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To prove statements of Q.2, I have first proved that a matrix A is a rotation matrix if and only if it is orthonormal

and det A = 1 (There may be other ways to prove the same statements). The definitions and other properties

used in the proofs are given below:

Definition: An n× n matrix A over R is said to be orthonormal iff AtA = I. Equivalently, A−1 = At.

Lemma: The following are equivalent.

(i) A is orthonormal.

(ii) Ax.Ay = x.y for all vectors x and y.

(iii) The columns of A are mutually orthogonal unit vectors.

Proof. The equivalence of (i) and (iii) is trivial. To prove that (i) implies (ii), assume that A is orthonormal then

Ax.Ay = (Ax)t (Ay)

= xtAtAy

= xtIy

= xty

= x.y

To prove that (ii) implies (i), assume that Ax.Ay = x.y for all x and y, then we have

ei.ej = ei.ej

⇒ et
iej = Aei.Aej

⇒ et
iIej = et

iA
tAej

⇒ et
iIej − et

iA
tAej = 0

⇒ et
i (I −AtA) ej = 0

⇒ I −AtA = 0

⇒ AtA = I

Therefore A is orthonormal.

Definition: Let SOn be the set of all n× n orthonormal matrices A such that det A = 1.

Theorem: A is a 2 dimensional rotation matrix if and only if A ∈ SO2.

Proof: =⇒ Let A be a 2-D rotation matrix, then

AtA =

[
cos θ − sin θ

sin θ cos θ

][
cos θ sin θ

− sin θ cos θ

]
=

[
cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

sin θ cos θ − cos θ sin θ sin2 θ + cos2 θ

]
=

[
1 0

0 1

]
= I

1



Thus A is orthonormal.

Now,

detA =

∣∣∣∣∣
cos θ sin θ

− sin θ cos θ

∣∣∣∣∣ = cos2 θ + sin2 θ = 1

Hence, A ∈ SO2.

⇐= Let A ∈ SO2 and write A = [v1 v2]. Let the vector v1 makes an angle θ with canonical basis vector e1. Let

R be the rotation matrix through angle θ, then we have Re1 = v1. From necessity part of the proof, R ∈ SO2

and thus is invertible and R−1 ∈ SO2. Since SO2 is closed with respect to matrix multiplication, we have

R−1A ∈ SO2. Therefore, R−1Ae1 = R−1v1 = e1. Since R−1A is orthonormal, R−1Ae2 = e2 or −e2. But

detR−1A = 1 ⇒ R−1Ae2 = e2. Therefore, R−1A = I and hence, A = R.

Definition: A rotation in R3 is a rigid motion fixing the origin and fix some vector v and acting like a 2-D

rotation in the plane orthogonal to v.

Lemma: If A ∈ SOn and n is odd then 1 is an eigen value of A.

Proof: Recall that Λ is an eigen value of A iff det (A− ΛI) = 0. Now,

det (A− I) = detAt det (A− I) Since det At = 1

= det At (A− I)

= det (AtA−At)

= det (I −At)

= det (I −A)t

= det (I −A)

= det (− (A− I))

= (−1)n det (A− I)

= − det (A− I) Since n is odd

⇒ det (A− I) = − det (A− I)

⇒ det (A− I) = 0

Theorem: A is a 3D rotation matrix if and only if A ∈ SO3.

Proof: =⇒ Let A be a 3D rotation matrix. Since A is a rigid motion, we have, ∀x, y,

|Ax−Ay| = |x− y|
⇒ (Ax−Ay) . (Ax−Ay) = (x− y) . (x− y)

In particular, for y=0, we have Ax.Ax = x.x. Now,

(Ax−Ay) . (Ax−Ay) = (x− y) . (x− y)

⇒ Ax.Ax− 2Ax.Ay + Ay.Ay = x.x− 2x.y + y.y

⇒ Ax.Ay = x.y

So A preserves dot product and hence is an orthonormal matrix. Determinant of an orthonormal matrix is

either 1 or -1. But since, rotation is orientation preserving, we have detA = 1. Thus A ∈ SO3.

⇐= Let A ∈ SO3, then by above Lemma, we have that A has 1 as an eigen value. Hence, there exists a unit

vector v1 such that Av1 = v1. Consider an orthonormal basis {v1, v2, v3} of R3 and let P = [v1 v2 v3] such that



detP = 1. Note that P ∈ SO3, hence P−1 ∈ SO3 and therefore the matrix A′ = P−1 ∗A ∗ P ∈ SO3. Now,

A′e1 = P−1APe1 = P−1Av1 = P−1v1 = e1

Therefore,

A′ =

[
1 01×2

02×1 R2×2

]

where R ∈ SO2 and is thus a rotation matrix in 2D. Hence A′ and also A have the effect of rotating a vector

in a plane orthogonal to a fixed vector v.

Q.2 (a) Prove that the product of two 3D rotation matrices is also a 3D rotation matrix.

Proof: Let R1 and R2 be two rotation matrices and A = R1R2. Since R1, R2 ∈ SO3, A ∈ SO3 and hence by

above theorem is a rotation matrix.

Q.2 (b) Prove that the rank of a 3D rotation matrix has rank 3.

Proof: Since every 3D rotation matrix R ∈ SO3 and orthonormal matrices are invertible, rank of a 3D rotation

matrix is 3.

Q.2 (c) Prove that the inverse of a 3D rotation matrix is its transpose.

Proof: Since every 3D rotation matrix R is orthonormal, by definition of orthonormal matrix, its inverse is its

transpose.

Q.2 (d) Prove that the product of two matrices associated with rigid transformations is a matrix

associated with some rigid transformation.

Proof: Let D1 and D2 be the two matrices associated with rigid transformations. Then, we have

D = D1D2

=

[
R1 T1

0 1

][
R2 T2

0 1

]

=

[
R1R2 + T1(0) R1T2 + T1(1)

0(R2) + 1(0) 0(T2) + 1(1)

]

=

[
R T

0 1

]

where R = R1R2 and T = R1T2 + T1.

Since R is the product of two rotation matrices, by Q.2 (a), R is also a rotation matrix. Hence D is a matrix

associated with some rigid transformation.

Q.2 Prove that e. The change of coordinates associated with a rigid transformation preserves

distances and angles.

Proof: Note that this is not a proof because by my definition of rotation matrices, they preserve distances and

angles and the property that a matrix is rotation matrix if and only if it is orthonormal and its determinant is 1

is proved by using this definition.

Let p and q be two points in R3, and let DX = RX + T be a rigid transformation, then we have,



|Dp−Dq| = |(Rp + T )− (Rq + T )|
= |Rp + T −Rq − T |
= |Rp−Rq|
= (Rp−Rq) . (Rp−Rq)

= R (p− q) .R (p− q)

= (p− q) . (p− q) Since R is orthonormal

= |p− q|

Hence, D preserves distances.

To show that D preserves angles, let p, q, and r be three points in R3. Then the angle 6 pqr is defined as

6 pqr = cos−1

(
(q − p) . (r − q)
|q − p| |r − q|

)

Now, the cosine of the angle after rigid transformation 6 DpDqDr is given as

cos 6 DpDqDr =
(

(Dq−Dp).(Dr−Dq)
|Dq−Dp||Dr−Dq|

)

=
(

(Rq+T−Rp−T ).(Rr+T−Rq−T )
|q−p||r−q|

)
Since |Dp−Dq| = |p− q|

=
(

(Rq−Rp).(Rr−Rq)
|q−p||r−q|

)

=
(

R(q−p).R(r−q)
|q−p||r−q|

)

=
(

(q−p).(r−q)
|q−p||r−q|

)
Since R is orthonormal

= cos 6 pqr

Hence, D preserves the angles.


