Solution for Assignment \#1

Khurram Hassan-Shafique

To prove statements of Q.2, I have first proved that a matrix A is a rotation matrix if and only if it is orthonormal and $\operatorname{det} A=1$ (There may be other ways to prove the same statements). The definitions and other properties used in the proofs are given below:
Definition: An $n \times n$ matrix A over R is said to be orthonormal iff $A^{t} A=I$. Equivalently, $A^{-1}=A^{t}$.
Lemma: The following are equivalent.
(i) A is orthonormal.
(ii) $A x . A y=x . y$ for all vectors x and y.
(iii) The columns of A are mutually orthogonal unit vectors.

Proof. The equivalence of (i) and (iii) is trivial. To prove that (i) implies (ii), assume that A is orthonormal then

$$
\begin{aligned}
A x . A y & =(A x)^{t}(A y) \\
& =x^{t} A^{t} A y \\
& =x^{t} I y \\
& =x^{t} y \\
& =x . y
\end{aligned}
$$

To prove that (ii) implies (i), assume that $A x . A y=x . y$ for all x and y, then we have

$$
\begin{array}{ll}
e_{i} \cdot e_{j} & =e_{i} \cdot e_{j} \\
\Rightarrow e_{i}^{t} e_{j} & =A e_{i} \cdot A e_{j} \\
\Rightarrow e_{i}^{t} I e_{j} & =e_{i}^{t} A^{t} A e_{j} \\
\Rightarrow e_{i}^{t} I e_{j}-e_{i}^{t} A^{t} A e_{j} & =0 \\
\Rightarrow e_{i}^{t}\left(I-A^{t} A\right) e_{j} & =0 \\
\Rightarrow I-A^{t} A & =0 \\
\Rightarrow A^{t} A &
\end{array}
$$

Therefore A is orthonormal.
Definition: Let $S O_{n}$ be the set of all $n \times n$ orthonormal matrices A such that $\operatorname{det} A=1$.
Theorem: A is a 2 dimensional rotation matrix if and only if $A \in S O_{2}$.
Proof: \Longrightarrow Let A be a 2-D rotation matrix, then
$A^{t} A=\left[\begin{array}{cl}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{rl}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{cl}\cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\sin \theta \cos \theta \\ \sin \theta \cos \theta-\cos \theta \sin \theta & \sin ^{2} \theta+\cos ^{2} \theta\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$

Thus A is orthonormal.
Now,

$$
\operatorname{det} A=\left|\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right|=\cos ^{2} \theta+\sin ^{2} \theta=1
$$

Hence, $A \in S O_{2}$.
\Longleftarrow Let $A \in S O_{2}$ and write $A=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$. Let the vector v_{1} makes an angle θ with canonical basis vector e_{1}. Let R be the rotation matrix through angle θ, then we have $R e_{1}=v_{1}$. From necessity part of the proof, $R \in S O_{2}$ and thus is invertible and $R^{-1} \in S O_{2}$. Since $S O_{2}$ is closed with respect to matrix multiplication, we have $R^{-1} A \in S O_{2}$. Therefore, $R^{-1} A e_{1}=R^{-1} v_{1}=e_{1}$. Since $R^{-1} A$ is orthonormal, $R^{-1} A e_{2}=e_{2}$ or $-e_{2}$. But $\operatorname{det} R^{-1} A=1 \Rightarrow R^{-1} A e_{2}=e_{2}$. Therefore, $R^{-1} A=I$ and hence, $A=R$.
Definition: A rotation in R^{3} is a rigid motion fixing the origin and fix some vector v and acting like a 2-D rotation in the plane orthogonal to v.
Lemma: If $A \in S O_{n}$ and n is odd then 1 is an eigen value of A.
Proof: Recall that Λ is an eigen value of A iff $\operatorname{det}(A-\Lambda I)=0$. Now,

$$
\begin{array}{rlr}
\operatorname{det}(A-I) & =\operatorname{det} A^{t} \operatorname{det}(A-I) \quad \text { Since } \operatorname{det} A^{t}=1 \\
& =\operatorname{det} A^{t}(A-I) \\
& =\operatorname{det}\left(A^{t} A-A^{t}\right) & \\
& =\operatorname{det}\left(I-A^{t}\right) & \\
& =\operatorname{det}(I-A)^{t} \\
& =\operatorname{det}(I-A) & \\
& =\operatorname{det}(-(A-I)) \\
& =(-1)^{n} \operatorname{det}(A-I) & \\
& =-\operatorname{det}(A-I) & \text { Since } n \text { is odd } \\
\Rightarrow \operatorname{det}(A-I) & =-\operatorname{det}(A-I) & \\
\Rightarrow \operatorname{det}(A-I) & =0 &
\end{array}
$$

Theorem: A is a 3 D rotation matrix if and only if $A \in \mathrm{SO}_{3}$.
Proof: \Longrightarrow Let A be a 3D rotation matrix. Since A is a rigid motion, we have, $\forall x, y$,

$$
\begin{array}{ll}
|A x-A y| & =|x-y| \\
\Rightarrow(A x-A y) \cdot(A x-A y) & =(x-y) \cdot(x-y)
\end{array}
$$

In particular, for $\mathrm{y}=0$, we have $A x \cdot A x=x . x$. Now,

$$
\begin{array}{ll}
(A x-A y) \cdot(A x-A y) & =(x-y) \cdot(x-y) \\
\Rightarrow A x \cdot A x-2 A x \cdot A y+A y \cdot A y & =x \cdot x-2 x \cdot y+y \cdot y \\
\Rightarrow A x \cdot A y=x \cdot y &
\end{array}
$$

So A preserves dot product and hence is an orthonormal matrix. Determinant of an orthonormal matrix is either 1 or -1 . But since, rotation is orientation preserving, we have $\operatorname{det} A=1$. Thus $A \in S O_{3}$.
\Longleftarrow Let $A \in S O_{3}$, then by above Lemma, we have that A has 1 as an eigen value. Hence, there exists a unit vector v_{1} such that $A v_{1}=v_{1}$. Consider an orthonormal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of R^{3} and let $P=\left[v_{1} v_{2} v_{3}\right]$ such that
$\operatorname{det} P=1$. Note that $P \in S O_{3}$, hence $P^{-1} \in S O_{3}$ and therefore the matrix $A^{\prime}=P^{-1} * A * P \in S O_{3}$. Now,

$$
A^{\prime} e_{1}=P^{-1} A P e_{1}=P^{-1} A v_{1}=P^{-1} v_{1}=e_{1}
$$

Therefore,

$$
A^{\prime}=\left[\begin{array}{rl}
1 & 0_{1 \times 2} \\
0_{2 \times 1} & R_{2 \times 2}
\end{array}\right]
$$

where $R \in S O_{2}$ and is thus a rotation matrix in 2D. Hence A^{\prime} and also A have the effect of rotating a vector in a plane orthogonal to a fixed vector v.
Q. 2 (a) Prove that the product of two 3 D rotation matrices is also a 3 D rotation matrix.

Proof: Let R_{1} and R_{2} be two rotation matrices and $A=R_{1} R_{2}$. Since $R_{1}, R_{2} \in S O_{3}, A \in S O_{3}$ and hence by above theorem is a rotation matrix.

Q. 2 (b) Prove that the rank of a 3 D rotation matrix has rank 3.

Proof: Since every 3D rotation matrix $R \in S_{3}$ and orthonormal matrices are invertible, rank of a 3D rotation matrix is 3 .
Q. 2 (c) Prove that the inverse of a 3 D rotation matrix is its transpose.

Proof: Since every 3D rotation matrix R is orthonormal, by definition of orthonormal matrix, its inverse is its transpose.
Q. 2 (d) Prove that the product of two matrices associated with rigid transformations is a matrix associated with some rigid transformation.
Proof: Let D_{1} and D_{2} be the two matrices associated with rigid transformations. Then, we have

$$
\begin{aligned}
D & =D_{1} D_{2} \\
& =\left[\begin{array}{rl}
R_{1} & T_{1} \\
0 & 1
\end{array}\right]\left[\begin{array}{rl}
R_{2} & T_{2} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{rl}
R_{1} R_{2}+T_{1}(0) & R_{1} T_{2}+T_{1}(1) \\
0\left(R_{2}\right)+1(0) & 0\left(T_{2}\right)+1(1)
\end{array}\right] \\
& =\left[\begin{array}{rr}
R & T \\
0 & 1
\end{array}\right]
\end{aligned}
$$

where $R=R_{1} R_{2}$ and $T=R_{1} T_{2}+T_{1}$.
Since R is the product of two rotation matrices, by Q .2 (a), R is also a rotation matrix. Hence D is a matrix associated with some rigid transformation.
Q. 2 Prove that e. The change of coordinates associated with a rigid transformation preserves distances and angles.
Proof: Note that this is not a proof because by my definition of rotation matrices, they preserve distances and angles and the property that a matrix is rotation matrix if and only if it is orthonormal and its determinant is 1 is proved by using this definition.

Let p and q be two points in R^{3}, and let $D X=R X+T$ be a rigid transformation, then we have,

$$
\begin{aligned}
& |D p-D q|=|(R p+T)-(R q+T)| \\
& =|R p+T-R q-T| \\
& =|R p-R q| \\
& =(R p-R q) \cdot(R p-R q) \\
& =R(p-q) \cdot R(p-q) \\
& =(p-q) \cdot(p-q) \quad \text { Since } R \text { is orthonormal } \\
& =|p-q|
\end{aligned}
$$

Hence, D preserves distances.
To show that D preserves angles, let p, q, and r be three points in R^{3}. Then the angle $\angle p q r$ is defined as

$$
\angle p q r=\cos ^{-1}\left(\frac{(q-p) \cdot(r-q)}{|q-p||r-q|}\right)
$$

Now, the cosine of the angle after rigid transformation $\angle D p D q D r$ is given as

$$
\begin{array}{rlr}
\cos \angle D p D q D r & =\left(\frac{(D q-D p) \cdot(D r-D q)}{|D q-D p| D r-D q \mid}\right) & \\
& =\left(\frac{(R q+T-R p-T) \cdot(R r+T-R q-T)}{|q-p \| r-q|}\right) & \text { Since }|D p-D q|=|p-q| \\
& =\left(\frac{(R q-R p) \cdot(R r-R q)}{|q-|||r-q|}\right) & \\
& =\left(\frac{R(q-p) \cdot R(r-q)}{|q-p \| r-q|}\right) & \\
& =\left(\frac{(q-p) \cdot(r-q)}{|q-p \| r-q|}\right) & \text { Since } R \text { is orthonormal } \\
& =\cos \angle p q r &
\end{array}
$$

Hence, D preserves the angles.

