Lecture-12

Face Recognition

Simple Approach

- Recognize faces (mug shots) using gray levels (appearance)
- Each image is mapped to a long vector of gray levels
- Several views of each person are collected in the model-base during training
- During recognition a vector corresponding to an unknown face is compared with all vectors in the model-base
- The face from model-base, which is closest to the unknown face is declared as a recognized face.

Problems and Solution

- Problems :
- Dimensionality of each face vector will be very large (250,000 for a 512X512 image!)
- Raw gray levels are sensitive to noise, and lighting conditions.
- Solution:
- Reduce dimensionality of face space by finding principal components (eigen vectors) to span the face space
- Only a few most significant eigen vectors can be used to represent a face, thus reducing the dimensionality

Eigen Vectors and Eigen Values

The eigen vector, x , of a matrix A is a special vector, with the following property

$$
A x=\lambda x \quad \text { Where ë is called eigen value }
$$

To find eigen values of a matrix A first find the roots of:

$$
\operatorname{det}(A-\lambda)=0
$$

Then solve the following linear system for each eigen value to find corresponding eigen vector

$$
(A-\lambda) x=0
$$

$$
\begin{aligned}
& \text { Example } \\
& A=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
0 & 3 & 4 \\
0 & 0 & 7
\end{array}\right] \\
& \text { Eigen Values } \\
& \lambda_{1}=7, \lambda_{2}=3, \lambda_{3}=-1 \\
& \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
4 \\
4
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& \text { Eigen Vectors }
\end{aligned}
$$

Eigen Values

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=0 \\
\operatorname{det}\left[\begin{array}{ccc}
-1 & 2 & 0 \\
0 & 3 & 4 \\
0 & 0 & 7
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=0 \\
\operatorname{det}\left[\begin{array}{ccc}
-1-\lambda & 2 & 0 \\
0 & 3-\lambda & 4 \\
0 & 0 & 7-\lambda
\end{array}\right]=0 \\
(-1-\lambda)((3-\lambda)(7-\lambda)-0)=0 \\
(-1-\lambda)(3-\lambda)(7-\lambda)=0 \\
\lambda=-1, \quad \lambda=3, \quad \lambda=7
\end{gathered}
$$

Eigen Vectors
$\lambda=-1 \quad(A-\lambda) x=0$
$\left[\begin{array}{ccc}-1 & 2 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 7\end{array}\right]+\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
\begin{gathered}
{\left[\begin{array}{lll}
0 & 2 & 0
\end{array} x_{1}\right.} \\
0
\end{gathered} 4
$$

Face Recognition

Collect all gray levels in a long vector u :

$$
u=(I(1,1), \ldots, I(1, N), I(2,1), \ldots, I(2, N), \ldots, I(M, 1), . ., I(M, N))^{T}
$$

Collect n samples (views) of each of p persons in matrix A (MN X pn):

$$
A=\left[u_{1}^{1}, \ldots u_{n}^{1}, u_{1}^{2} \ldots, u_{n}^{2}, \ldots, u_{1}^{p} \ldots, u_{n}^{p}\right]
$$

Form a correlation matrix L (MN X MN):

$$
L=A A^{T}
$$

Compute eigen vectors, $\phi_{1}, \phi_{2}, \phi_{3}, \ldots \phi n_{1}$, of L, which form a bases for whole face space

Face Recognition

Each face, u, can now be represented as a linear combination of eigen vectors

$$
u=\sum_{i=1}^{m_{i}} a_{i} \phi_{l}
$$

Eigen vectors for a symmetric matrix are orthonormal:

$$
\phi_{i}^{T} \cdot \phi_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

$$
\begin{aligned}
& \text { Face Recognition } \\
& \begin{aligned}
& u_{x}^{T} \cdot \phi_{i}=\left(\sum_{i=1}^{n} a_{i} \phi_{i}\right)^{T} \cdot \phi_{i} \\
&=\left(a_{a} \phi_{1}^{T}+\mathrm{a}_{2} \phi_{2}^{T}+\ldots+\mathrm{a}_{1} \phi_{i}^{T}+\ldots+\mathrm{a}_{\mathrm{n}} \phi_{n}^{T}\right) \phi_{i} \\
& u_{x}^{T} \cdot \phi_{i}=\left(\mathrm{a}_{\mathrm{a}} \phi_{1}^{T} \phi_{i}+\mathrm{a}_{2} \phi_{2}^{T} \cdot \phi_{i}+\ldots+\mathrm{a}_{1} \phi_{i}^{T} \phi_{i}+\ldots+\mathrm{a}_{\mathrm{n}} \phi_{n}^{T} \cdot \phi_{i}\right) \\
& u_{x}^{T} \cdot \phi_{i}=a_{i}
\end{aligned}
\end{aligned}
$$

Therefore: $\quad a_{i}=u_{x}^{T} \phi_{i}$

Face Recognition

L is a large matrix, computing eigen vectors of a large matrix is time consuming. Therefore compute eigen vectors of a smaller matrix, C :

$$
C=A^{T} A
$$

Let α_{i} be eigen vectors of C , then $A \alpha_{i}$ are the eigen vectors of A :

$$
\begin{aligned}
& C \boldsymbol{\alpha}_{1}=\lambda_{r} \boldsymbol{\alpha}_{t} \\
& A^{T} A \boldsymbol{\alpha}_{1}=\lambda_{r} \boldsymbol{\alpha}_{t} \\
& A A^{T}\left(A \boldsymbol{\alpha}_{t}\right)=\lambda_{r}\left(A \boldsymbol{\alpha}_{t}\right) \\
& L\left(A \boldsymbol{\alpha}_{r}\right)=\lambda_{r}\left(A \boldsymbol{\alpha}_{t}\right)
\end{aligned}
$$

Training

- Create A matrix from training images
- Compute C matrix from A.
- Compute eigenvectors of C.
- Compute eigenvectors of L from eigenvectors of C.
- Select few most significant eigenvectors of L for face recognition.
- Compute coefficient vectors corresponding to each training image.
- For each person, coefficients will form a cluster, compute the mean of cluster.

Recognition

- Create a vector u for the image to be recognized.
- Compute coefficient vector for this u.
- Decide which person this image belongs to, based on the distance from the cluster mean for each person.

```
load faces.mat
C=A'*A;
[vectorC,valueC]=eig(C);
ss=diag(valueC);
[ss,iii]=sort(-ss);
vectorC=vectorC(:;iii);
vectorL=A*vectorC(:,1:5);
Coeff=A'*vectorL;
for I=1:30
    model(i, :)=mean(coeff((5*(i-1)+1):5*I,:));
end
while (1)
    imagename=input('Enter the filename of the image to
    Recognize(0 stop):');
    if (imagename < 1)
    break;
    end;
    imageco=A(:,imagename)'*vectorL;
    disp ('`);
    disp ('The coefficients for this image are:');
```


Webpage

http://vismod.www.media.mit.edu/vismod/demos/

Image Sequences of "A" to " J "

Particulars

- Problem: Pattern differ spatially
- Solution: Spatial registration using SSD
- Problem: Articulations vary in length, and thus, in number of frames.
- Solution: Dynamic programming for temporal warping of sequences.
- Problem: Features should have compact representation.
- Solution: Principle Component Analysis.

Feature Subspace Generation

- Generate a lower dimension subspace onto which image sequences are projected to produce a vector of coefficients.
- Components
- Sample Matrix
- Most Expressive Features

Generating the Sample Matrix

- Consider $\boldsymbol{\varepsilon}$ letters, each of which has a training set of K sequences. Each sequence is compose of images:

$$
I_{1}, I_{2}, \ldots, I_{P}
$$

- Collect all gray-level pixels from all images in a sequence into a vector:
$u=\left(I_{1}(1,1), \ldots, I_{1}(M, N), I_{2}(1,1), \ldots, I_{2}(M, N), \ldots I_{P}(1,1), \ldots, I_{P}(M, N)\right)$

. Generating the Sample Matrix

- For letter $\boldsymbol{\omega}$, collect vectors into matrix T

$$
T_{\omega}=\left\lfloor u^{1}, u^{2}, \ldots u^{K}\right\rfloor
$$

- Create sample matrix A:

$$
A=\left[T_{1}, T_{2}, \ldots T_{\varepsilon}\right]
$$

-The eigenvectors of a matrix $L=A A^{T}$ are defined as:

$$
L \phi_{i}=\lambda_{i} \phi_{i}
$$

The Most Expressive Features

- ϕ is an orthonormal basis of the sample matrix.
-Any image sequence, \mathbf{u}, can be represented as:

$$
u=\sum_{n=1}^{Q} a_{n \phi_{n}}=\phi a
$$

- Use Q most significant eigenvectors.
- The linear coefficients can be computed as:

$$
a_{n}=u^{T} \phi_{n}
$$

Training Process

- Model Generation
- Warp all the training sequences to a fixed length.
- Perform spatial registration (SSD).
- Perform PCA.
- Select Q most significant eigensequences, and compute coefficient vectors " a ".
- Compute mean coefficient vector for each letter.

$$
\begin{gathered}
\text { Warping } \\
A=\left[a_{1}, a_{2}, \ldots, a_{i}, a_{I}\right] \\
B=\left[b_{1}, b_{2}, \ldots, b_{j}, b_{J}\right] \\
d_{i j}=\left|a_{i}-b_{j}\right| \\
g_{11}=2 d_{11} \\
g(i, j)=\min \left[\begin{array}{c}
g(i-1, j-2)+2 d(i, j-1)+d(i, j) \\
g(i-1, j-1)+2 d(i, j) \\
g(i-2, j-1)+2 d(i-1, j)+d(i, j)
\end{array}\right]
\end{gathered}
$$

Recognition

- Warp the unknown sequence.
- Perform spatial registration.
- Compute: $\quad a_{i}^{x}=u_{x}^{T} \cdot \phi_{i}$

$$
d^{w}=\left\|a^{w}-a^{x}\right\|
$$

- Determine best match by $\min _{\omega}\left(d^{\omega}\right)$

Extracting letters from Connected Sequences

- Average absolute intensity difference function

$$
f(n)=\frac{1}{M N} \sum_{x=1}^{M} \sum_{y=1}^{N}\left\|I_{n}(x, y)-I_{n-1}(x, y)\right\|
$$

- f is smoothed to obtain g .
- Articulation intervals correspond to peaks and non-articulation intervals correspond to valleys in " g ".

Extracting letters from Connected Sequences

- Detect valleys in g.
- From valley locations in g, find locations where f crosses high threshold.
- Locate beginning and ending frames.

Results

I: "A" to "J" one speaker, 10 training seqs
II. "A" to "M", one speaker, 10 training seqs
III. "A" to "Z", ten speakers, two training seqs/letter/person

Show Video Clip

paper

http://www.cs.ucf.edu/~vision/papers/shah/97/NDS97.pdf

Program-2 \& 3

- For the program-2 you will implement "Synthesizing Realistic Facial Expressions from Photographs" method (Lecture-11).
- You will assume one view of face is available, the aim is to estimate a pose of camera, translation, rotation, scaling, etc.
- Do not estimate the changes in " p ", vertices.
- If you have a better face model, like Alias, use it, otherwise use Candide model from the class webpage.
- Select 13 feature points manually
- Synthesize a face image from a novel view, once the pose is correctly estimated.
- Due Nov 7

Program-2 \& 3

- For Program-3 implement "Motion Estimation Using Flexible Wireframe Model" (Lecture-9).
- Use the output of Program-2, conformed wireframe model
- Assume simple optical flow constraint equation, no need to use generalized optical flow constraint equation
- Using estimated motion and changes in wireframe mode, sysnthesize image sequence, and compare it with the original sequence for video compression (MPEG-4).
- Due Nov 30

