MPEG-4

- MPEG-4 will soon be international standard for true multimedia coding.
- MPEG-4 provides very low bitrate & error resilience for Internet and wireless.
- MPEG-4 can be carried in MPEG-2 systems layer.
- MPEG-4 text and graphics can be overlaid on MPEG-2 video for enhanced content: sports statistics and player trajectories.
MPEG-4

- Real audio and video objects
- Synthetic audio and video
- 2D and 3D graphics (based on VRML)

MPEG-4

- Traditional video coding is block-based.
- MPEG-4 provides object-based representation for better compression and functionalities.
- Objects are rendered after decoding object descriptions.
- Display of content layers can be selected at MPEG-4 terminal.
MPEG-4

- User can search or store objects for later use.
- Content does not depend on the display resolution.
- Network providers can re-purpose content for different networks and users.

Scope & Features of MPEG-4

- Authors
 - reusability
 - flexibility
 - content owner rights
- Network providers
- End users
Media Objects

- Primitive Media Objects
- Compound Media Objects
- Examples
 - Still Images (e.g. fixed background)
 - Video objects (e.g., a talking person-without background)
 - Audio objects (e.g., the voice associated with that person)
 - etc

MPEG-4 Versions
MPEG-4

User Interactions

- Client Side
 - content manipulation done at client terminal
 - changing position of an object
 - making it visible or invisible
 - changing the font size of text
- Server Side
 - requires back channel
• Efficient representation of visual objects of arbitrary shape to support content-based functionalities

• Supports most functionalities of MPEG-1 and MPEG-2
 – rectangular sized images
 – several input formats
 – frame rates
 – bit rates
 – spatial, temporal and quality scalability
Object Composition

- Objects are organized in a scene graph.
- VRLM based binary format BIF is used to specify scene graph.
- 2-D and 3-D objects, transforms and properties are specified.
- MPEG-4 allows objects to be transmitted once, and displayed repeatedly in the scene after transformations.
Standardized Ways

• To represent “media object”
 – visual or audiovisual
 – synthetic or natural
• To multiplex and synchronize the data associated with media objects for transportation over the network
• Interact with audiovisual scene generated at the receiver’s end.
Standardized Ways To

- place a media objects anywhere in a given coordinate system;
- apply transforms to change the geometrical or acoustical appearances of media objects;
- group primitive media objects to form compound media objects;
- apply stream data to media objects to modify their attributes;
- change interactively user’s viewing and listening points anywhere in the scene

Interaction with media objects

- change the viewing/listening point of the scene, e.g., by navigating through a scene;
- drag objects in the scene to a different position;
- trigger a cascade of events by clicking on specific objects, e.g., starting or sopping a video stream;
- select the desired language when multiple language tracks are available;
- more complex behavior
Textures, Images and Video

- Efficient compression of
 - images and video
 - textures for texture mapping on 2D and 3D meshes
 - implicit 2D meshes
 - time-varying geometry streams that animate meshes
Textures, Images and Video

- Efficient random access to all types of visual objects
- Extended manipulation functionalities for images and video sequences
- Content-based coding of images and video
- Content-based scalability of textures, images and video
- Spatial, temporal and quality scalability
- Error robustness and resilience

2-D Mesh Modeling
2-D Mesh Representation of Video Object

• Video Object Manipulation
 – Augmented Reality
 – Synthetic-object-transfiguration/animation
 – Spatio-temporal interpolation (e.g., frame rate up-conversion)

• Video Object Compression
 – transmit texture maps only at keyframes
 – animate texture maps for the intermediate frames

2-D Mesh Representation of Video Object

• Content-Based Indexing
 – Provides vertex-based object shape representation which is more efficient than the bitmap representation of shape-based object retrieval
 – Provides accurate object trajectory information that can be used to retrieve visual objects with specific motion
 – Animated key snapshots as visual synopsis of objects
MPEG-4 Video and Image Coding Scheme

- Shape coding and motion compensation
- DCT-based texture coding
 - standard 8x8 and shape adapted DCT
- Motion compensation
 - local block based (8x8 or 16x16)
 - global (affine) for sprites
Sprite Panorama

- First compute static “sprite” or “mosaic”
- Then transmit 8 or 6 global motion (camera) parameters for each frame to reconstruct the frame from the “sprite”
- Moving foreground is transmitted separately as an arbitrary-shape video object.
Other Objects

- Text and graphics
- Talking synthetic head and associated text
- Synthetic sound

Face and Body Animation

- Face animation is in MPEG-4 version 1.
- Body animation is in MPEG-4 version 2.
- Face animation parameters displace feature points from neutral position.
- Body animation parameters are joint angles.
- Face and body animation parameter sequences are compressed to low bit rate.
- Facial expressions: joy, sadness, anger, fear, disgust and surprise.
Face Node

- FAP (Facial Animation Parameters) node
- Face Scene graph
- Face Definition Parameters (FDP)
- Face Interpolation Table (FIT)
- Face Animation Table (FAT)

Face Model

- Face model (3D) specified in VRLM, can be downloaded to the terminal with MPEG-4
- FAT maps FAPS to face model vertices.
- FAPS are quantized and differentially coded
- Typical compressed FAP bitrate is less than 2 kbps
Neutral Face

- Face is gazing in the Z direction
- Face axes parallel to the world axes
- Pupil is 1/3 of iris in diameter
- Eyelids are tangent to the iris
- Upper and lower teeth are touching and mouth is closed
- Tongue is flat, and the tip of tongue is touching the boundary between upper and lower teeth

Facial Animation Parameters (FAPS)

- 2 eyeball and 3 head rotations are represented using Euler angles
- Each FAP is expressed as a fraction of neutral face mouth width, mouth-nose distance, eye separation, or iris diameter.
FAP Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>FAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visemes & expressions</td>
<td>2</td>
</tr>
<tr>
<td>jaw, chin, inner lower-lip, corner lip, mid-lip</td>
<td>16</td>
</tr>
<tr>
<td>eyeballs, pupils, eyelids</td>
<td>12</td>
</tr>
<tr>
<td>eyebrow</td>
<td>8</td>
</tr>
<tr>
<td>cheeks</td>
<td>4</td>
</tr>
<tr>
<td>tongue</td>
<td>5</td>
</tr>
<tr>
<td>head rotation</td>
<td>3</td>
</tr>
<tr>
<td>outer lip position</td>
<td>10</td>
</tr>
<tr>
<td>nose</td>
<td>4</td>
</tr>
<tr>
<td>ears</td>
<td>4</td>
</tr>
</tbody>
</table>

Visemes and Expressions

- For each frame a weighted combination of two visemes and two facial expressions
- After FAPs are applied the decoder can interpret effect of visemes and expressions
- Definitions of visemes and expressions using FAPs can be downloaded
Phonemes and Visemes

- 56 phonemes
 - 37 consonants
 - 19 vowels/diphthongs
- 56 phonemes can be mapped to 35 visemes

Visems

<table>
<thead>
<tr>
<th>Viseme_select</th>
<th>phonemes</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
<td>na</td>
</tr>
<tr>
<td>1</td>
<td>p, b, m</td>
<td>put, bed, mill</td>
</tr>
<tr>
<td>2</td>
<td>f, v</td>
<td>far, voice</td>
</tr>
<tr>
<td>3</td>
<td>T, D</td>
<td>think, that</td>
</tr>
<tr>
<td>4</td>
<td>t, d</td>
<td>tip, doll</td>
</tr>
<tr>
<td>5</td>
<td>k, g</td>
<td>call, gas</td>
</tr>
<tr>
<td>6</td>
<td>ts, dZ, s</td>
<td>chair, join, she</td>
</tr>
<tr>
<td>7</td>
<td>s, z</td>
<td>sir, zeal</td>
</tr>
<tr>
<td>8</td>
<td>n, l</td>
<td>lot, not</td>
</tr>
<tr>
<td>9</td>
<td>r</td>
<td>red</td>
</tr>
<tr>
<td>10</td>
<td>A:</td>
<td>car</td>
</tr>
<tr>
<td>11</td>
<td>e</td>
<td>bed</td>
</tr>
<tr>
<td>12</td>
<td>I</td>
<td>tip</td>
</tr>
<tr>
<td>13</td>
<td>O</td>
<td>top</td>
</tr>
<tr>
<td>14</td>
<td>U</td>
<td>hook</td>
</tr>
</tbody>
</table>
Facial Expressions

• Joy
 – The eyebrows are relaxed. The mouth is open, and mouth corners pulled back toward ears.

• Sadness
 – The inner eyebrows are bent upward. The eyes are slightly closed. The mouth is relaxed.

• Anger
 – The inner eyebrows are pulled downward and together. The eyes are wide open. The lips are pressed against each other or opened to expose teeth.

Facial Expressions

• Fear
 – The eyebrows are raised and pulled together. The inner eyebrows are bent upward. The eyes are tense and alert.

• Disgust
 – The eyebrows and eyelids are relaxed. The upper lip is raised and curled, often asymmetrically.

• Surprise
 – The eyebrows are raised. The upper eyelids are wide open, the lower relaxed. The jaw is open.
FAPs

- Speech recognition can use FAPs to increase recognition rate.
- FAPs can be used to animate face models by text to speech systems
- In HCI FAPs can be used to communicate speech, emotions, etc, in particular noisy environment.

MPEG-4 Decoder

System Layer

- Video/image decoding MPEG
- 2-D/3-D geometry
- Cashed Data textures, FAPs
- Audio synthesizer/processing
- Audio decoder

System Layer compositing rendering

User input

Display