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ABSTRACT

When using current head-mounted displays (HMDs), users with
optical aberrations need to wear the equipment on the top of their
own glasses. As both the HMDs and the glasses require to be
tightly attached to faces, wearing them together is very inconvenient
and uncomfortable, and thus degrades user experiences heavily. In
this paper, we propose a real-time image pre-correction technique
to correct the aberrations purely by software. Users can take off
their own glasses and enjoy the virtual reality (VR) experience
through an ordinary HMD freely and comfortably. Furthermore,
as our technique is not related to hardware, it is compatible with
all the current commercial HMDs. Our technique is based on the
observation that the refractive errors majorly cause the ideal retinal
image to be convolved by certain kernels. So we pre-correct the
image on the display according to the specific aberrations of a user,
aiming to maximize the similarity between the convolved retinal
image and the ideal image. To achieve real-time performance, we
modify the energy function to have linear solutions and implement
the optimization fully on GPU. The experiments and the user study
indicate that without any changes on hardware, we generate better
viewing experience of HMDs for users with optical aberrations.

Keywords: visual aberration correction, image deconvolution, real-
time rendering, image-based rendering

Index Terms: Computing methodologies—Computer graphics—
Image manipulation—Image-based rendering; Human-centered
computing—Human computer interaction—Interaction techniques

1 INTRODUCTION

Head-mounted displays (HMDs) have become the most popular
virtual reality (VR) equipment in recent years. They generate immer-
sive and realistic visual experiences for users by near-eye displays,
real-time head tracking, and real-time image rendering techniques.
However, HMDs need to be worn on users’ faces, and they are usu-
ally tightly attached to faces, which is very inconvenient for users
with optical aberrations, who have to wear glasses to correct their
refractive errors (myopia, hyperopia or astigmatism). Without their
own glasses, those users can not see clear images in HMDs. But with
the glasses, it is difficult to wear HMDs comfortably. Very recently,
some HMDs, such as the Google Daydream, use lightweight fabric
to reduce the problem. However, the problem still exists.

In this paper, we propose an HMD-based real-time solution to
solve this problem purely by software. To be specific, we propose
a technique to calculate pre-corrected images based on the specific
refractive errors of a user. When seeing the pre-corrected images
through an HMD without glasses, the user can get better viewing
experience than directly viewing the original images. An illustration
of this system is shown in Fig. 1. This kind of technique has
already been investigated for viewing images on papers or traditional
displays. The observation is that the aberrations majorly cause the
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Figure 1: In an HMD-based VR application, our systems generates
pre-corrected videos (on the left) according to the viewing content
and the aberration parameters of the user in real time. The user with
optical aberrations do not need to wear his/her own glasses but will
still get a clear view as shown on the bottom right.

ideal retinal images to be convolved by certain kernels. Based on
this, pre-correction can be performed by deconvolving the displayed
images with the kernels, and thus the observed retinal images should
be similar to the ideal ones.

However, for pre-correcting the images in HMDs in real time,
there are several key challenges. First, the pre-correction needs to be
performed in real time as the rendering should response to the head
motion of a user with very low latency. The current state-of-the-art
pre-correction technique [13] is very time-consuming as it solves an
L1 optimization to estimate all the pixel values of one pre-corrected
image. Second, the traditional pre-correctional model can not be
directly used for HMD due to the different viewing scenarios where
the pre-corrected images are displayed on two near-eye displays
which cover the users’ whole viewing range. The imaging system
of users with refractive errors needs to be revisited to get a correct
model for the pre-correction on an HMD. Note that Oshima et
al. [14] also try to improve viewing quality in HMD. However, they
only try to make the viewing image sharper by a simple aperture
model.

In this paper, we propose an end-to-end system which overcomes
the two difficulties. First, to achieve real-time performance, we for-
mulate the image deconvolution problem as an L2 optimization. In
our experiments, the L2-based optimization generates similar results
compared with the previous total variation (TV)-based solutions.
Furthermore, we implement a fast Fourier transform (FFT)-based
GPU solver to solve the L2 optimization in 0.08ms for each dis-
played image, which guarantees the real-time performance of the
whole system. To keep a reasonable color range, we propose a fast
parameter selection scheme based on binary search. Second, for
users with refractive errors, we build a clear relationship between
the convolution kernels and the parameters of the refractive errors,
as well as the viewing distance. Thus it is possible to derive the
correct kernels when the user is viewing through an HMD, which
is never fully considered by previous works focusing on viewing a
photo or a traditional display. From the user study, our method gives
better visual experiences to users with refractive errors.

The specific contributions of our technique are listed below:

• A system that corrects the specific refractive errors of users
when they are using HMDs without their own glasses. To the
best of our knowledge, this is the first system that uses purely
software to correct the errors for HMD-based VR displays.
And this technique is totally compatible to other commercial
HMDs.
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• A real-time aberration correction scheme implemented on G-
PU. We first propose an L2-based formulation to handle image
deconvolution, and then implement a highly paralleled GPU
solver based on FFT. Reasonable color range is kept by a
parameter selection scheme based on binary search.

• A user-fitted kernel estimation method adapted for near-eye
display. The relationship between the kernel and the refractive
errors is fully investigated for VR displays which have fixed
viewing distances. The kernel can be pre-estimated or adjusted
online by users themselves.

2 RELATED WORKS

Vision aberration is a common problem for human beings [3]. Be-
sides wearing glasses, researchers in image processing and com-
putational display are also working on handling this problem. For
examples, some works focus on hardware and modify the display to
pursuit better quality for users with aberrations. Huang et. al. [7] use
multi-layer displays to correct the aberrations. Pamplona et al. [15]
and Huang et al. [9] explore the theory of light field to compensate
the aberrations. Barsky et. al. [2] propose both single layer and multi
layer solutions for the purpose of aberration correction. Even though
these techniques solve the problem in both theory and practice, they
require to specially design and fabricate the displays, and thus they
are not able to work with current displays or to be largely used in
our daily applications.

To be easily apply to our daily displays, some works also focus
on pure software solutions. Montalto et. al. [13] is the latest work on
this topic. It uses total variation to constrain the image deconvolution
process and generates a pre-corrected image which is better for users
with optical aberrations. The kernel used in the deconvolution is
related to the specific aberrations of a user. Before this work, Yellott
and Yellott [20] indicate the underlying theory of the properties
of aberration correction by Fourier transform and also show the
low contrast of the pre-corrected image is inevitable. Alonso and
Barreto [1] transfer the input image into the frequency domain to
do the pre-correction. Later, this work is improved by [12]. In
general, all the pure software-based solutions require to solve an
image deconvolution problem. Due to the computational cost, all
these works focus on images but not videos and can not achieve
real-time performance as we do.

Different aberration parameters correspond to different Kernels
(also known as PSFs). Their relationship is a key for deconvolution-
based correction techniques. Constructing the kernels is not an easy
task and requires a lot of knowledge related to photics and ophthal-
mology. Some works have summarized the procedure of estimating
kernels from wavefront aberration functions [6, 18, 19]. Recently,
Krueger et. al. [11] make a step further to formulate the correlation
between aberration parameters and the coefficients of Zernike poly-
nomials, which is used to model the wavefront aberration function.
However, the previous works neither consider the viewing distance
into account nor propose a delicate process about calculating kernels
from the aberration parameters as we do.

3 METHOD

For real-time pre-correction in VR, We follow the theory which
models the retinal image Ir in human vision system as the convolved

version of the displayed image Id :

Ir = Id ⊗K. (1)

Here, the blur kernel K is related to the specific optical aberrations
of a user. If we directly display the original image Io, we get

Id = Io, Ir = Io⊗K. (2)

So Ir is a blurred version of Io, which is the reason that users with
aberrations always observe blurred scenes.

On the other hand, if we know the blur kernel K of a specific user,
we could calculate a pre-corrected image I p as follows:

I p = Io⊗K−1. (3)

And then, if we display this pre-corrected image I p rather than Io,
we get

Id = I p, Ir = I p⊗K = (Io⊗K−1)⊗K = Io. (4)

In this case, the user with aberrations still gets the original Io image
on retina. This pre-correction method is also used in image correc-
tion for 2D displays [6], but we will adapt it to handle real-time
videos for near-eye VR displays.

3.1 Kernel Construction
In this sub-section, we will discuss how to construct K for a specific
user. The K is related to the wavefront function of an eye, which is
usually represented by Zernike polynomials in ophthalmology. So
we will first introduce the Zernike polynomials, and then how to
calculate the wavefront of the user with optical aberrations. Finally,
we calculate K according to the wavefront.

3.1.1 Zernike Polynomials
The Zernike polynomials are a set of functions that are orthogonal
over a unit circle. They are useful for describing the shape of an
aberrated wavefront function of the pupil of an optical system. There
are several ways for representing Zernike polynomials. Here we
adopt a double indexing scheme (Zm

n , where n is the order and m is
the frequency). Such a scheme is defined as [17]:

Zm
n (ρ,θ) =

{
Nm

n R|m|n (ρ)cos(mθ) f or m≥ 0

−Nm
n R|m|n (ρ)sin(mθ) f or m < 0

(5)

where Nm
n , R|m|n and the sinusoidal functions stand for the normaliza-

tion factor, radial component, and azimuthal component, respective-
ly. In ophthalmology, they can be applied directly to the wavefront
evaluation of the pupil. And the radial degree n is used for classify-
ing aberrations as lower-order (n≤ 2) and higher-order (n > 2).

3.1.2 Wavefront Function
The wavefront is the surface that is perpendicular to the light rays
at the same phase. The rays are converged by the combined op-
tical system of the eye [6]. For a user with optical aberrations, a
complete wavefront function can be represented by both low-order
and high-order Zernike terms. In this work, we only consider the
low-order aberrations like defocus (including myopia and hyperopi-
a, astigmatism), since previous work has indicated that low-order
aberrations alone are responsible for about 90% of one’s total loss
of visual acuity [16]. We obtain the aberrated wavefront function
W (x,y) from prescription data as [5]:

W(x,y) =
1

∑
i=−1

c2i
2 Z2i

2 (x,y) (6)

where

c−2
2 =

R2C sin(2A)
4
√

6
Z−2

2 (x,y) = 2
√

6xy (7)

c0
2 =−

R2(S+C/2)

4
√

3
Z0

2 (x,y) =
√

3(2x2 +2y2−1) (8)

c2
2 =

R2C cos(2A)
4
√

6
Z2

2 (x,y) =
√

6(x2− y2) (9)
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and c−2
2 , c0

2, and c2
2 are the coefficients of the Zernike polynomial-

s corresponding to oblique astigmatism (Z−2
2 ), defocus (Z0

2), and

vertical astigmatism (Z2
2) respectively. S and C are respectively the

sphere and cylinder values from the prescription, specifying the
optical powers in diopters. A is cylinder axis expressed in degrees,
which is also from the prescription [4]. The S is related to defocus
abberation (S < 0 for myopia and S > 0 for hyperopia), while the
C and A is related to astigmatism abberation. R is the radius of the

subject’s pupil (an aperture, in general) measured in mm, and c−2
2 ,

c0
2, and c2

2 are in μm.
Viewing Distance Previous works [5, 11] directly use Eq. 7 to

construct the coefficients of the Zernike polynomials, with the mea-
sured parameters S, C and A of a user. However, we observe that S in
Eq. 8 is actually not a constant, but related to the viewing distance d
from the eye to the object where the user is focusing. So we propose
to calculate S according to d. Since for an HMD, users are always
focusing on a virtual display with a fixed d, we can pre-compute
S without adding any extra work load to the online stage of our
method.

To better understand S, we first present the well-known thin lens
formula:

1

d
=

1

f
− 1

d′
(10)

which is also the imaging model of a human eye. Here, the distance
from the object to the lens and from the lens to the image are denoted
as d and d′, respectively. The f is the focal length. The left side in
Eq. 10 is determined by the scene while the right side is related to
the eye. In ideal cases, Eq. 10 should be satisfied, but for people
with myopia or hyperopia, Eq. 10 is not satisfied for some ranges of
d. And the S is used to measure the aberration and is defined as

S =
1

d
− (

1

f
− 1

d′
). (11)

For an aberrationless eye, it should be able to focus on objects in the

range of [0.125,+∞], so ( 1
f − 1

d′ ) should be able to be adjusted in

the range of [0,8] accordingly [8]. However, for myopia, this value is
not able to reach 0, and S will be negative and its maximum absolute
value happens when d =+∞. The optist-measured S, denoted as Sm,

is actually the S at this situation. Similarly, for hyperopia, ( 1
f − 1

d′ )

can not reach 8, and S will be positive and its maximum absolute
value (also denoted as Sm) happens when d = 0.125.

Since we know that Sm is the extreme case of S for a user (d =+∞
for myopia and d = 0.125 for hyperopia), we derive the correlation
between the actual S and d for myopia and hyperopia as:

S =

⎧⎪⎨
⎪⎩

Sm + 1
d

1
d < |Sm|

Sm− (8− 1
d ) 8− 1

d < |Sm|
0 otherwise

(12)

This also explains why myopia still gets clear vision at near distance
while hyperopia does the opposite. For myopia, when d is small,

and 1
d is larger than |Sm|, the eye is able to focus on the object and

S = 0; with d increasing, 1
d becomes smaller than Sm, and then S

decreases until reaching Sm which indicates the biggest aberration,
happening when d goes to +∞ .

3.1.3 Kernel Calculation
The above method outputs a wavefront function which will be used
to calculate the kernel K, also called point spread function (PSF). K
is computed given the pupil size as follows:

K(x,y) =
∥∥∥FT{P(x,y) e−i 2π

λ W(x,y)}
∥∥∥2

. (13)

So K is given by the Fourier transform of the generalized pupil func-
tion, a composition of the amplitude function P(x,y) which describes

the transmission through the pupil and is defined as 1 within the

pupil area and 0 elsewhere, and the interferograms e−i 2π
λ W(x,y) which

is from all possible pair of points across the wavefront surface W(x,y).

3.2 Pre-corrections
In this subsection, we will discuss the method to perform Eq. 3, with
a given kernel K estimated in the previous subsection. In theory, the
deconvolution problem in Eq. 3 is an ill-posed problem. To solve it,
previous work has proposed to involve Hyper-Laplacian Priors [10].
Considering the real-time requirement for VR application, we use
a gradient-based prior represented by L2 norm, which provides a
direct analytic solution to speed up the algorithm.

The pre-corrected image is calculated as:

I p = argmin
N

∑
i=1

(λ (I p⊗K− Io)2
i +

2

∑
j=1

(Io⊗ f j)
2
i ). (14)

λ is a weight to balance the two terms. Here we use two first-order
derivative filters ( f1 = [1−1] and f2 = [1−1]T ) in the regularization.

Given the quadratic equation, we get the ideal I p as follows:

I p = F−1(
λF(K)∗ ◦F(Io)

F( f1)∗ ◦F( f1)+F( f2)∗ ◦F( f2)+λF(K)∗ ◦F(K)
)

(15)
where F denotes the Fourier Transform and F−1 denotes the inverse
Fourier Transform, ∗ is the complex conjugate, ◦ is the component-
wise multiplication, and the division is also calculated component-
wise.

As the kernel K does not change for a specific user and is estimat-
ed by previous method, a large part of the calculation in Eq. 17 can
be pre-performed. We denote this part as:

M =
λF(K)∗

F( f1)∗ ◦F( f1)+F( f2)∗ ◦F( f2)+λF(K)∗ ◦F(K)
(16)

Then in the online stage, the pre-correction of an image can be
computed by only 1 FFT, 1 inverse FFT, and 1 per element matrix-
multiply:

I p = F−1(M ◦F(Io)). (17)

This can be performed very efficiently using GPU.
However, there is no guarantee that the solved pixel values of I p

still lie in the meaningful range (denoted by [0,1] as usual). There
might be negative or extreme large values in I p. Clipping or normal-
izing the pixel values are two ways to solve the problem. However,
if the obtained pixel range is far from the meaningful range, they
both generate artifacts. We solve this problem inspired from our
experiments, where we found that λ value heavily influence the
range of pixel values in I p.

Fig. 2 shows how the range increases with λ under different
kernels. In practice, we propose to use binary search to decide the
value of λ . First, we set an acceptable pixel value range according
to large amount of experiments, typically 1 - 4. Then we search for
the value satisfying this range with maximum λ .

3.3 Implementation Details
We implement our whole system in GPU and adapt it into Oculus
Rift DK2. It runs on a desktop PC with one NVIDIA GTX 1080. Our
system is implemented by C++ and CUDA to ensure the efficiency.
We have also developed a matlab version for comparisons with other
techniques. To generate RGB color images which contain 3 channels,
we perform pre-correction per channel so the algorithm runs 3 times
for every frame.
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Figure 2: The relationship between pixel range and lambda. The pixel
range is calculated by the maximum intensity subtracting the minimum
intensity.

4 EXPERIMENTS

As a real-time technique, we first discuss the performance, especially
the online performance, by comparing with some alternative solu-
tions. Then, we show our results with different aberration parameters
of different users. To evaluate the effectiveness of our technique,
we also compare it with the state-of-the-art 2D image correction
technique. We achieve similar quality on 2D images but ours is
much faster and is adapted to VR applications. Finally, we discuss
our results shown in the accompanying video and our user study.

4.1 Performance
We test the performance of our online system with some alterna-
tive solutions using different deconvolution techniques. For fair
comparison, we run all methods on Matlab, with a 3.40 GHz Intel
E3-1231 CPU and 16GB RAM. We perform the algorithms with
various kernels and various image sizes, and the numbers in Tab. 1
are the mean time costs.

Table 1: Performance comparison of different deconvolution tech-
niques. (measured in seconds)

Image Size FIDHLP(L1) FIDHLP(L2) Ours(L2)
200x200 0.174 0.172 0.014
400x400 0.365 0.365 0.080
512x512 0.519 0.524 0.136

1024x768 1.442 1.448 0.430
400x400 3.782 3.766 1.167

Fast image deconvolution with Hyper-Laplacian Priors (FIDHLP)
[10] iteratively performs two steps in the minimization. They support
both L1 and L2 regularization in deconvolution. On the other hand,
our algorithm uses an L2 regularization and only uses an analytic
step, so it performs faster than the other methods.

The GPU-based implementation is also evaluated. Here we com-
pare the C++ version w/ and w/o GPU(Tab. 2). We can clearly see
that the GPU version is extremely fast and real-time performance is
achieved.

Table 2: Performance comparison w/ and w/o GPU. (measured in
seconds)

Image Size CPU GPU
400x400 0.012813 1.198e-5
800x600 0.02568 1.190e-5

1280x720 0.05841 0.817e-5
1920x1080 0.128654 0.808e-5

We also compare the pre-correction quality of FIDHLP (L1&L2)
and our method. As shown in Fig. 3, all the three pre-corrected
images performs better than the original image, judging by the
quality of the simulated retinal images. The two results based on L2

Figure 3: Quality comparison of different deconvolution techniques.
Form left to right, the pre-correction images of FIDHLP (L1), FIDHLP
(L2), our method and the original images are on the top row, while
their corresponding simulated retinal images are on the bottom.

Figure 4: Pre-correction with different myopia parameter S. The top
row shows the pre-corrected images and the bottom row shows the
simulated retinal images.

are quite similar, while the one based on L1 is slightly different. But
it is difficult to say which one is better.

4.2 Evaluations

We evaluate the effectiveness of our pre-correction for users with
different aberration parameters. Fig. 4 and 5 show the different
results caused by changing the three aberration parameters S, C and
A, respectively. We can see that even though the pre-corrected image
looks different from the original image, the simulated retinal image
is reasonable, which means users with the corresponding aberration
parameters will get better viewing experience. Notice that with the
increasing of the absolute values of the aberration parameters S and
C, the simulated retinal image becomes worse, which indicates that
our technique still can not handle very high aberrations.

4.3 Comparisons

We compare the result of our method with the state-of-the-art visual
correction technique [13] in the accompanying video. Since the
method [13] only handles ordinary 2D images, we perform the
comparisons just on videos. From the comparison, we can see that
our method generates similar quality compared with the method [13],
indicating that using an L2 term with an online adapted λ also
gives good results. Notice that the method [13] does not consider
VR applications and does not provide solutions to map aberration
parameters to kernels for pre-correcting VR frames. Also, their
technique is far from real-time.

4.4 Results

We present sequential results in the accompanying video where we
can see that the pre-correction is fully performed in real time, when a
user is using an HMD to view a VR scene. The corresponding simu-
lated retinal image shows that the user will get a much clear viewing
experience even without glasses. Fig. 1, 4 and 5 also demonstrate
this point.
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Figure 5: Pre-correction with different hyperopia parameter C and
A. The top row shows the pre-corrected images and the bottom row
shows the simulated retinal images.

4.5 User Study

In our user study, there were 21 participants (12 males and 9 females)
who had optical aberrations with known parameters. The ages of the
participants ranged from 18 to 28. And the participants were with
myopia or both myopia and astigmatism. The myopia parameter Ss
of the participants ranged from −1.0 to −6.0, and the astigmatism
parameter Cs ranged from 0 to −3.0. We are sorry that we have not
recorded the exact values of each participant.

In the user study, we asked the participants to score a stereo pair
(watched though our HMD) by clearness. We did not define clear-
ness for the participants and the participants understood clearness
by their own. We asked the participants to score 0 for totally unclear
scenes and 5 for totally clear scenes. For one scene, each partic-
ipant watched the original stereo pair and the pre-corrected pair
(pre-corrected with the parameters of the participant) consecutively
but in a random order. And each participant watched 10 scenes,
including 3 landscapes, 3 portraits, 2 words and 2 indoor scenes,
also in a random order.

As both the scores for our pre-correction and the original images
satisfy normal distributions (Shapiro-Wilk test with W (21) = 0.87,
p ≤ 0.01 for our pre-correction and W (21) = 0.87, p ≤ 0.01 for
the original images), we performed a two-tailed t test on the data.
The test showed that the mean results are significantly different
(t(40) = 6.82, p < .00001). We find that our pre-corrected images
have higher mean score (M = 3.13, SD = 0.64) than the mean score
of the original iamges (M = 1.87, SD = 0.55).

4.6 Limitations

As indicated by [2], as all displays have limited dynamic ranges,
our pre-correction can never achieve the same quality compared
with wearing the user’s glasses. Also, in practice, the quality of our
technique will be further reduced if the parameters of the aberrations
are not accurate. In our user study, we expect “clearness” is judged
by the quality of a whole image, not just the sharpness of image
edges, which is not guaranteed. More concrete questions should have
been asked to the participants to pursuit a more solid conclusion.

5 CONCLUSIONS

This paper proposes a real-time system that achieves visual correc-
tion for near-eye VR applications. With this technique, users with
optical aberrations can view clearer VR content without wearing
their own glasses, which is very convenient for HMD users. Our
technique is purely based on software, and thus it can be used in
all commercial HMDs. The system is also flexible to be used for
different users who can either input their aberration parameters or
change the parameters online until getting a good view. The system
is performed in real time with a highly efficient GPU solver.

ACKNOWLEDGMENTS

This work was supported by the NSFC (No.61727808, 61671268).
We wish to express our thanks to the reviewers for their insightful
comments.

REFERENCES

[1] M. Alonso and A. Barreto. Pre-compensation for high-order aberrations

of the human eye using on-screen image deconvolution. In Engineering
in Medicine and Biology Society, 2003. Proceedings of the 25th Annual
International Conference of the IEEE, vol. 1, pp. 556–559. IEEE, 2003.

[2] B. A. Barsky, F.-C. Huang, D. Lanman, G. Wetzstein, and R. Raskar.

Vision correcting displays based on inverse blurring and aberration

compensation. In European Conference on Computer Vision, pp. 524–

538. Springer, 2014.

[3] S. A. Cholewiak, G. D. Love, P. P. Srinivasan, R. Ng, and M. S. Banks.

Chromablur: rendering chromatic eye aberration improves accommo-

dation and realism. ACM transactions on graphics., 36(6):210, 2017.

[4] cnib. How to read your eyeglass prescription. http:

//www.cnib.ca/en/living/independent-living/Pages/

prescription-1007.aspx. 2017.

[5] G.-m. Dai. Wavefront optics for vision correction, vol. 179. SPIE press,

2008.

[6] F.-C. Huang and B. A. Barsky. A framework for aberration compensat-

ed displays. Technical report, Citeseer, 2011.

[7] F.-C. Huang, D. Lanman, B. A. Barsky, and R. Raskar. Correcting for

optical aberrations using multilayer displays. ACM Transactions on
Graphics (TOG), 31(6):185, 2012.

[8] F.-C. Huang, G. Wetzstein, B. A. Barsky, and R. Raskar. Computational
light field display for correcting visual aberrations. ACM, 2013.

[9] F.-C. Huang, G. Wetzstein, B. A. Barsky, and R. Raskar. Eyeglasses-

free display: towards correcting visual aberrations with computational

light field displays. ACM Transactions on Graphics (TOG), 33(4):59,

2014.

[10] D. Krishnan and R. Fergus. Fast image deconvolution using hyper-

laplacian priors. In Advances in Neural Information Processing Sys-
tems, pp. 1033–1041, 2009.

[11] M. L. Krueger, M. M. Oliveira, and A. L. Kronbauer. Personalized

visual simulation and objective validation of low-order aberrations of

the human eye. In Graphics, Patterns and Images (SIBGRAPI), 2016
29th SIBGRAPI Conference on, pp. 64–71. IEEE, 2016.

[12] S. Mohammadpour, A. Mehridehnavi, H. Rabbani, and V. Lakshmi-

narayanan. A pre-compensation algorithm for different optical aberra-

tions using an enhanced wiener filter and edge tapering. In Information
Science, Signal Processing and their Applications (ISSPA), 2012 11th
International Conference on, pp. 935–939. IEEE, 2012.

[13] C. Montalto, I. Garcia-Dorado, D. Aliaga, M. M. Oliveira, and F. Meng.

A total variation approach for customizing imagery to improve visual

acuity. ACM Transactions on Graphics (TOG), 34(3):28, 2015.

[14] K. Oshima, K. R. Moser, D. C. Rompapas, J. E. Swan, S. Ikeda,

G. Yamamoto, T. Taketomi, C. Sandor, and H. Kato. Sharpview:

Improved clarity of defocussed content on optical see-through head-

mounted displays. In Virtual Reality (VR), 2016 IEEE, pp. 253–254.

IEEE, 2016.

[15] V. F. Pamplona, M. M. Oliveira, D. G. Aliaga, and R. Raskar. Tailored

displays to compensate for visual aberrations. 2012.

[16] S. Schwartz. Visual perception: A clinical orientation. McGraw Hill

Professional, 2009.

[17] L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb.

Standards for reporting the optical aberrations of eyes. Journal of
refractive surgery, 18(5):S652–S660, 2002.

[18] F. Toadere, R. Arsinte, N. E. Mastorakis, and U. C. Napocak. Simulat-

ing the image quality of the human eye using the zenike polynomials.

In Applied Computing Conference, pp. 17–19, 2011.

[19] A. B. Watson. Computing human optical point spread functions. Jour-
nal of vision, 15(2):26–26, 2015.

[20] J. I. Yellott and J. W. Yellott. Correcting spurious resolution in de-

focused images. In Electronic Imaging 2007, pp. 64920O–64920O.

International Society for Optics and Photonics, 2007.

250

Authorized licensed use limited to: University of Central Florida. Downloaded on April 05,2024 at 03:54:56 UTC from IEEE Xplore.  Restrictions apply. 


