Solution for Assignment #1

Khurram Hassan-Shafique

To prove statements of Q.2, I have first proved that a matrix A is a rotation matrix if and only if it is orthonormal and det A = 1 (There may be other ways to prove the same statements). The definitions and other properties used in the proofs are given below:

Definition: An $n \times n$ matrix A over R is said to be orthonormal iff $A^t A = I$. Equivalently, $A^{-1} = A^t$. Lemma: The following are equivalent.

- (i) A is orthonormal.
- (*ii*) Ax.Ay = x.y for all vectors x and y.
- (*iii*) The columns of A are mutually orthogonal unit vectors.

Proof. The equivalence of (i) and (iii) is trivial. To prove that (i) implies (ii), assume that A is orthonormal then

$$Ax.Ay = (Ax)^{t} (Ay)$$
$$= x^{t}A^{t}Ay$$
$$= x^{t}Iy$$
$$= x^{t}y$$
$$= x.y$$

To prove that (ii) implies (i), assume that $Ax \cdot Ay = x \cdot y$ for all x and y, then we have

$$e_{i} e_{j} = e_{i} e_{j}$$

$$\Rightarrow e_{i}^{t} e_{j} = A e_{i} A e_{j}$$

$$\Rightarrow e_{i}^{t} I e_{j} = e_{i}^{t} A^{t} A e_{j}$$

$$\Rightarrow e_{i}^{t} I e_{j} - e_{i}^{t} A^{t} A e_{j} = 0$$

$$\Rightarrow e_{i}^{t} (I - A^{t} A) e_{j} = 0$$

$$\Rightarrow I - A^{t} A = 0$$

$$\Rightarrow A^{t} A = I$$

Therefore A is orthonormal.

Definition: Let SO_n be the set of all $n \times n$ orthonormal matrices A such that det A = 1. Theorem: A is a 2 dimensional rotation matrix if and only if $A \in SO_2$. Proof: \Longrightarrow Let A be a 2-D rotation matrix, then

$$A^{t}A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos^{2}\theta + \sin^{2}\theta & \cos\theta\sin\theta - \sin\theta\cos\theta \\ \sin\theta\cos\theta - \cos\theta\sin\theta & \sin^{2}\theta + \cos^{2}\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Thus A is orthonormal.

Now,

$$\det A = \begin{vmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{vmatrix} = \cos^2 \theta + \sin^2 \theta = 1$$

Hence, $A \in SO_2$.

 \Leftarrow Let $A \in SO_2$ and write $A = [v_1 \ v_2]$. Let the vector v_1 makes an angle θ with canonical basis vector e_1 . Let R be the rotation matrix through angle θ , then we have $Re_1 = v_1$. From necessity part of the proof, $R \in SO_2$ and thus is invertible and $R^{-1} \in SO_2$. Since SO_2 is closed with respect to matrix multiplication, we have $R^{-1}A \in SO_2$. Therefore, $R^{-1}Ae_1 = R^{-1}v_1 = e_1$. Since $R^{-1}A$ is orthonormal, $R^{-1}Ae_2 = e_2$ or $-e_2$. But det $R^{-1}A = 1 \Rightarrow R^{-1}Ae_2 = e_2$. Therefore, $R^{-1}A = I$ and hence, A = R.

Definition: A rotation in R^3 is a rigid motion fixing the origin and fix some vector v and acting like a 2-D rotation in the plane orthogonal to v.

Lemma: If $A \in SO_n$ and n is odd then 1 is an eigen value of A.

Proof: Recall that Λ is an eigen value of A iff det $(A - \Lambda I) = 0$. Now,

$$det (A - I) = det A^{t} det (A - I) \text{ Since } det A^{t} = 1$$

$$= det A^{t} (A - I)$$

$$= det (A^{t} A - A^{t})$$

$$= det (I - A^{t})$$

$$= det (I - A)^{t}$$

$$= det (I - A)$$

$$= det (I - A)$$

$$= det (-(A - I))$$

$$= (-1)^{n} det (A - I)$$

$$= - det (A - I) \text{ Since } n \text{ is odd}$$

$$\Rightarrow det (A - I) = - det (A - I)$$

$$\Rightarrow det (A - I) = 0$$

Theorem: A is a 3D rotation matrix if and only if $A \in SO_3$. **Proof:** \Longrightarrow Let A be a 3D rotation matrix. Since A is a rigid motion, we have, $\forall x, y$,

$$|Ax - Ay| = |x - y|$$

$$\Rightarrow (Ax - Ay) \cdot (Ax - Ay) = (x - y) \cdot (x - y)$$

In particular, for y=0, we have Ax.Ax = x.x. Now,

$$(Ax - Ay) \cdot (Ax - Ay) = (x - y) \cdot (x - y)$$

$$\Rightarrow Ax.Ax - 2Ax.Ay + Ay.Ay = x.x - 2x.y + y.y$$

$$\Rightarrow Ax.Ay = x.y$$

So A preserves dot product and hence is an orthonormal matrix. Determinant of an orthonormal matrix is either 1 or -1. But since, rotation is orientation preserving, we have det A = 1. Thus $A \in SO_3$.

 \leftarrow Let $A \in SO_3$, then by above Lemma, we have that A has 1 as an eigen value. Hence, there exists a unit vector v_1 such that $Av_1 = v_1$. Consider an orthonormal basis $\{v_1, v_2, v_3\}$ of R^3 and let $P = [v_1 \ v_2 \ v_3]$ such that

det P = 1. Note that $P \in SO_3$, hence $P^{-1} \in SO_3$ and therefore the matrix $A' = P^{-1} * A * P \in SO_3$. Now,

$$A'e_1 = P^{-1}APe_1 = P^{-1}Av_1 = P^{-1}v_1 = e_1$$

Therefore,

$$A' = \left[\begin{array}{cc} 1 & 0_{1 \times 2} \\ 0_{2 \times 1} & R_{2 \times 2} \end{array} \right]$$

where $R \in SO_2$ and is thus a rotation matrix in 2D. Hence A' and also A have the effect of rotating a vector in a plane orthogonal to a fixed vector v.

Q.2 (a) Prove that the product of two 3D rotation matrices is also a 3D rotation matrix.

Proof: Let R_1 and R_2 be two rotation matrices and $A = R_1R_2$. Since $R_1, R_2 \in SO_3$, $A \in SO_3$ and hence by above theorem is a rotation matrix.

Q.2 (b) Prove that the rank of a 3D rotation matrix has rank 3.

Proof: Since every 3D rotation matrix $R \in SO_3$ and orthonormal matrices are invertible, rank of a 3D rotation matrix is 3.

Q.2 (c) Prove that the inverse of a 3D rotation matrix is its transpose.

Proof: Since every 3D rotation matrix R is orthonormal, by definition of orthonormal matrix, its inverse is its transpose.

Q.2 (d) Prove that the product of two matrices associated with rigid transformations is a matrix associated with some rigid transformation.

Proof: Let D_1 and D_2 be the two matrices associated with rigid transformations. Then, we have

$$D = D_1 D_2$$

= $\begin{bmatrix} R_1 & T_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_2 & T_2 \\ 0 & 1 \end{bmatrix}$
= $\begin{bmatrix} R_1 R_2 + T_1(0) & R_1 T_2 + T_1(1) \\ 0(R_2) + 1(0) & 0(T_2) + 1(1) \end{bmatrix}$
= $\begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$

where $R = R_1 R_2$ and $T = R_1 T_2 + T_1$.

Since R is the product of two rotation matrices, by Q.2 (a), R is also a rotation matrix. Hence D is a matrix associated with some rigid transformation.

Q.2 Prove that e. The change of coordinates associated with a rigid transformation preserves distances and angles.

Proof: Note that this is not a proof because by my definition of rotation matrices, they preserve distances and angles and the property that a matrix is rotation matrix if and only if it is orthonormal and its determinant is 1 is proved by using this definition.

Let p and q be two points in \mathbb{R}^3 , and let $DX = \mathbb{R}X + T$ be a rigid transformation, then we have,

$$\begin{aligned} |Dp - Dq| &= |(Rp + T) - (Rq + T)| \\ &= |Rp + T - Rq - T| \\ &= |Rp - Rq| \\ &= (Rp - Rq) \cdot (Rp - Rq) \\ &= R (p - q) \cdot (Rp - q) \\ &= (p - q) \cdot (p - q) \end{aligned}$$
 Since R is orthonormal

$$\begin{aligned} &= |p - q| \end{aligned}$$

Hence, ${\cal D}$ preserves distances.

To show that D preserves angles, let p, q, and r be three points in \mathbb{R}^3 . Then the angle $\angle pqr$ is defined as

$$\angle pqr = \cos^{-1}\left(\frac{(q-p) \cdot (r-q)}{|q-p| |r-q|}\right)$$

Now, the cosine of the angle after rigid transformation $\angle DpDqDr$ is given as

$$\cos \angle Dp Dq Dr = \left(\frac{(Dq - Dp) \cdot (Dr - Dq)}{|Dq - Dp||Dr - Dq|}\right)$$

= $\left(\frac{(Rq + T - Rp - T) \cdot (Rr + T - Rq - T)}{|q - p||r - q|}\right)$ Since $|Dp - Dq| = |p - q|$
= $\left(\frac{(Rq - Rp) \cdot (Rr - Rq)}{|q - p||r - q|}\right)$
= $\left(\frac{R(q - p) \cdot R(r - q)}{|q - p||r - q|}\right)$
= $\left(\frac{(q - p) \cdot R(r - q)}{|q - p||r - q|}\right)$ Since R is orthonormal
= $\cos \angle pqr$

Hence, ${\cal D}$ preserves the angles.