Solution for Assignment #1

Khurram Hassan-Shafique

To prove statements of Q.2, I have first proved that a matrix A is a rotation matrix if and only if it is orthonormal

and det A = 1 (There may be other ways to prove the same statements). The definitions and other properties

used in the proofs are given below:

Definition: An n x n matrix A over R is said to be orthonormal iff A’A = I. Equivalently, A~! = A’

Lemma: The following are equivalent.

(i) A is orthonormal.
(i1) Ax.Ay = z.y for all vectors x and y.

(#i7) The columns of A are mutually orthogonal unit vectors.

Proof. The equivalence of (i) and (iii) is trivial. To prove that (i) implies (ii), assume that A is orthonormal then

Az Ay = (Az)' (Ay)
=zt At Ay
=gtly
= :L’ty

=2y

To prove that (ii) implies (i), assume that Az.Ay = x.y for all x and y, then we have

€;.€j = €;.€j
= ele; = Ae;. Ae,
= elle; = el A Ae;

= elle; —elAtAe; =0
=el(I-A'A)e; =0
=1—A'A =0
= AtA =1

Therefore A is orthonormal.
Definition: Let SO,, be the set of all n x n orthonormal matrices A such that det A = 1.
Theorem: A is a 2 dimensional rotation matrix if and only if A € SOs.

Proof: = Let A be a 2-D rotation matrix, then

AtA =

sinf cosf —sinf cosf

cos) —sinf ]

cosf sinf ] B [ cos?2 0 +sin?6  cosfsin — sin 6 cos

sinfcosf — cosfsinf  sin? 6 + cos? 0



Thus A is orthonormal.

Now,

cosf sinf

detA:’ =cos? 0 +sin?0 =1

—sinf cosf

Hence, A € SOs.
<= Let A € SO, and write A = [v1 v2]. Let the vector v; makes an angle  with canonical basis vector e;. Let
R be the rotation matrix through angle 6, then we have Re; = v;. From necessity part of the proof, R € SO4
and thus is invertible and R~' € SO;. Since SO, is closed with respect to matrix multiplication, we have
R 'A € S0,. Therefore, R"'Ae; = R~ 'v; = e;. Since R~'A is orthonormal, R~'Aes = ey or —ey. But
det R"'A =1= R 'A4es = e5. Therefore, R"'A = I and hence, A = R.
Definition: A rotation in R? is a rigid motion fixing the origin and fix some vector v and acting like a 2-D
rotation in the plane orthogonal to v.
Lemma: If A € SO,, and n is odd then 1 is an eigen value of A.
Proof: Recall that A is an eigen value of A iff det (A — AI) = 0. Now,

det (A—1T) =det Atdet (A —1TI) Since det A* =1
=det A* (A —1)
= det (A'A — A")
= det (I — A?)
=det (I — A)'
=det(I — A)
=det(—(A—-1))
=(=1)"det (A —1I)
=—det(A—-1) Since n is odd
= det(A—1I) =—det(A—1I)
=det(A-I) =0

Theorem: A is a 3D rotation matrix if and only if A € SOs3.

Proof: = Let A be a 3D rotation matrix. Since A is a rigid motion, we have, Vz,y,

| Az — Ay| = |z —y|
= (Ar — Ay) . (Az — Ay) = (v—y). (v —y)

In particular, for y=0, we have Az.Ax = z.z. Now,

(Az — Ay) . (Az — Ay) =(@-y).(z—-y)
= Az.Ax — 2Azx. Ay + Ay. Ay =x.x—2x.y+y.y
= Az Ay =z.y

So A preserves dot product and hence is an orthonormal matrix. Determinant of an orthonormal matrix is
either 1 or -1. But since, rotation is orientation preserving, we have det A = 1. Thus A € SOs.
<= Let A € SO3, then by above Lemma, we have that A has 1 as an eigen value. Hence, there exists a unit

vector vy such that Av; = v;. Consider an orthonormal basis {v1,vs,v3} of R® and let P = [v; vy v3] such that



det P = 1. Note that P € SO3, hence P~ € SO3 and therefore the matrix A’ = P~1 x A% P € SO3. Now,
A'61 = P_lAPel = P_lAvl = P_lvl =e€1

Therefore,

yus 1 0O1x2

O2x1  Raxe

where R € SO, and is thus a rotation matrix in 2D. Hence A’ and also A have the effect of rotating a vector
in a plane orthogonal to a fixed vector v.
Q.2 (a) Prove that the product of two 3D rotation matrices is also a 3D rotation matrix.
Proof: Let R; and Ry be two rotation matrices and A = Ry Rs. Since Ry, Ry € SO3, A € SO3 and hence by
above theorem is a rotation matrix.
Q.2 (b) Prove that the rank of a 3D rotation matrix has rank 3.
Proof: Since every 3D rotation matrix R € SO3 and orthonormal matrices are invertible, rank of a 3D rotation
matrix is 3.
Q.2 (c) Prove that the inverse of a 3D rotation matrix is its transpose.
Proof: Since every 3D rotation matrix R is orthonormal, by definition of orthonormal matrix, its inverse is its
transpose.
Q.2 (d) Prove that the product of two matrices associated with rigid transformations is a matrix
associated with some rigid transformation.

Proof: Let D; and Dy be the two matrices associated with rigid transformations. Then, we have

D =DiDs
. R1 T1 R2 T2
0 1 0 1

[ RiRy + Ti(0) RiTy+Ti(1)
0(Ry) + 1(0)  0(Ty) + 1(1)
R T
01

where R = R1Ry and T = R{T5 + T}.
Since R is the product of two rotation matrices, by Q.2 (a), R is also a rotation matrix. Hence D is a matrix
associated with some rigid transformation.
Q.2 Prove that e. The change of coordinates associated with a rigid transformation preserves
distances and angles.
Proof: Note that this is not a proof because by my definition of rotation matrices, they preserve distances and
angles and the property that a matrix is rotation matrix if and only if it is orthonormal and its determinant is 1
is proved by using this definition.

Let p and ¢ be two points in R?, and let DX = RX + T be a rigid transformation, then we have,



|Dp—Dgq| = |(Rp+T)—(Rq+T)|
= |Rp+T — Rq—T)|
= |Rp — Rq|
= (Rp — Rq) . (Rp — Rq)
=R(p—q).R(p—q)
=p—-q.(p—9q) Since R is orthonormal
=[p—d|

Hence, D preserves distances.

To show that D preserves angles, let p, ¢, and r be three points in R3. Then the angle /pgr is defined as

q—M~U—®)

/pgr = cos ™! ((
lg —pllr —q

Now, the cosine of the angle after rigid transformation /DpDgqDr is given as

— ( (Pg=Dp).(Dr—Dq)
cos LDpDqDr = [Dg—Dp||Dr—Dq| )
Rq+T—Rp—T).(Rr+T—Rq—T .
_ [ (Re+ Z\)q—p)H(T—fIJ\r q )> Since |Dp — Dq| = |p — ¢|
_ @z&ﬂ&:@g
lg—pllr—ad|
— W)
lg—pllr—aq]
_ % Since R is orthonormal
= cos Zpqr

Hence, D preserves the angles.



