$$
 A better form

■ Curvature (Smoothness)

$$E_{curv} = \left\| \frac{d^2 \mathbf{c}}{ds^2} \right\|^2$$

$$E_{cont} = \|p_{i-1} - 2p_i + p_{i+1}\|^2$$
 Discrete Approximation

■ Image (Edge Attraction)

$$E_{curv} = - \left\| \Delta I \right\|$$

Greedy Algorithm (Williams & Shah)

Let I be the intensity image and $p_1, \dots p_k$ be the initial positions of the snake points.

While a fraction greater than f of the snake points move in an iteration:

- 1. For each i, find the location of $N(p_i)$ for which the functional is minimum and move the snake point p_i to that location.
- 2. For each i, estimate the curvature k of the snake and look for local maxima. Set $\beta(j)=0$ for all p_j at which the curvature has a local maximum and is above certain threshold and at which the image gradient is above certain threshold.
- 3. Update the value of the average distance

Suggested Reading

- Chapter 5, Emanuele Trucco, Alessandro Verri,
 "Introductory Techniques for 3-D Computer Vision"
- Donna Williams, and Mubarak Shah. "A Fast Algorithm for Active Contours and Curvature Estimation," Computer Vision, Graphics and Image Processing, Vol 55, No.1, January 1992, pp 14-26.

$$\frac{\partial}{\partial x}G_{\sigma} = -\frac{x}{2\pi\sigma^4}e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Y

0.0001	0.0005	0.0011	0	-0.0011	-0.0005	-0.0001
0.0007	0.0058	0.0131	0	-0.0131	-0.0058	-0.0007
0.0032	0.0261	0.0585	0	-0.0585	-0.0261	-0.0032
0.0053	0.0431	0.0965	0	-0.0965	-0.0431	-0.0053
0.0032	0.0261	0.0585	0	-0.0585	-0.0261	-0.0032
0.0007	0.0058	0.0131	0	-0.0131	-0.0058	-0.0007
0.0001	0.0005	0.0011	0	-0.0011	-0.0005	-0.0001

X

$$\frac{\partial}{\partial y}G_{\sigma} = -\frac{y}{2\pi\sigma^4}e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Y

_							
	0.0001	0.0007	0.0032	0.0053	0.0032	0.0007	0.0001
	0.0005	0.0058	0.0261	0.0431	0.0261	0.0058	0.0005
Ī	0.0011	0.0131	0.0585	0.0965	0.0585	0.0131	0.0011
_	0	0	0	0	0	0	0
	-0.0011	-0.0131	-0.0585	-0.0965	-0.0585	-0.0131	-0.0011
	-0.0005	-0.0058	-0.0261	-0.0431	-0.0261	-0.0058	-0.0005
	-0.0001	-0.0007	-0.0032	-0.0053	-0.0032	-0.0007	-0.0001

X

$$S_{x} = \left(\frac{\partial}{\partial x}G_{\sigma}\right) * I$$

$$S_{y} = \left(\frac{\partial}{\partial y}G_{\sigma}\right) * I$$

$$|\Delta| = \sqrt{S_x^2 + S_y^2}$$

Least Square Fitting

Let the line be : y = ax + b

Solve
$$\begin{bmatrix} \sum_{i} x_{i} y_{i} \\ \sum_{i} y_{i} \end{bmatrix} = \begin{bmatrix} \sum_{i} x_{i}^{2} & \sum_{i} x_{i} \\ \sum_{i} x_{i} & n \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

Maximum Likelihood Fitting

Let the line be: ax + by + c = 0

Find the Eigen Vectors $\begin{bmatrix} a \\ b \end{bmatrix}$ of the matrix

$$\begin{bmatrix} \sum_{i} x_{i}^{2} - \frac{\left(\sum_{i} x_{i}\right)^{2}}{n} & \sum_{i} x_{i} y_{i} - \frac{\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n} \\ \sum_{i} x_{i} y_{i} - \frac{\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n} & \sum_{i} y_{i}^{2} - \frac{\left(\sum_{i} y_{i}\right)^{2}}{n} \end{bmatrix}$$

Compute
$$c = -a \frac{\sum_{i} x_i}{n} - b \frac{\sum_{i} y_i}{n}$$