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Marr and Hildreth Edge Operator o

m Smooth by Gaussian
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Canny Edge Detéétor

m Criterion 1: Good Detection: The optimal
detector must minimize the probability of false
positives as well as false negatives.

m Criterion 2: Good Localization: The edges
detected must be as close as possible to the true
edges.

m Single Response Constraint: The detector
must return one point only for each edge point.
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Canny Edge Detector
m Difficult to find closed-form solutions.

canay Desivative of Gaussian

Figure 4.15 A comparison between the Canny operator and the first deriva-
tive of a Gaussian.




Canny Edge Detector

m Convolution with derivative of Gaussian
m Non-maximum Suppression
m Hysteresis Thresholding

m  Smooth by Gaussian
S=G,*I G =1 g

m Compute x and y derivatives
AS= [axs —s} =[s. ST
m Compute gradient magnitude and orientation
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Canny Edge Opeféfor
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Canny Edge Detector .
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|AS| > Threshold = 25

Non-Maximum Suppression

JL/

We wish to mark points along the curve where the magnitude is biggest.

We can do this by looking for a maximum along a slice normal to the curve
(non-maximum suppression). These points should form acurve. There are
then two algorithmic issues: at which point is the maximum, and whereisthe
next one?
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Non-Maximum Suppression ~

m Suppressthe pixelsin ‘Gradient Magnitude
Image’ which are not local maximum

if |aS|(x, y)>|AaS(x, y)
M) =250 g g )5 a1

0 otherwise

(x.y')and (x",y") arethe neighbors of (x,y)in|AS

.y

along thedirection normal to an edge

Non-Maximum Suppression
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Hysteresis Thresholding

m If thegradient a apixel isabove ‘High’, declare
it an ‘edge pixd’

m If thegradient at apixel isbelow ‘Low’, declare
it a‘non-edge-pixe’

m If thegradient a apixel is between ‘Low’ and
‘High’ then declareit an ‘edge pixel’ if and only
If it is connected to an ‘edge pixel’ directly or via
pixels between ‘Low’ and * High'

A RN ™

High=35
Low =15
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Finding Connected Components

m Scan the binary image left to right top to bottom
m |f thereisan unlabeled pixel p with avaueof ‘1’

m assignanew label toit

m  Recursively check the neighbors of pixel p and
assign the same labdl if they are unlabeled with a

vaueof ‘1.
m Stop when al the pixelswith value ‘1’ have been

labeled.

Connectedness
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Suggested Reading

m Chapter 8, David A. Forsyth and Jean Ponce,
"Computer Vision: A Modern Approach®

m Chapter 4, Emanuele Trucco, Alessandro Verri,
"Introductory Techniques for 3-D Computer
Vision"

m Chapter 2, Mubarak Shah, “Fundamentals of
Computer Vision”
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