Lecture-4

Comments

- Horn-Schunck optical method (Algorithm1) works only for small motion.
- If object moves faster, the brightness changes rapidly, 2×2 or 3×3 masks fail to estimate spatiotemporal derivatives.
- Pyramids can be used to compute large optical flow vectors.

Pyramids

- Very useful for representing images.
- Pyramid is built by using multiple copies of image.
- Each level in the pyramid is $1 / 4$ of the size of previous level.
- The lowest level is of the highest resolution.
- The highest level is of the lowest resolution.

Gaussian Pyramids

$$
\begin{aligned}
& g_{l}(i, j)=\sum_{m=-j m=2}^{2} \sum^{2} w(m, n) g_{l-1}(2 i+m, 2 j+n) \\
& g_{l}=\text { REDUCE }\left[g_{l-1}\right]
\end{aligned}
$$

Convolution

Gaussian Pyramids

$$
\begin{gathered}
g_{l, n}(i, j)=\sum_{p=2=2 \mu-2}^{2} \sum_{2}^{2} w(p, q) g_{l, n-1}\left(\frac{i-p}{2}, \frac{j-q}{2}\right) \\
g_{l, n}=\operatorname{EXPAND}\left[g_{l, n-1}\right]
\end{gathered}
$$

$$
\begin{gathered}
\text { Reduce (1D) } \\
g_{l}(i)=\sum_{m=-2}^{2} \hat{w}(m) g_{l-1}(2 i+m) \\
g_{l}(2)=\hat{w}(-2) g_{l-1}(4-2)+\hat{w}(-1) g_{l-1} \hat{w}(4-1)+ \\
\hat{w}(0) g_{l-1}(4)+\hat{w}(1) g_{l-1}(4+1)+\hat{w}(2) g_{l-1}(4+2) \\
g_{l}(2)=\hat{w}(-2) g_{l-1}(2)+\hat{w}(-1) g_{l-1} \hat{w}(3)+ \\
\hat{w}(0) g_{l-1}(4)+\hat{w}(1) g_{l-1}(5)+\hat{w}(2) g_{l-1}(6)
\end{gathered}
$$

Expand (1D)

$$
\begin{gathered}
g_{l, n}(i)=\sum_{p=-2}^{2} \hat{w}(p) g_{l, n-1}\left(\frac{i-p}{2}\right) \\
g_{l, n}(4)=\hat{w}(-2) g_{l, n-1}\left(\frac{4-2}{2}\right)+\hat{w}(-1) g_{l, n-1}\left(\frac{4-1}{2}\right)+ \\
\hat{w}(0) g_{l, n-1}\left(\frac{4}{2}\right)+\hat{w}(1) g_{l, n-1}\left(\frac{4+1}{1}\right)+\hat{w}(2) g_{l, n-1}\left(\frac{4+2}{2}\right) \\
g_{l, n}(4)=\hat{w}(-2) g_{l, n-1}(1)+\hat{w}(0) g_{l, n-1}(2)+\hat{w}(2) g_{l, n-1}(3)
\end{gathered}
$$

Expand (1D)

$g_{l, n}(i)=\sum_{p=-2}^{2} \hat{w}(p) g_{l, n-1}\left(\frac{i-p}{2}\right)$
$g_{l, n}(3)=\hat{w}(-2) g_{l, n-1}\left(\frac{3-2}{2}\right)+\hat{w}(-1) g_{l, n-1}\left(\frac{3-1}{2}\right)+$
$\hat{w}(0) g_{l, n-1}\left(\frac{3}{2}\right)+\hat{w}(1) g_{l, n-1}\left(\frac{3+1}{1}\right)+\hat{w}(2) g_{l, n-1}\left(\frac{3+2}{2}\right)$

$$
g_{l, n}(3)=\hat{w}(-1) g_{l, n-1}(1)+\hat{w}(1) g_{l, n-1}(2)
$$

Expand

Gaussian Pyramid

$$
\mathrm{g} 1,1=\operatorname{EXPAND}[\mathrm{g} 1]
$$

$$
\begin{gathered}
\text { Convolution Mask } \\
{[w(-2), w(-1), w(0), w(1), w(2)]}
\end{gathered}
$$

Convolution Mask

- Separable
$w(m, n)=\hat{w}(m) \hat{w}(n)$
-Symmetric
$\hat{w}(i)=\hat{w}(-i)$

$$
[c, b, a, b, c]
$$

Convolution Mask

- The sum of mask should be 1 .

$$
a+2 b+2 c=1
$$

- All nodes at a given level must contribute the same total weight to the nodes at the next higher level.

$$
a+2 c=2 b
$$

Convolution Mask

$$
\begin{aligned}
& \hat{w}(0)=a \\
& \hat{w}(-1)=\hat{w}(1)=\frac{1}{4} \\
& \hat{w}(-2)=\hat{w}(2)=\frac{1}{4}-\frac{a}{2}
\end{aligned}
$$

$a=.4$ GAUSSIAN, $a=.5$ TRINGULAR

Triangular

Approximate Gaussian

Gaussian

$g(x)=e^{\frac{-x^{2}}{2 \mathrm{o}^{2}}}$

Separability

go

g1

Algorithm

- Apply 1-D mask to alternate pixels along each row of image.
- Apply 1-D mask to each pixel along alternate columns of resultant image from previous step.

Gaussian Pyramid

Laplacian Pyramids

- Similar to edge detected images.
- Most pixels are zero.
- Can be used for image compression.

$$
\begin{aligned}
L_{1} & =g_{1}-E X P A N D\left[g_{2}\right] \\
L_{2} & =g_{2}-E X P A N D\left[g_{3}\right] \\
L_{3} & =g_{3}-E X P A N D\left[g_{4}\right]
\end{aligned}
$$

Coding using Laplacian Pyramid

-Compute Gaussian pyramid

$$
g_{1}, g_{2}, g_{3}, g_{4}
$$

-Compute Laplacian pyramid
$L_{1}=g_{1}-\operatorname{EXPAND}\left[g_{2}\right]$
$L_{2}=g_{2}-$ EXPAND $\left[g_{3}\right]$
$L_{3}=g_{3}-\operatorname{EXPAND}\left[g_{4}\right]$
$L_{4}=g_{4}$

- Code Laplacian pyramid

Decoding using Laplacian pyramid

- Decode Laplacian pyramid.
- Compute Gaussian pyramid from Laplacian pyramid.

$$
\begin{aligned}
g_{4} & =L_{4} \\
g_{3} & =\operatorname{EXPAND}\left[g_{4}\right]+L_{3} \\
g_{2} & =\operatorname{EXPAND}\left[g_{3}\right]+L_{2} \\
g_{1} & \left.=\operatorname{EXPANL} g_{2}\right]+L_{1}
\end{aligned}
$$

- is reconstructed image.

Gaussian

- Most natural phenomenon can be modeled by Gaussian.
- Take a bunch of random variables of any distribution, find the mean, the mean will approach to Gaussian distribution.
- Gaussian is very smooth function, it has infinite no of derivatives.

Gaussian

- Fourier Transform of Gaussian is Gaussian.
- If you convolve Gaussian with itself, it is again Gaussian.
- There are cells in human brain which perform Gaussian filtering.
- Laplacian of Gaussian edge detector

Carl F. Gauss

- Born to a peasant family in a small town in Germany.
- Learned counting before he could talk.
- Contributed to Physics, Mathematics, Astronomy,...
- Discovered most methods in modern mathematics, when he was a teenager.

Carl F. Gauss

- Some contributions
- Gaussian elimination for solving linear systems
- Gauss-Seidel method for solving sparse systems
- Gaussian curvature
- Gaussian quadrature

Image Compression (Entropy)
7.6 R

Huffman Coding (Example-1)
0

Huffman Coding

Entropy $\quad H=-\sum_{i=0}^{255} p(i) \log _{2} p(i)$
$H=-.5 \log .5-.25 \log .25-.125 \log .125-$
$.125 \log .125=1.75$

Combining Apple \& Orange

Combining Apple \& Orange

Algorithm

- Generate Laplacian pyramid Lo of orange image.
- Generate Laplacian pyramid La of apple image.
- Generate Laplacian pyramid Lc by copying left half of nodes at each level from apple and right half of nodes from orange pyramids.
- Reconstruct combined image from Lc.
- http://ww-bcs.mit.edu/people/adelson/papers.html
- The Laplacian Pyramid as a compact code, Burt and Adelson, IEEE Trans on Communication, 1983.
- http://www.cs.cmu.edu/afs/cs/project/cil/ftp /html/v-source.html
- ftp://csd.uwo.ca/pub/vision Performance of optical flow techniques,
Barron, Fleet and Beauchermin

Algorithm-2 (Optical Flow)

- Create Gaussian pyramid of both frames.
- Repeat
- apply algorithm-1 at the current level of pyramid.
- propagate flow by using bilinear interpolation to the next level, where it is used as an initial estimate.
- Go back to step 2

