3D User Interface Travel Techniques

Lecture #10: Travel Spring 2024 Joseph J. LaViola Jr.

Spring 202

Introduction

- Travel: moving from current location to new target location or in the desired direction
- Wayfinding: cognitive process of determining and following a route between an origin and destination
- Techniques classified by metaphor:
 - Walking
 - Steering
 - Selection-based travel
 - Manipulation-based travel

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

3D Travel Tasks

- Exploration: browsing the environment with no explicit goal for movement
- Search: traveling to a specific goal or target location
 - Naïve search: the user does not know the position of the target or path in advance
 - Primed search: the user has visited the target before or has some knowledge of its position
- Maneuvering: small precise movements

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

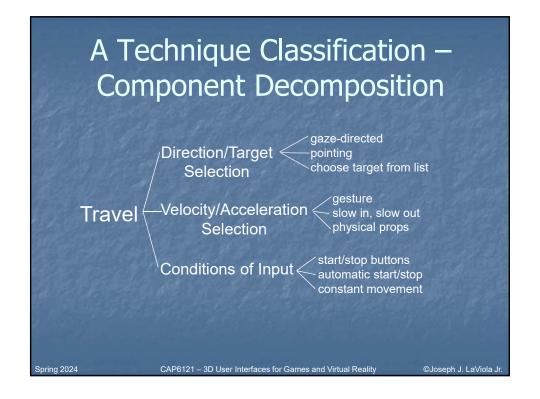
3D Travel Tasks

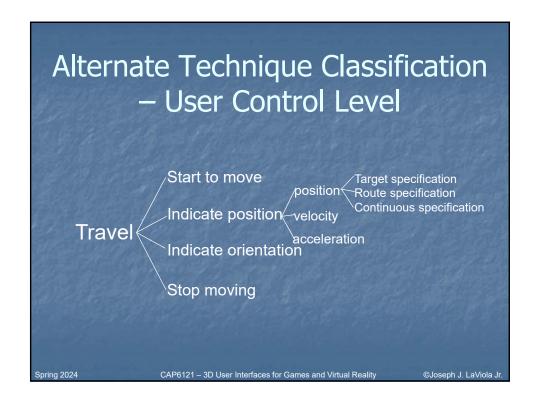
Additional Travel Task Characteristics

- Distance to be traveled
- Amount of curvature or number of turns in the path
- Visibility of the target from the starting location
- Number of DOF required for the movement
- Required accuracy of the movement
- Other primary tasks that take place during travel

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

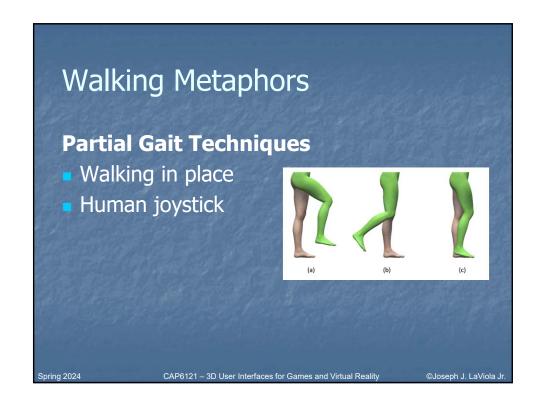

Classifications for 3D Travel

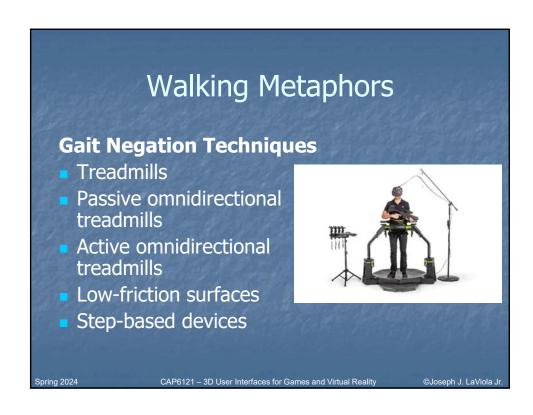

Technique Classifications

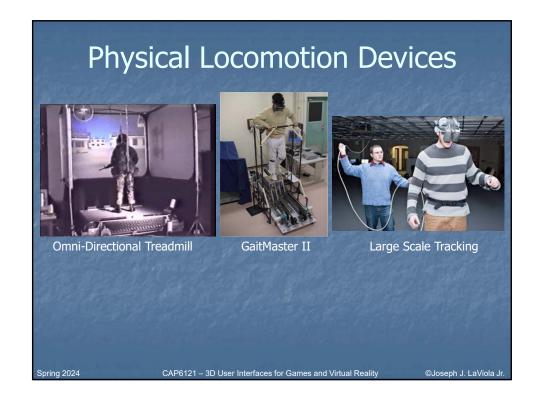
- Active versus passive
- Physical versus virtual
- Using task decomposition
- By metaphor

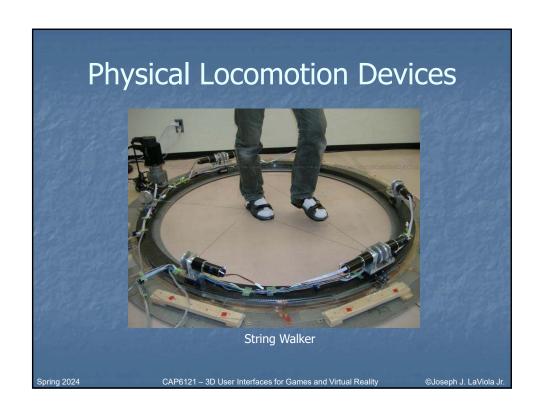
Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality


Walking Metaphors


- Walking is the most natural travel technique
- But it's not always practical or feasible
 - Technological limitations
 - Space limitations
- Categories based on human gait
 - Full gait: involve biomechanics of full gait cycle
 - Partial gait: mimic only some biomechanics
 - Gait negation: negate the user's forward locomotion


Spring 2024


CAP6121 – 3D User Interfaces for Games and Virtual Reality

Steering Metaphors

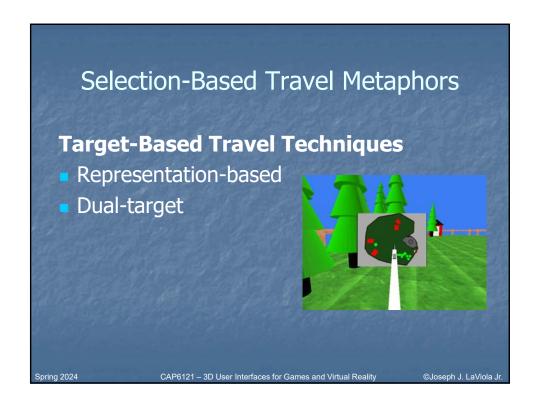
- Most common virtual technique metaphor
- Steering refers to continuous control of the direction of motion by the user
- Travel direction is specified either
 - Through spatial interactions, or
 - With physical steering props

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Steering Metaphors Spatial Steering Techniques Gaze-directed Hand-directed (Pointing) Torso-directed Lean-directed CAP6121 - 3D User Interfaces for Games and Virtual Reality GJoseph J. LaViola Jr.

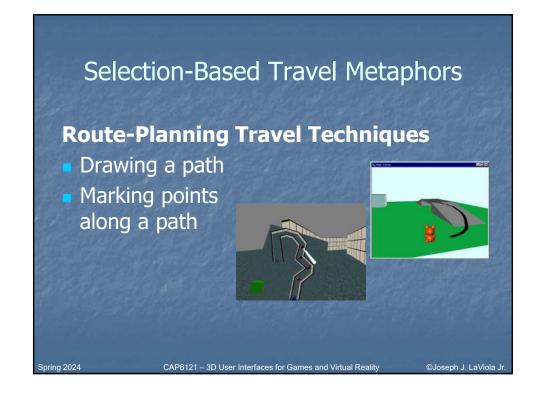

Steering Metaphors Physical Steering Props Cockpits Cycles Cycles CAP6121 – 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Selection-Based Travel Metaphors

- Depend on the user selecting either a target to travel to or a path to travel along
- Simplify travel by not requiring details
- Techniques take care of the actual movement
- Extremely easy to understand and use

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality


Map-based Travel Implementation

- Must know
 - map scale relative to world: s
 - location of world origin in map CS: $o=(x_{\alpha}, y_{\alpha}, z_{\alpha})$
- On button press:
 - if stylus intersects user icon, then each frame:
 - get stylus position in map CS: (x, y, z)
 - move icon to (x, 0, z) in map CS

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Map-Based Travel Implementation (cont.) On button release: Get stylus position in map CS: (x, y, z)Move icon to (x, 0, z) in map CS Desired viewpoint: $p_v = (x_w, y_w, z_w)$ where $x_v = (x - x_o)/s$ $x_v = (x - x_o)/s$ $x_v = (x - x_o)/s$ $y_v = desired height at (x_v, y_v)$ Move vector: $x_v = (x_v - x_{curr}, y_v - y_{curr}, z_v - z_{curr}) * (velocity/distance)$ Each frame for (distance/velocity) frames: translate viewpoint by $x_v = (x_v - x_v)$

Manipulation-Based Travel Metaphors

- Manipulate either the viewpoint or world
- Should be used when both travel and object manipulation tasks are frequent
- Ideally the same metaphor can be used for both travel and object manipulation

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Manipulation-Based Travel Metaphors Viewpoint Manipulation Techniques Camera manipulation Avatar manipulation Fixed-object manipulation Fixed-object manipulation Output Camera manipulation Output Discription Discription Output Discription Discription Discription Output Discription Discriptio

Manipulation-Based Travel Metaphors

World Manipulation Techniques

- Single-point world manipulation
- Dual-point world manipulation

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reali

©Joseph J. LaViola J

Grabbing The Air Implementation (one-handed)

- On pinch:
 - Obtain initial hand position in world CS: (x_h, y_h, z_h)
- Each frame until release:
 - Obtain current hand position in world CS: (x'_h, y'_h, z'_h)
 - Hand motion vector: $m = ((x'_h, y'_h, z'_h) (x_h, y_h, z_h))$
 - Translate world by *m* (or viewpoint by *-m*)
 - $(x_h, y_h, z_h) = (x'_h, y'_h, z'_h)$
- Cannot simply attach objects to hand do not want to match hand rotations

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Other Aspects of Travel Techniques

Viewpoint Orientation

- Head tracking
- Orbital viewing
- Nonisomorphic rotation
- Virtual sphere techniques

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jı

Other Aspects of Travel Techniques

Velocity Specification

- Discrete changes
- Continuous control
- Direct input
- Automated velocity

Spring 2024

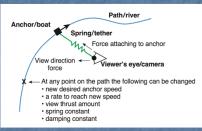
CAP6121 – 3D User Interfaces for Games and Virtual Reality

Other Aspects of Travel Techniques

Vertical Travel

- Many techniques restrict travel to horizon
- Some techniques afford vertical travel
 - 3D steering
 - Virtual ladders
 - Virtual stairs

Spring 2024


CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Other Aspects of Travel Techniques

Semiautomated Travel

- The system provides general constraints
- The user moves within those constraints

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Other Aspects of Travel Techniques Scaling the World Active scaling Automated scaling 1) Select 2) Grab 3) Manipulate 4) Release 4) Release

Other Aspects of Travel Techniques

Travel Modes

- Most techniques use a single mode for travel
- Some techniques require additional modes to transition among different travel methods
- Modes should be:
 - Well integrated to allow easy transitions
 - Clearly distinguished to avoid unintentional travel

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Other Aspects of Travel Techniques

Multiple Cameras

- Most techniques use a single camera for travel
- Some techniques incorporate different perspectives of multiple cameras
- Examples:
 - Through-the-lens
 - Transitioning to remote camera feeds
 - Snapshots of augmented scenes

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Other Aspects of Travel Techniques

Nonphysical Input

- Not all travel techniques require physical input
- Brain-computer interfaces (BCIs) allow for travel by thinking about moving
- These interfaces require a great deal of time to train
- Else generically trained algorithms can be unresponsive and induce false positives

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Wayfinding in 3D Environments

- Cognitive aspect of navigation
- Effectiveness depends on the number and quality of the wayfinding cues or aids provided
- Two types of wayfinding aids:
 - User-centered: make use of human perception
 - Environment-centered: depend on virtual world

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Wayfinding in 3DUIs

- Difficult problem
- Differences between wayfinding in real world and virtual world
 - unconstrained movement
 - absence of physical constraints
 - lack of realistic motion cues
- 3DUIs can provide a wealth of information

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Wayfinding in 3D Environments

User-Centered Wayfinding Cues

- Field of view
- Motion cues
- Multisensory output
- Presence
- Search strategies

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Wayfinding in 3D Environments

Environment-Centered Wayfinding Cues

- Environment legibility
- Landmarks
- Maps
- Compasses
- Signs
- Trails
- Reference objects

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Design Guidelines

- Match the travel technique to the application.
- Consider both natural and magic techniques.
- Use an appropriate combination of travel technique, display devices, and input devices.
- Choose travel techniques that can be easily integrated with other interaction techniques in the application.

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Design Guidelines

- Provide multiple travel techniques to support different travel tasks in the same application.
- Make simple travel tasks easier by using target-based techniques for goal-oriented travel and steering techniques for exploration and search.
- Use a physical locomotion technique if user exertion or naturalism is required.

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Design Guidelines

- The most common travel tasks should require a minimum amount of effort from the user.
- Use high-speed transitional motions, not instant teleportation, if overall environment context is important.
- Train users in sophisticated strategies to help them acquire survey knowledge.
- If a map is used, provide a you-are-here marker.

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Case Studies

VR Gaming Case Study

- Rotating bookshelf allows the user to walk between rooms
- Virtual elevators allow for vertical travel
- Key concepts:
 - Natural physical movements for navigation can enhance the sense of presence.
 - Even with a limited tracking area, consider ways to allow and encourage the use of a physical walking metaphor.
 - If the application allows, use story elements to help users make sense of travel techniques.

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Case Studies

Mobile AR Case Study

- Uses a multi-camera navigation system
- Interface shows camera viewpoints with regularly updated thumbnails of their video footage
- Variable perspective visualization blends first-person and remote viewpoints together
- Key concepts:
 - Creating a good mental map of the observed environment is crucial to adequately making use of the augmented information within.
 - The use of multi-camera systems can help by providing an overview and resolving occlusions.

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Conclusion

- 3D travel is another foundational task
- Physical and virtual travel approach have various tradeoffs
- Wayfinding affects navigation in 3D UIs
- Design your virtual world to provide sufficient environment-based wayfinding cues

Spring 202

CAP6121 – 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Next Class

- System Control
- Readings
 - 3DUI Book Chapter 8

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality