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Scaled representations
� Big bars (resp. spots, 

hands, etc.) and little bars 
are both interesting

� Stripes and hairs, say

� Inefficient to detect big 
bars with big filters
� And there is superfluous 

detail in the filter kernel

� Alternative:
� Apply filters of fixed 

size to images of 
different sizes

� Typically, a collection of 
images whose edge 
length changes by a 
factor of 2 (or root 2)

� This is a pyramid (or 
Gaussian pyramid) by 
visual analogy
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Gaussian Pyramids
� Very useful for representing images
� Image Pyramid is built by using multiple 

copies of image at different scales.
� Each level in the pyramid is ¼ of the size 

of previous level
� The highest level is of the highest 

resolution
� The lowest level is of the lowest resolution

Gaussian Pyramids
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A bar in the 
big images is a 
hair on the 
zebra’s nose; 
in smaller 
images, a 
stripe; in the 
smallest, the 
animal’s nose

Aliasing
� Can’t shrink an image by taking every second 

pixel
� If we do, characteristic errors appear 

� In the next few slides
� Typically, small phenomena look bigger; fast 

phenomena can look slower
� Common phenomenon

� Wagon wheels rolling the wrong way in movies
� Checkerboards misrepresented in ray tracing
� Striped shirts look funny on colour television
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Resample the 
checkerboard by taking 
one sample at each circle.  
In the case of the top left 
board, new representation 
is reasonable. 
Top right also yields a 
reasonable representation. 
Bottom left is all black 
(dubious) and bottom 
right has checks that are 
too big.

Constructing a pyramid by 
taking every second pixel 
leads to layers that badly 
misrepresent the top layer
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Fourier Transform
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The Fourier Transform
� Represent function on 

a new basis
� Think of functions as 

vectors, with many 
components

� We now apply a 
linear transformation 
to transform the 
basis
� dot product with each 

basis element

� In the expression, u 
and v select the basis 
element, so a function 
of x and y becomes a 
function of u and v

� basis elements have 
the form

e−i2π ux+vy( )
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Here u & v are larger than the previous slide

Larger than the upper example 
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Various Fourier Transform Pairs

� Important facts
� The Fourier transform is 

linear
� There is an inverse FT
� if you scale the function’s 

argument, then the
transform’sargument scales 
the other way.  This makes 
sense --- if you multiply a 
function’s argument by a 
number that is larger than 
one, you are stretching the 
function, so that high 
frequencies go to low 
frequencies

� The FT of a Gaussian is a 
Gaussian.

� The convolution theorem
� The Fourier transform of 

the convolution of two 
functions is the product 
of their Fourier 
transforms

� The inverse Fourier 
transform of the product 
of two Fourier 
transforms is the 
convolution of the two 
inverse Fourier 
transforms

� There’s a table in the 
book.
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Various Fourier Transform Pairs

Sampling in 1D takes a continuous function and replaces it with a 
vector of values, consisting of the function’s values at a set of 
sample points.  We’ ll assume that these sample points are on a 
regular grid, and can place one at each integer for convenience.

Sampling in 1D
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Sampling in 2D does the same thing, only in 2D.  We’ ll assume that 
these sample points are on a regular grid, and can place one at each 
integer point for convenience.

Sampling in 2D
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Convolution
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Nyquist Theorem
� In order for a band-limited (i.e., one with a zero 

power spectrum for frequencies  f > B) baseband ( 
f > 0) signal to be reconstructed fully, it must be 
sampled at a rate f ≥ 2B . A signal sampled at f = 
2B is said to be Nyquist sampled, and f =2B is 
called the Nyquist frequency. No information is 
lost if a signal is sampled at the Nyquist
frequency, and no additional information is 
gained by sampling faster than this rate. 



13

Smoothing as low-pass filtering
� The message of the NT is 

that high frequencies lead 
to trouble with sampling.

� Solution: suppress high 
frequencies before 
sampling
� multiply the FT of 

the signal with 
something that 
suppresses high 
frequencies

� or convolve with a low-
pass filter

� A filter whose FT is a 
box is bad, because the 
filter kernel has infinite 
support

� Common solution: use a 
Gaussian
� multiplying FT by 

Gaussian is equivalent to 
convolving image with 
Gaussian.

Sampling without smoothing.  Top row shows the images,
sampled at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.
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Gaussian Filter
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Sampling with smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.



15

Sampling with smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.

Applications of scaled 
representations
� Search for correspondence

� look at coarse scales, then refine with finer scales

� Edge tracking
� a “good” edge at a fine scale has parents at a coarser 

scale

� Control of detail and computational cost in 
matching
� e.g. finding stripes

� terribly important in texture representation
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The Gaussian pyramid
� Smooth with gaussians, because

� a gaussian*gaussian=another gaussian 

� Synthesis 
� smooth and sample

� gaussians are low pass filters

Reduce (1D)
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Reduce (1D)
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Convolution Kernel
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Convolution Kernel
� All nodes at a given level must contribute 

the same total weight to the nodes at the 
next higher level
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Triangular
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What about 2D?
� Separability of Gaussian

( ) ( ) ( )yxGyxIyxI ,*,, =
�

Requires n2 k2 multiplications for n by n image and 
k by k kernel.

( ) ( ) ( ) )(**,, yGxGyxIyxI =
�

Requires 2kn2 multiplications for n by n image and 
k by k kernel.

Algorithm
� Apply 1D mask to alternate pixels along each row 

of image.

� Apply 1D mask to alternate pixels along each 
colum of resultant image from previous step.



21

Expand (1D)
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Expand (1D)
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Expand (1D)
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TheLaplacian Pyramid

� Similar to edge detected images

� Most pixels are zero

� Can be used in image compression

Constructing Laplacian Pyramid

� Compute Gaussian pyramid

� Compute Laplacian pyramid as follows:
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Reconstructing Image
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The Laplacian Pyramid
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The Laplacian Pyramid
� Synthesis

� preserve difference between upsampled 
Gaussian pyramid level and Gaussian 
pyramid level

� band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other 
levels

� Analysis
� reconstruct Gaussian pyramid, take top layer
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Suggested Reading
� Chapter 7, David A. Forsyth and Jean 

Ponce, "Computer Vision: A Modern 
Approach"


