MPEG-1

MPEG-1 vs. MPEG-2 Operating Points

- MPEG-1
 - CD-ROM
 - Image Size: 360x240, 30 Hz
- MPEG-2 Standard Definition Broadcast
 - Image Size: 720x480, 30 Hz
 - Bit Rate (Mb/s): 5, 10, 15, 20
- MPEG-2 Standard Definition Production
 - Image Size: 1280x720, 30 Hz
 - Bit Rate (Mb/s): 5, 10, 15, 20
- MPEG-2 HDTV Broadcast
 - Image Size: 1920x1080, 30 Hz
 - Bit Rate (Mb/s): 5, 10, 15, 20

Bit Rate (Mb/s)
MPEG-1

- It only specifies bitstream syntax and decoding process
- Encoding process (e.g., motion estimation, rate control and mode decisions) are open to invention and proprietary techniques
- It is asymmetric compression standard, much less computation needed for decoder.
MPEG-1

- SIF format video and its associated audio at about 1.5 Mbs
- Quality of MPEG-1 is similar or superior to VHS recorded analog video
- Spatially adaptive quantization, for Intra coding, MPEG-1 provides 30% better compression compared to JPEG.
- VLC using Huffman tables similar to H.261, completely different from JPEG.

MPEG-1 Features

- Random access
- Fast forward/reverse
- Reasonable coding/decoding delay (1 sec)
- Progressive (non-interlaced) video only
- Input video is converted to SIF (Standard Input Format): 352x240 30 fps
MPEG-1 Parameters

- Max number of pixels/line: 720
- Max number of lines/picture: 576
- Max number of pictures/sec: 30
- Max number of macroblocks/picture: 396
- Max number of macroblocks/sec: 9900
- Max bitrate: 1.86 Mbps
- Max decoder buffer size: 376,832 bits

MPEG-1 LAYERS

- Block
- Macroblock
- Slice
- Picture
- GOP
- Sequence
Picture Types

- I (intra) frames (spatial DCT)
- P (predicted) frames (DCT with forward MC)
- B (bidirectional) frames (DCT with forward/backward MC)
- D (difference) frames, only contain the DC component of each block, and serve for browsing purpose at low bitrate

The relative number of I, P and B frames in a GOP is application dependent.

At least one out of 132 pictures must be an “I” picture to avoid the error propagation
- due to mismatch of IDCT at encoder and decoder
- 64 bit floating-point IDCT implementation (IEEE 1180-1990)

B frames are optional
B-Pictures

• “B” frames effectively handle the problems due to covering/uncovering of background.
• MC over two frames may provide better SNR.
• Since “B” frames are not used for predicting any future frames, they can be encoded with fewer bits.

• Two frame-stores are needed at decoder and encoder.
• If too many B-pictures are used
 – the distance between two reference frames increases, resulting in lesser correlation, more bits required to encode reference frames
 – longer coding delay
Motion Prediction

\[b' = c' \]

\[b' = \alpha_1 c_1' + \alpha_2 c_2' \]

\[\alpha_1, \alpha_2 = 0.5, 1 \]

\[\alpha_1 + \alpha_2 = 1 \]

GOP

Forward MC Forward MC Forward MC

Bidirectional MC Bidirectional MC
Example

Example of Forward Motion Estimation
For best coding efficiency, prediction error should have low energy.

![Diagram of Forward Motion Estimation]

Example

Example of Backward Motion Estimation
Handles uncovered objects missed by forward prediction.

![Diagram of Backward Motion Estimation]
GOP

- “I” and “P” frames
 - anchor frames
 - stored in memory
 - used for prediction of “B” frames
- GOP Rules
 - It must contain at least one “I” frame
 - “I” frame may be followed by any number of “I” and “P” pictures

GOP Rules

- Any number of “B” pictures may occur between anchor pictures, “B” picture may precede the first I picture
- A GOP in coding order must start with “I” picture
- A GOP in display order must start with an “I” or “B” picture and must end with an “I” or “P” picture.
GOP Picture Ordering

- If B pictures are used, “Display Order” and “Coding order “may be different.
- B pictures must be reordered, so that “anchor” frames are available for prediction.
- Reordering causes delay.

GOP Ordering

I, B, B, B, P, B, B, B, P
0, 1, 2, 3, 4, 5, 6, 7, 8

Two possible coding orders:
0, 4, 1, 2, 3, 8, 5, 6, 7
0, 1, 4, 2, 3, 8, 5, 6, 7
GOP Ordering

Display Order
B, B, I, B, B, P, B, B, P, B, B, P

Coding Order
I, B, B, P, B, B, P, B, P, B, B

Display Order
B, B, I, B, B, P, B, B, P, B, B,.....

GOPS

N=1, M=1
I I I I I I I I I I I I I

N=6, M=2
B I B B P B I B P B P B I

N=12, M=3
B B I B B P B B P B B P

Irregular
B B I B B B B P P B P

N= I picture interval, M= anchor picture interval
M-1 “B” frames between anchor frames
Open & Closed GOP

Closed GOP

B I B P | B I B P

Open GOP

B I B P | B I B P

Closed GOP can be decoded without using decoded pictures from previous GOP.

Macroblock Types

<table>
<thead>
<tr>
<th>I</th>
<th>P</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra</td>
<td>Intra</td>
<td>Intra</td>
</tr>
<tr>
<td>Intra-A</td>
<td>Intra-A</td>
<td>Intra-A</td>
</tr>
<tr>
<td>Inter-D</td>
<td>Inter-F</td>
<td>Inter-F</td>
</tr>
<tr>
<td>Inter-DA</td>
<td>Inter-FD</td>
<td>Inter-FD</td>
</tr>
<tr>
<td>Inter-FD</td>
<td>Inter-B</td>
<td>Inter-B</td>
</tr>
<tr>
<td>Inter-FDA</td>
<td>Inter-BD</td>
<td>Inter-BD</td>
</tr>
<tr>
<td>Skipped</td>
<td>Inter-ID</td>
<td>Inter-ID</td>
</tr>
<tr>
<td></td>
<td>Inter-IDA</td>
<td>Inter-IDA</td>
</tr>
<tr>
<td></td>
<td>Skipped</td>
<td>Skipped</td>
</tr>
</tbody>
</table>
Definitions

- **Intra**: MB coded with current quantization matrix
- **Intra-A**: quantization matrix is scaled by “MQUAINT”, which is transmitted in the header
- **Inter**: interframe coded, temporal prediction may use MC and or adaptive quantization
 - “D” indicates DCT of prediction error coded

Definitions

- “F”: forward MC is on
- “B”: bi-directional MC is on
- “A”: adaptive quantization, new MQUAINT is transmitted.
- “FD”: transmit motion vector and DCTs of prediction error
- “FDA”: a motion vector, DCTS of error, and “MQUAINT”
- “I”: Interpolated prediction with motion prediction
MPEG-1 Encoder

- Decide on labeling I, P, B-pictures in a GOP.
- Estimate motion vector for each MB in P- and B-pictures.
- Determine the compression mode MTYPE for each MB.
- Set the quantization scale, MQUAINT, if adaptive quantization is selected.

MPEG-1 Intra Quantization Matrix

\[
\begin{bmatrix}
8 & 16 & 19 & 22 & 26 & 27 & 29 & 34 \\
16 & 16 & 22 & 24 & 27 & 29 & 34 & 37 \\
19 & 22 & 26 & 27 & 29 & 34 & 34 & 38 \\
22 & 22 & 26 & 27 & 29 & 34 & 37 & 40 \\
22 & 26 & 27 & 29 & 32 & 35 & 40 & 48 \\
26 & 27 & 29 & 32 & 35 & 40 & 48 & 58 \\
26 & 27 & 29 & 34 & 38 & 46 & 56 & 69 \\
27 & 29 & 35 & 38 & 46 & 56 & 69 & 83 \\
\end{bmatrix}
\]
MPEG-1 Encoder

Comparison

- H.261
 - sequential access
 - One basic frame rate
 - CIF and QCIF images
 - I and P frames
 - MC over 1 frame
 - I pixel MV accuracy
 - uniform quantization
 - No GOP
 - GOB structure

- MPEG-1
 - random access
 - flexible frame rate
 - flexible image size
 - I, P and B frames
 - MC over 1 or more frames
 - 1/2 pixel MV accuracy
 - Quantization matrix
 - GOP structure
 - Slice structure