3D User Interfaces for Games and Virtual Reality

Lecture #1: Introduction
Spring 2024
Joseph J. LaViola Jr.

Spring 202

Instructor

Professor – Joseph J. LaViola Jr.

Email - jjl@cs.ucf.edu

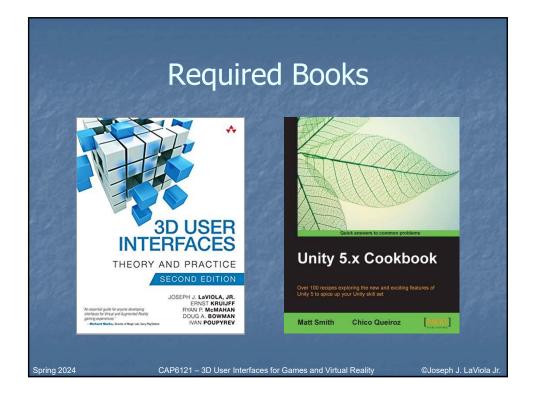
Office Hours – Mon. 12pm – 1:00pm

Tues. 4:00pm - 5:30pm

Office is Harris 321

Website will have all required info www.cs.ucf.edu/courses/cap6121/spr2024

Spring 2024


CAP6121 - 3D User Interfaces for Games and Virtual Realit

Class Goals

- Provide in-depth introduction to spatial 3D user interfaces
- Focus on 3D games and other apps
- Speaking and presentation skills
- Start of master's projects and PhD dissertations
- Possible publications
 - Virtual Reality 2025
 - VRST 2024
 - SUI 2024
 - CHI 2025
 - SIGGRAPH Asia 2024

Spring 202/

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Grading

Assignment 1 (group) 15%
Assignment 2 (group) 15%
Survey Paper (individual) 15%
Paper presentation (individual) 5%
Final Project (group) 50%

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Final Projects

- 2-3 person teams
- Must have research component
 - Does not have to be related to games
 - innovative 3D UI
- Everyone must write and get approved a project proposal
- DEMO DAY!!!! April 29, 2024

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Class Structure (see syllabus for details)

- Lectures
 - Fundamentals of 3D user interfaces
 - hardware
 - common interaction tasks
 - user evaluation
- Student paper presentation
 - 20 minute presentation
- Final project update sessions
- Work done
 - VR Lab Barbara Ying Center, Room 119
 - ISUE Lab Harris 208 (laptops also)
 - Home
 - code access required

Sprina 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Course Topics

- Unity 3D
- 3D Hardware
 - perception
 - input and output devices
- Common 3D Interaction Tasks
 - travel (e.g., navigation and wayfinding)
 - selection and manipulation
 - system control
- 3D UI Design
- 3D UI Evaluation
- 3D UI and Augmented/Mixed Reality

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Collaboration and Late Policy

- Collaboration encouraged
 - do your own work on assignments
 - cheating = BAD!!!
- All assignments must be handed in on time
 - Assignments by 11:59pm on due date

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Tools – Software

- Unity 3D
 - game engine
 - audio support, graphics support
 - physics engine
 - development UI
 - Scripting in C#, Javascript
 - Supports 3D stereo
 - HTC Vive support
 - Meta Quest 2 support
- Microsoft Research Kinect 2 SDK
- Sony Move.Me
- Leap Motion API
- Custom Client/Server code
- Google SketchUp Pro
 - nice model database

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Human-computer interaction (HCI)

- Field of study that examines all aspects of the interplay between humans and interactive technologies
- Communication between users and systems

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Terminology

User interface (UI)

- Medium for human-system communication
- Translates human actions/state to a system representation and vice-versa

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Input device

Physical device allowing users to communicate with a system

Degrees of freedom (DOF)

The number of independent dimensions of the motion of a body

Output device

 Physical device allowing system to communicate with users through any of the senses (display)

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Terminology

Interaction technique

- Method by which a user accomplishes a task via the UI
- Has hardware components (input/output devices)
- Has software components (mappings)

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Usability

- Characteristics of an artifact that affect the user's use of the artifact
- Includes ease of use, task performance, user comfort

User experience (UX)

- Characterization of a user's entire relationship with an artifact
- Includes usability, but also usefulness and emotional impact

UX evaluation

Process of assessing or measuring some aspects of the user experience of an artifact

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Terminology

3D interaction

- Human-computer interaction in which the user's tasks are performed *directly* in a *real* or *virtual* 3D *spatial context*
 - 2D device input translated directly to 3D virtual action (e.g., mouse dragging virtual sphere for 3D object rotation)
 - 3D device input to interact in a 2D virtual space (e.g., tracked laser pointer to define 2D cursor location on a large display)
 - Focus of the book: 3D device input to interact in a 3D virtual space (e.g., tracked controller to grab/move objects in VR)

3D user interface (3D UI)

A UI that involves 3D interaction

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Virtual environment (VE)

- Synthetic, spatial world seen from a first-person POV
- View is under real-time user control

Virtual reality (VR)

- An approach using technologies to immerse the user in a VE
- VE and VR sometimes used interchangeably

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Terminology

Augmented reality (AR)

 An approach using technologies to enhance the user's view of a real-world environment with synthetic objects or information

Mixed reality (MR)

- A set of approaches in which real and virtual information is mixed in different combinations
- Includes VR and AR
- MR continuum (Milgram & Kishino 1994)

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Ubiquitous computing (UbiComp)

 Computing devices and infrastructure may be scattered and mobile so that users have anytime, anywhere access to computing

Telerobotics

Remote control of one or more robots

Both UbiComp and telerobotics may involve 3D UIs

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Why 3D Interfaces?

- 3D applications should be useful
 - immersion
 - natural skills
 - immediacy of visualization
- But, applications in common use have low complexity of interaction
- More complex applications have serious usability problems
- Technology alone is not the solution!

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

What makes 3D interaction difficult?

- Spatial input
- Lack of constraints
- Lack of standards
- Lack of tools
- Lack of precision
- Fatigue
- Layout more complex
- Perception

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

alosenh I LaViola

Interaction Goals

- Performance
 - efficiency
 - accuracy
 - productivity
- Usability
 - ease of use
 - ease of learning
 - user comfort
- Usefulness
 - interaction helps meet system goals
 - interface relatively transparent so users can focus on tasks

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

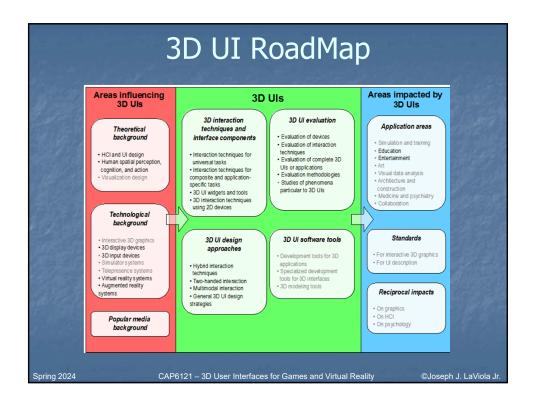
Universal 3D Interaction Tasks

- Navigation
 - travel: motor component
 - wayfinding: cognitive component
- Selection/Picking
- Manipulation
 - specification of object position & orientation
 - specification of scale, shape, other attributes
- System Control
 - changing the system state or interaction mode
 - may be composed of other tasks
- Symbolic Input

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr


3D UI Design Philosophies

- Artistic approach: Base design decisions on
 - intuition about users, tasks, and environments
 - heuristics, metaphors, common Sense
 - aesthetics
 - adaptation/inversion of existing interfaces
- Scientific approach: Base design decisions on
 - formal characterization of users, tasks, and environments
 - quantitative evaluation results
 - performance requirements
 - examples: taxonomies, formal experimentation

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Applications Architecture / CAD Education Manufacturing Medicine Simulation / Training Entertainment – Games III Design / Prototyping Information / Scientific Visualization Collaboration / Communication Robotics

Introduction to Case Studies

VR Gaming Case Study

- Speculative, but based on reasoning from research and experience
- Action-adventure genre (puzzles + physical skill)
- Large indoor environment (spooky hotel)
- Goal: escape via the roof while avoiding monsters
- Challenges: natural navigation, unobtrusive system control, avoid cybersickness

Spring 2024

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Introduction to Case Studies

Mobile AR Case Study

- HYDROSYS: in situ
 environmental analysis with
 mobile AR, sensor stations, and
 remote cameras
- Users: environmental scientists but also general public
- User tasks: data observations and deeper analysis
- Challenges: robust handheld AR platform, navigation among multiple camera viewpoints

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Next Class

- Games and 3DUIs
- Readings
 - LaViola Chapters 1 and 2
 - Bowman, D., Chen, J., Wingrave, C., Lucas, J., Ray, A., Polys, N., Li, Q., Haciahmetoglu, Y., Kim, J., Kim, S., Boehringer, R., and Ni, T. "New Directions in 3D User Interfaces", *International Journal of Virtual Reality*, vol. 5, no. 2, 2006, pp. 3-14.
 - LaViola, J. "Bringing VR and Spatial 3D Interaction to the Masses through Video Games", *IEEE Computer Graphics and Applications*, 28(5):10-15, September/October 2008.
 - Doug A. Bowman, Sabine Coquillart, Bernd Froehlich, Michitaka Hirose, Yoshifumi Kitamura, Kiyoshi Kiyokawa, Wolfgang Stuerzlinger, "3D User Interfaces: New Directions and Perspectives," *IEEE Computer Graphics and Applications*, vol. 28, no. 6, pp. 20-36, Nov/Dec, 2008

Spring 2024

CAP6121 – 3D User Interfaces for Games and Virtual Reality