

Segmentation

- Partition f(x,y) into sub-images: $R_1, R_2, ..., R_n$ such that the following constraints are satisfied:
 - $\bigcup_{i=1}^{n} R_i = f(x, y)$
 - $R_i \cap R_j = [], i \neq j$
 - Each sub-mage satisfies a predicate or set of predicates
 - All pixels in any sub-image musts have the same gray levels.
 - All pixels in any sub-image must not differ more than some threshold
 - All pixels in any sub-image may not differ more than some threshold from the mean of the gray of the region
 - The standard deviation of gray levels in any sub-image must be small.

Simple Segmentation

$$B(x,y) = \begin{bmatrix} 1 & \text{if } f(x,y) < T \\ 0 & \text{Otherwise} \end{bmatrix}$$

$$B(x,y) = \begin{bmatrix} 1 & \text{if } T_1 < f(x,y) < T_2 \\ 0 & \text{Otherwise} \end{bmatrix}$$

$$B(x,y) = \begin{bmatrix} 1 & \text{if } f(x,y) \square Z \\ 0 & \text{Otherwise} \end{bmatrix}$$

Histogram

Histogram graphs the number of pixels in an image with a Particular gray level as a function of the image of gray levels.

For (I=0, I<m, I⁺⁺) For (J=0, J<m, J⁺⁺) histogram[f(I,J)]⁺⁺;

Segmentation Using Histogram

$$B_1(x, y) = \begin{bmatrix} 1 & \text{if } 0 < f(x, y) < T_1 \\ 0 & \text{Otherwise} \end{bmatrix}$$

$$B_2(x,y) = \begin{bmatrix} 1 & \text{if } T_1 < f(x,y) < T_2 \\ 0 & \text{Otherwise} \end{bmatrix}$$

$$B_3(x,y) = \begin{bmatrix} 1 & \text{if } T_2 < f(x,y) < T_3 \\ 0 & \text{Otherwise} \end{bmatrix}$$

Realistic Histogram

$$Peakiness = \begin{bmatrix} 1 & \boxed{\frac{(V_a + V_b)}{2P}} \end{bmatrix} \begin{bmatrix} \boxed{\frac{N}{(W.P)}} \end{bmatrix}$$

Connected Component

Connectedness

Connected Component

8

Recursive Connected Component Algorithm

- 1. Scan the binary image left to right, top to bottom.
- 2. If there is an unlabeled pixel with a value of '1' assign a new label to it.
- Recursively check the neighbors of the pixel in step 2 and assign the same label if they
 are unlabeled with a value of '1'.
- 4. Stop when all the pixels of value '1' have been labeled.

Figure 3.7: Recursive Connected Component Algorithm.

Sequential

Sequential Connected Component Algorithm

- 1. Scan the binary image left to right, top to bottom.
- 2. If an unlabeled pixel has a value of '1', assign a new label to it according to the following rules:

$$L \stackrel{1}{\longrightarrow} L \stackrel{L}{L}$$

$$\begin{array}{cccc}
 & L & \rightarrow & I \\
 & 1 & \rightarrow & 0 & I
\end{array}$$

- $3.\ \,$ Determine equivalence classes of labels.
- 4. In the second pass, assign the same label to all elements in an equivalence class.

Figure 3.8: Sequential Connected Component Algorithm.

Recursive

Steps in Segmentation Using Histogram

- 1. Compute the histogram of a given image.
- 2. Smooth the histogram by averaging peaks and valleys in the histogram.
- 3. Detect good peaks by applying thresholds at the valleys.
- 4. Segment the image into several binary images using thresholds at the valleys.
- 5. Apply connected component algorithm to each binary image find connected regions.

Example: Detecting Fingertips

Example-II

93 peaks

Smoothed Histograms

Smoothed histogram (averaging using mask Of size 5) 54 peaks (once) After peakiness 18

Smoothed histogram 21 peaks (twice) After peakiness 7 Smoothed histogram 11 peaks (three times) After peakiness 4

