Making Faces

• System for capturing 3D geometry and color and shading (texture map).
• Six cameras capture 182 color dots (six colors) on a face.
• 3D coordinates for each color dot are computed using pairs of images.
• Cyberware scanner is used to get dense wire frame model.

Making Faces

• Two models (cyberware and frame data) are related by a rigid transformation.
• Movement of each node in successive frames is computed by determining correspondence of nodes.
Applications

• Facial expressions
 – can be captured in a studio,
 – delivered via CDROM or internet to a user
 – reconstructed in real time on a user’s computer in a virtual 3D environment

• User can select
 – any arbitrary position for the face,
 – any virtual camera view point,
 – any size

Six Views
Color Dots

Wireframe Model
Main Steps

• 3-D reconstruction from 2-D dots
• Correspondence of Cyberware dots (reference) with 3-D frame dots
• Frame to frame dot correspondences
• Constructing the mesh
• Compression of Geometric Data
Intersection of two rays is 3-D point

3-D reconstruction from 2-D dots

- Generate all potential 2-D point correspondences for k cameras with n points in each camera: $\binom{k}{n^2}$
- Each point correspondence gives rise to a 3-D candidate point defined as intersection of two rays cast from 2-D points.
- Project 3-D candidate point to each of two camera views,
 - if the projection is not within some bound from the centroid of either 2-D point then discard it as a potential 3-D candidate point.
3-D reconstruction from 2-D dots

- Each of the points in 3-D list is projected into a reference view, which is the camera with the best view of all points on the face.
 - If the projected point is not within a threshold distance from the centroid of 2-D dot it is deleted from the list
 - The remaining points constitute 3-D match list for that point
- For each 2-D point, \(\binom{m}{3} \) possible combinations of three points in the 3-D list are computed, and the combination with the smallest variance is chosen.
 - The average of three points in the best combination is the true 3-D position corresponding to a 2-D dot.

Correspondence of Cyberware dots (reference) with 3-D frame dots

- Obtain Cyberware scan of a face.
- Place reference dots on the Cyberware model by manually clicking on the dots.
- Align reference dots in Cyberware scan with the video frame dots.
 - Manually align frame dots in frame zero with the reference dots
Correspondence of Cyberware dots (reference) with 3-D frame dots

– Automatically align reference dots with frame dots in other frames by solving correspondence using graph matching
 • For each reference dot add an edge for every frame dot of the same color that is within a distance e.
 • Search for connected components of graph which has equal number of reference and frame dots
 – (most connected components will have two dots, one for reference and other from frame dots).

Figure 6: Matching dots.
Frame to frame dot correspondences

• Assume Cyberware scan as a reference nodes
• Solve correspondence between reference dots and frame dots for frame 0.
• For each frame \(i > 0 \) move the reference dots to the location in previous frame, then find the best match between the reference dot and neighboring frame dots.
• Move each reference dot to the location of its corresponding 3D location.

\[
d^i_j = d_j + \tilde{v}^i_j
\]

Constructing The Mesh

• Move other vertices by a linear combination of the offsets of the nearest matching dots.

\[
p^i_j = p_j + \sum_k \alpha_k^j \| d^i_k - d_k \|
\]
Compression of Geometric Data

- 182 3-D dots in each frame
- Use eigen vector approach to reduce dimensionality to only 45 principal components
- Need to transmit the coefficients and eigen vectors
- This reduces geometric data to 26kbps for coefficients, and 13kbps for eigen vectors

![Compression](image)

Figure 14: Left to Right: Mesh with uncompressed textures, compressed to 400 kbps/sec, and compressed to 200 kbps/sec

| Original | 400 kbps | 200 kbps |
Rendered Images

Figure 16: Sequence of rendered images of textured mesh.