Lecture-7

Edge Detection: LG, Canny

Figure 2.20: (a) The bottle image. (b) The edge map from the Canny edge detector.
Edge Detectors

• Gradient operators: Sobel, Prewit, Robert
• Laplacian of Gaussian (Marr-Hildreth)
• Gradient of Gaussian (Canny)
• Facet Model Based Edge Detector (Haralick)

Laplacian of Gaussian Edge Detector

• Generate a mask for LG for a given σ
• Apply mask to the image
• Detect zerocrossings
 – Scan along each row, record an edge point at the location of zerocrossing.
 – Repeat above step along each column
Laplacian of Gaussian

\[g(x, y) = e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[\frac{\partial}{\partial x} g(x, y) = (-\frac{x}{\sigma^2})e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[\frac{\partial^2}{\partial x^2} g(x, y) = (-\frac{x}{\sigma^2})(-\frac{x}{\sigma^2})e^{-\frac{(x^2 + y^2)}{2\sigma^2}} + (-\frac{1}{\sigma^2})e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[\frac{\partial^2}{\partial x^2} g(x, y) = -\frac{1}{\sigma^2}(1-\frac{x^2}{\sigma^2})e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

Laplacian of Gaussian

\[g_{xx} = \frac{\partial^2}{\partial x^2} g(x, y) = -\frac{1}{\sigma^2}(1-\frac{x^2}{\sigma^2})e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[g_{yy} = \frac{\partial^2}{\partial y^2} g(x, y) = -\frac{1}{\sigma^2}(1-\frac{y^2}{\sigma^2})e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[\Delta^2 g(x, y) = \frac{\partial^2}{\partial x^2} g(x, y) + \frac{\partial^2}{\partial y^2} g(x, y) \]

\[= -\frac{1}{\sigma^2}(1-\frac{x^2}{\sigma^2})e^{-\frac{(x^2 + y^2)}{2\sigma^2}} -\frac{1}{\sigma^2}(1-\frac{y^2}{\sigma^2})e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]

\[\Delta^2 g(x, y) = -\frac{1}{\sigma^2}(2-\frac{x^2 + y^2}{\sigma^2})e^{-\frac{(x^2 + y^2)}{2\sigma^2}} \]
Zerocrossings

- Four cases of zerocrossings: \{+, -\}, \{+,0,-\}, \{-,+\}, \{-,0,\+\}
- Slope of zerocrossing \{a, -b\} is \(|a-b|\).
- To detect zerocrossing apply threshold to the slope. If the slope is above some threshold, then that point is an edge point.

Gaussian

\[g(x) = e^{\frac{-x^2}{2\sigma^2}} \]

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>g(x)</td>
<td>.011</td>
<td>.13</td>
<td>.6</td>
<td>1</td>
<td>.6</td>
<td>.13</td>
<td>.011</td>
</tr>
</tbody>
</table>
2-D Gaussian

\[g(x, y) = e^{-\left(\frac{x^2 + y^2}{2\sigma^2}\right)} \]

\[\sigma = 2 \]
Convolution

\[h(x, y) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} f(x+i, y+j) \cdot g(i, j) \]

\[h(x, y) = f(x, y) \ast g(x, y) \]
Separability of Gaussian

\[h(x, y) = f(x, y) * g(x, y) \]

Requires \(n^2 \) multiplications for a \(n \) by \(n \) mask, for each pixel.

\[h(x, y) = (f(x, y) * g(x)) * g(y) \]

This requires \(2n \) multiplications for a \(n \) by \(n \) mask, for each pixel.

Separability of Laplacian of Gaussian

\[h(x, y) = f(x, y) * \Delta^2 g(x, y) \]

Requires \(n^2 \) multiplications for a \(n \) by \(n \) mask, for each pixel.

\[h(x, y) = (f(x, y) * g_{xx}(x)) * g(y) + (f(x, y) * g_{yy}(y)) * g(x) \]

This requires \(4n \) multiplications for a \(n \) by \(n \) mask, for each pixel.
Separability

Decomposition of LG into four 1-D convolutions

- Convolve the image with a second derivative of Gaussian mask $g_{x,y}$ along each column.
- Convolve the resultant image from step (1) by a Gaussian mask $g(x)$ along each row. Call the resultant image I^x.
- Convolve the original image with a Gaussian mask $g(y)$ along each column.
- Convolve the resultant image from step (3) by a second derivative of Gaussian mask $g_{x}(x)$ along each row. Call the resultant image I^y.
- Add I^x and I^y.
Canny Edge Detector

- Compute the gradient of image \(f(x,y) \) by convolving it with the first derivative of Gaussian masks in \(x \) and \(y \) directions.
- Perform non-maxima suppression on the gradient magnitude.
- Apply hysteresis thresholding to the non-maxima suppressed magnitude.

\[
f_x(x,y) = f(x,y) * g_x(x,y) = (f(x,y) * g_x(x)) * g(y)
\]

\[
f_y(x,y) = f(x,y) * g_y(x,y) = (f(x,y) * g_y(y)) * g(x)
\]

\[
(f_x, f_y) \text{ Gradient Vector}
\]

\[
\text{magnitude} = \sqrt{f_x^2 + f_y^2}
\]

\[
\text{direction} = \theta = \tan^{-1} \frac{f_y}{f_x}
\]
Non-maxima Suppression

- Suppress the pixels which are not local maxima.

\[
M(x, y) = \begin{cases}
M(x', y') & \text{if } M(x, y) > M(x', y') \& M(x', y') > M(x'', y'') \\
M(x'', y'') & \text{if } M(x, y) > M(x'', y'') \\
0 & \text{otherwise}
\end{cases}
\]

Quantization in Eight Possible Directions

\((f_x, f_y)\) Gradient Vector

magnitude \(= \sqrt{f_x^2 + f_y^2}\)

direction \(= \theta = \tan^{-1} \frac{f_y}{f_x}\)
Hysteresis Thresholding

- Scan the image from left to right, top-bottom. If
 - The gradient magnitude at a pixel is above a high threshold declare that as an edge point
 - Then recursively consider the neighbors of this pixel.
- If the gradient magnitude is above the low threshold declare that as an edge pixel.
Connectedness

\[
\begin{pmatrix}
4 & 4 \\
4 & 4
\end{pmatrix} \quad \begin{pmatrix}
8 & 8 & 8 \\
8 & 8 & 8
\end{pmatrix} \quad \begin{pmatrix}
6 & 6 \\
6 & 6
\end{pmatrix}
\]

(a) (b) (c)

Figure 3.6: Pixel connectedness. (a) 4-connected, (b) 8-connected, (c) 6-connected.

Connected Component

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & a & 0 \\
0 & 0 & 0 & a & a \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & c & c & 0 \\
0 & d & 0 & c & 0
\end{bmatrix}
\]

4
Connected Component

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0
\end{bmatrix}
\]

8

1. Scan the binary image left to right, top to bottom.
2. If there is an unlabeled pixel with a value of ‘1’ assign a new label to it.
3. Recursively check the neighbors of the pixel in step 2 and assign the same label if they are unlabeled with a value of ‘1’.
4. Stop when all the pixels of value ‘1’ have been labeled.

Figure 3.7: Recursive Connected Component Algorithm.
Sequential

$$\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & a & 0 \\
b & b & 0 & a & a \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & c & c & 0 \\
0 & d & c & c & 0
\end{bmatrix} = d=c$$

1. Scan the binary image left to right, top to bottom.

2. If an unlabeled pixel has a value of \(1\), assign a new label to it according to the following rules:

 - \(0 \rightarrow 0\)
 - \(0 \rightarrow L\)
 - \(L \rightarrow L\)
 - \(L \rightarrow L\) (Set \(L = M\)).

3. Determine equivalence classes of labels.

4. In the second pass, assign the same label to all elements in an equivalence class.

Figure 3.8: Sequential Connected Component Algorithm.
Recursive

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & a & 0 \\
b & b & 0 & a & a \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & c & c & 0 \\
0 & c & c & c & 0 \\
\end{bmatrix}
\]