CAP5415 Computer Vision
Spring 2003

Khurram Hassan-Shafique

e H

Scaled representations

m  Bigbars (resp. spots, m  Alternative:
hands, etc.) and little bars m  Apply filters of fixed
are both interesting sizeto images of
different sizes
»  Stripesand hairs, say n _Typically, acollection of
L i images whose edge
m Inefficient to detect big length changes by a
bars with big filters factor of 2 (or root 2)
m  Andthereis superfluous m  Thisisapyramid (or
detail in the filter kernel Gaussian pyramid) by

visual analogy
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Gaussian Pyramids

m Very useful for representing images

m Image Pyramid is built by using multiple
copies of image at different scales.

m Eachleve inthe pyramidis ¥ of the size
of previous level

m The highest level is of the highest
resolution

m Thelowest level is of the lowest resolution

Gaussian Pyramids —— "
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A bar inthe

_bigimagesisa

\ hair on the

, zebral s nose;
in smaller

J images, a

£ stripe; in the

smallest, the

animal’ s nose

Aliasing

m Can't shrink an image by taking every second
pixel

m |f we do, characteristic errors appear

m Inthenext few slides

m  Typicaly, small phenomenalook bigger; fast
phenomena can ook slower
m  Common phenomenon
= Wagon wheels rolling the wrong way in movies
m Checkerboards misrepresented in ray tracing
= Striped shirts look funny on colour television
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Resample the
checkerboard by taking
one sample at each circle.
In the case of the top left
board, new representation
isreasonable.

Topright also yieldsa
reasonabl e representation.
Bottom left isall black
(dubious) and bottom
right has checks that are
too hig.

Constructing a pyramid by
taking every second pixel
leads to layers that badly
misrepresent the top layer




Linear image transformations

* In analyzing images, it’s often useful to
make a change of basis.

transformed image
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F — l J{ 4—— Vectorized image

Fourier transform. or
Wavelet transform, or
Steerable pyramid transform

Self-inverting transforms

Same basis functions are used for the inverse transform

=

!

U—l
U+
T

U transpose and complex conjugate




Fourier Transform

Continuous: F(g(x, y))(u,v) = fm fm a(x, ye 2 Wdxdy
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The Fourier Transform o

m Represent functionon m In the expression, u
anew basis and v select the basis
m  Think of fgnctions as element, so afunction
vectors, with many of x and y becomes a

components .
= Wenow apply a functionpof-yand v

linear transformation m basis el ements have
Lo t_ransform the the form
asi s
m dot product with each
basis e ement

F(a0x y)Xuv)= [ gl y)e 7y




To get some sense of what
basis elements look like. we
plot a basis element --- or
rather, its real part ---

as a function of x.y for some
fixed u, v. We get a function
that is constant when (ux-+vy)
is constant. The magnitude of
the vector (u. v) gives a
frequency. and its direction
gives an orientation. The
function is a sinusoid with
this frequency along the
direction, and constant
perpendicular to the
direction.
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Phase and Magnitude

Fourier transform of a real
function is complex
— difficult to plot, visualize
— instead. we can think of the
phase and magnitude of the
transform
Phase is the phase of the
complex transform

Magnitude is the
magnitude of the complex

.

.

Curious fact
— all natural images have
about the same magnitude
transform
— hence. phase seems to
matter, but magnitude
largely doesn’t
Demonstration
— Take two pictures. swap the
phase transforms, compute
the inverse - what does the

transform

result look like?

Various Fourier Transform Pairs

m Important facts

m The Fourier transformis
linear
m Thereisaninverse FT

m if you scalethe function’s
argument, then the
transform’s argument scales
the other way. This makes
sense --- if you multiply a
function’s argument by a
number that is larger than
one, you are stretching the
function, so that high
frequencies go to low
frequencies

m TheFT of aGaussanisa
Gaussian.

m The convolution theorem

The Fourier transform of
the convolution of two
functionsis the product
of their Fourier
transforms

The inverse Fourier
transform of the product
of two Fourier
transformsisthe
convolution of the two
inverse Fourier
transforms

m Theesatableinthe
book.




Various Fourier Transform Pairs

Sampling in 1D

T T -

Sampling in 1D takes a continuous function and replacesit with a
vector of values, consisting of the function’s values at a set of
sample points. We'll assume that these sample points are on a
regular grid, and can place one at each integer for convenience.




Sampling in 2D

Sampling in 2D does the same thing, only in 2D. We'll assume that

these sample points are on aregular grid, and can place one at each
integer point for convenience.
3
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Fourier ;
. Transform Magnitude
Signal — Spectrum
- ! >
Sample Copy and
Shift
Sampled Fourier ;
Signal Transform Magnitude
Spectrum
- } >
Cut out by
multiplication
Accurately fiais o with box filter
Reconstructed Fourier
Signal Transform
e 4 Magnitude
/_\ Spectrum
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Fourier

Transform Magnitude
Signal —_— A Spectrum
- 1 o
JSumplu [ Copy and
Shift

Sampled Fourier s
Signal Transform agnitude

. | .

Cul out by
multi plication
with box filter

Inaccurately Inverse L
Reconstructed Fourier
Signal Transform

e

Magnitude
Spectrum

W

Nyquist Theorer;; |

e

In order for aband-limited (i.e., one with azero
power spectrum for frequencies f > B) baseband (
f > 0) signal to be reconstructed fully, it must be
sampled at aratef > 2B . A signal sampled at f =
2B issad to be Nyquist sampled, and f =2B is
called the Nyquist frequency. No information is
lost if asignal is sampled at the Nyquist
frequency, and no additional information is
gained by sampling faster than this rate.
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Smoothing as low-pass filtering

m  Themessage of theNT is
that high frequencies lead
to trouble with sampling.

m  Solution: suppress high
frequencies before
sampling

m  multiply the FT of
the signal with
something that
suppresses high
frequencies

m  or convolve with alow-
pass filter

m A filter whose FT isa
box is bad, because the
filter kernel hasinfinite
support

Common solution: use a
Gaussian
m  multiplying FT by
Gaussian is equivalent to
convolving image with
Gaussian.

Sampling without smoothing. Top row shows the images,
sampled at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images.
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Gaussian Filter

G,(x y)= 2,;2 exp(- be +zyz)j

20

ML )=t exp(_((i—k—1)22+(j—k—1)2)

2mo? o’

whereH (i, j)is(2k +1)x(2k +1) array

Sampling with smoothing. Top row shows the images. We

get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row

shows the magnitude spectrum of these images.

256x256 128x128 64x64 32x32 16x16
) 0
i i
- o o
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Sampling with smoothing. Top row shows the images. We

get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next; bottom row

shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 lex16
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Applications of scalec
representations

m Search for correspondence
m |ook at coarse scales, then refine with finer scales
m Edgetracking

m a“good”’ edge at afine scale has parents at a coarser
scale

m Control of detail and computational cost in
matching
m eg. finding stripes
m terribly important in texture representation
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The Gaussian pyramid

m Smooth with gaussians, because

m agaussan* gaussian=another gaussian
m Synthesis

m smooth and sample
m gaussians are low passfilters

Reduce (1D)

@0 = IMAGE

¢l = REDUCE
E [31_ l]
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Reduce (1D)

9.0)= Y W(m)g,.,(2i+m)

g (2) = W(_2)9|+1(4_ 2) + W(_l)g|+1w(4_1) +
W(O)gl +1(4) + W(l) gl+1(4 +1) + W(Z) gl+1(4 + 2)

9 (2) = W(_2)9|+1(2) + VAV(_]-)@.:1|+1\7V(:'>’) +
V’V(O) gl +1 (4) + V’V(:I-) gl +1 (5) + W(Z) gl +1 (6)

Convolution Kernel

[w(~2), w(~1), w(0). w(1). w(2)]

m Symmetric
w(i)=w(-i)=[c,b,a,b,c]

m Sum of mask should be 1
a+2b+2c=1
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Convolution Kernel

m All nodes at agiven level must contribute
the same total weight to the nodes at the
next higher level

o ...

a+2c=2b

Convolution Kernel

w(0)=a
w(-1)=w(t)=7
w-2)=u(2)= ;-2

a=0.4 GAUSSIAN, a=0.5 TRIANGULAR
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Triangular

0.51
0.457
0.41
0.357
0.31
0.257
0.21
0.151
0.11
0.051

O Triangular
O
[

0

i mﬁ-ﬂ

0.41
0.351
0.31
0.257
0.21
0.157
0.11
0.057

Approxi mate Gaussian

[0 Gaussan
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What about 2D?
m Separability of Gaussian

[(xy)=1(xy)*G(x.y)

Requires n? k2 multiplications for n by nimage and
k by k kernel.

(%, y)=1(x y)* G(x)* G(y)

Requires 2kn? multiplications for n by n image and
k by k kernel.

Algorithm
m Apply 1D mask to aternate pixels along each row
of image.

m Apply 1D mask to aternate pixels along each
colum of resultant image from previous step.

20
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Expand (1D)

Gavssian Pyramid

zl,1 = EXPAND[g | ]
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Expand (1D)

& i—p
g .()= ZW( p)gl,n—l(—)
0.4 =W(-2)g, (A2 >+w< 19, (2 1>+

W0)g, ..(5) + v‘v(1>g||n-1<71> 2,15 0)

Oin (4) =W(-2)g, ,n—1(1) +W(0)g, ,n—1(2) +W(2)g, -1 3

Expand (1D)

9,(1) = Zw(p)glnl( )

m=-2

910 (3) =W(= 2)9.n1( )+W( 1)9.n1( )

W0)G, 1) + WD, o) + i (2)9.“(3*2)

90 (3) =W(-1)g, ., () +W(D)g, ,4(2)
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The Laplacian Pyramid

m Similar to edge detected images
m Most pixelsare zero
m Can be used in image compression

Constructing L apla(:| an Pyram|d

m Compute Gaussian pyramid
Oir Q10 Gk-2+-- 92, Gs

m Compute Laplacian pyramid as follows:
L, =g~ EXPAND(g,.)
Ly =0~ EXPAND(gk—z)
Lo 0o EXPAND(gk_3)

L =9
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Reconstructing Image

g =L
g, = EXPAND(g,) +L,
g, = EXPAND(g, )+ L,

O = EXPAND(gk—1)+ L

}%%p

e TV A
£ e

The Laplacian Pyramid

Mt RS
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The Laplacian Pyramid

m Synthesis
m preserve difference between upsampled

Gaussian pyramid level and Gaussian
pyramid level

m band passfilter - each level represents spatial
frequencies (largely) unrepresented at other
levels

m Anaysis
m reconstruct Gaussian pyramid, take top layer

VBB

16. " N
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512 256 128 64 32 16 8

Suggested Reading

m Chapter 7, David A. Forsyth and Jean
Ponce, "Computer Vision: A Modern
Approach"
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