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Abstract— In this paper, we introduce a new 3D hand gesture
recognition approach based on a deep learning model.

We propose a new Convolutional Neural Network (CNN)
where sequences of hand-skeletal joints’ positions are processed
by parallel convolutions; we then investigate the performance
of this model on hand gesture sequence classification tasks. Our
model only uses hand-skeletal data and no depth image.

Experimental results show that our approach achieves a
state-of-the-art performance on a challenging dataset (DHG
dataset from the SHREC 2017 3D Shape Retrieval Contest),
when compared to other published approaches. Our model
achieves a 91.28% classification accuracy for the 14 gesture
classes case and an 84.35% classification accuracy for the 28
gesture classes case.

I. INTRODUCTION

Touch and gesture are two natural ways for a user to

interact with one’s environment. While touch necessarily

involves a physical contact (e.g. to write a message on

a phone, to grab a physical object, or to swipe touch-

sensitive textiles), gestures allow remote interactions (e.g.

to interact with a smart screen, or with virtual-reality and

augmented-reality objects). As such, gesture-based human-

computer interfaces can ease the use of digital computing

[27] in situations where it would previously have been diffi-

cult or even impossible because of practical constraints like

interacting with everyday life physical objects (e.g. lights,

mirrors, doorknobs, notebooks, ...) or like using computers

in settings where the person has to focus entirely on a task

(e.g. while driving a car, cooking or doing surgery).
Gesture can convey semantic meaning, as well as con-

textual information such as personality, emotion or attitude.

For instance, research shows that speech and gesture share

the same communication system [2] and that one’s gestures

are directly linked to one’s memory [18]. Among gestures,

hand gestures distinguish themselves from two other types of

gestures [25]: body gestures and head gestures. We chose to

work on hand gestures since they can carry more information

more easily than the two other types of gestures. One

preferred way to infer the intent of a gesture is to use a

taxonomy of gestures and to classify the unknown gesture

into one of the existing categories based on the gesture data,

in a similar way to what is done in computer vision for

instance. The classification can either be obtained in realtime

at each time step or at the end of the gesture, depending on

the processing power and the application needs.
In this paper we propose a convolutional neural network

architecture relying on intra- and inter- parallel processing
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Fig. 1. Hand skeleton returned by the Intel RealSense camera. Each dot
represents one of the n = 22 joints of the skeleton.

of sequences of hand-skeletal joints’ positions to classify

complete hand gestures. Where most existing deep learn-

ing approaches to gesture recognition use RGB-D image

sequences to classify gestures [49], our neural network only

uses hand (3D) skeletal data sequences which are quicker to

process than image sequences.
The rest of this paper is structured as follows. We first

review common recognition methods in Section II. We then

present the DHG dataset we used to evaluate our network in

Section III. We detail our approach in Section IV in terms

of motivations, architecture and results. Finally, we conclude

in Section VI and discuss how our model can be improved

and integrated into a realtime interactive system.

II. DEFINITION & RELATED WORK

We define a 3D skeletal data sequence s as a vector

s = (p1 · · · pn)
T

whose components pi are multivariate time sequences.

Each component pi = (pi(t))t∈N represents a multivariate

sequence with three (univariate sequences) components

pi = (x(i),y(i),z(i))

that alltogether represent a time sequence of the positions

pi(t) of the i-th skeletal joint ji. Every skeletal joint ji
represents a distinct and precise articulation or part of one’s

hand in the physical world. An illustration of a 3D hand

skeleton is proposed in figure 1.
In the following subsections, we present a short review of

some approaches to gesture recognition. Typical approaches

to hand gesture recognition begin with the extraction of

spatial and temporal features from raw data. The features

are later classified by a Machine Learning algorithm. The
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feature extraction step can either be explicit, using hand-

crafted features known to be useful for classification, or

implicit, using (machine) learned features that describe the

data without requiring human labor or expert knowledge.

Deep Learning algorithms leverage such learned features

to obtain hierarchical representations (features) that often

describe the data better than hand-crafted features. As we

work on skeletal data only, with a deep-learning perspective,

this review pays limited attention to non deep-learning based

approaches and to depth-based approaches; a survey on the

former approaches can be found in [25] while several recent

surveys on the latter approaches are listed in Neverova’s

thesis [28].

A. Non-deep-learning methods using hand-crafted features

Various hand-crafted representations of skeletal data can

be used for classification. These representations often de-

scribe physical attributes and constraints, or easily inter-

pretable properties and correlations of the data, with an

emphasis on geometric features and statistical features. Some

commonly used features are the positions of the skeletal

joints, the orientation of the joints, the distance between

joints, the angles between joints, the curvature of the joints’

trajectories, the presence of symmetries in the skeletal,

and more generally other features that involve a human

interpretable metric calculated from the skeletal data [21],

[22], [41]. For instance, in [45], Vemulapalli et al. pro-

pose a human skeletal representation within the Lie group

SE(3) × . . . × SE(3), based on the idea that rigid body

rotations and translations in 3D space are members of the

Special Euclidean group SE(3). Human actions are then

viewed as curves in this manifold. Recognition (classifica-

tion) is finally performed in the corresponding Lie algebra.

In [11], Devanne et al. represent skeletal joints’ sequences

as trajectories in a n-dimensional space; the trajectories of

the joints are then interpreted in a Riemannian manifold.

Similarities between the shape of trajectories in this shape

space are then calculated with k-Nearest Neighbor (k-NN) to

achieve the sequence classification. In [9], two approaches

for gesture recognition -on the DHG dataset presented in

the next section- are presented. The first one, proposed by

Guerry et al., is a deep-learning method presented in the

next subsection. The second one, proposed by De Smedt et
al., uses three hand-crafted descriptors: Shape of Connected

Joints (SoCJ), Histogram of Hand Directions (HoHD) and

Histogram of Wrist Rotations (HoWR), as well as Fisher

Vectors (FV) for the final representation.

Regardless of the features used, hand-crafted features are

always fed into a classifier to perform the gesture recog-

nition. In [7], CIPPITELLI et al. use a multi-class Support

Vector Machine (SVM) for the final classification of activity

features based on posture features. Other very frequently

used classifiers [48] are Hidden Markov models (HMM),

Conditional Random Fields (CRF), discrete distance-based

methods, Naive Bayes, and even simple k-Nearest Neighbors

(k-NN) with Dynamic Time Warping (DTW) discrepancy.

B. Deep-Learning based methods

Deep Learning, also known as Hierarchical Learning, is

a subclass of Machine Learning where algorithms f use

a cascade of non-linear computational units fi (layers) for

feature extraction and transformation: f = f1 ◦ f2 ◦ . . . ◦ fn
[10]. The composition of (learned) functions in deep learning

algorithms allows them to build a hierarchical representation

of the data; that representation can become more and more

abstract as the number of layers in the composition goes

up. Since deep learning classification models both learn the

features to use for the classification and also the mapping

from the feature space to the output classes, they reveal

themselves to be a very convenient class of models for

classification. Moreover, in the recent years deep learning

approaches have led to state-of-the-art results for numerous

tasks across various domains such as Speech Recognition,

Image Recognition or Natural Language Processing [13].
A traditional Convolutional Neural Network (CNN, or

ConvNet) model almost always involves a sequence of

convolution and pooling layers, that are followed by dense

layers. Convolution and pooling layers serve as feature

extractors, whereas the dense layers, also called Multi Layer

Perceptron (MLP), can be seen as a classifier.
A strategy to mix deep-learning algorithms and (hand)

gesture recognition consists in training convolutional neural

networks [24] on RGB-D images.
A common trick to quickly train CNNs on gesture datasets

consists in doing Transfer Learning [34]. Transfer Learning

can be described as the extraction of knowledge from a learn-

ing task, knowledge that is later leveraged to help improve

the learning of a different, but related, task. In the case

of CNNs, transfer learning typically consists in using well

performing CNNs already trained for image classification

tasks on datasets such as ImageNet [35] and retraining the

last layers of these CNNs on a gesture dataset, with all the

other layers’ weights frozen. To be fine-tuned, the CNN is

then retrained one more time on the gesture dataset, with

no weight frozen this time. Transfer Learning can also be

used for other gesture recognition goals, such as extending

gesture vocabularies [16], [14].
A direct example of hand gesture recognition via image

CNNs can be found in the works of Strezoski et al. [40]

where CNNs are simply applied on the RGB images of

sequences to classify. Guerry et al. [9] propose a deep-

learning approach for hand gesture recognition on the DHG

dataset, which is described in section III of this paper. The

Guerry et al. approach consists in concatenating the Red,

Green, Blue and Depth channels of each RGB-D image.

An already pretrained VGG [37] image classification model

is then applied on sequences of 5 concatenated images

consecutive in time.
In [26], Molchanov et al. introduce a CNN architecture

for RGB-D images where the classifier is made of two CNN

networks (a high-resolution network and a low-resolution

network) whose class-membership outputs are fused with an

element-wise multiplication.
Neverova et al. carry out a gesture classification task on
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multi-modal data (RGB-D images, audio streams and skeletal

data) in [29], [30]. Each modality is processed indepen-

dently with convolution layers at first, and then merged. To

avoid meaningless co-adaptation of modalities a multi-modal

dropout (ModDrop) is introduced.
Nevertheless, these approaches use depth information

where we only want to use skeletal data.
In [46], Wang et al. color-code the joints of a 3D skeleton

across time. The colored (3D) trajectories are projected on

2D planes in order to obtain images that serve as inputs

of CNNs. Each CNN emits a gesture class-membership

probability. Finally, a class score (probability) is obtained

by the fusion of the CNNs scores.
Recurrent Neural Networks (RNN), e.g. networks that use

Long Short-Term Memory (LSTM) [19] or Gated Recurrent

Units (GRU) [6], have long been considered as the best

way to achieve state-of-the-art results when working with

neural networks on sequences like time series. Recently, the

emergence of new neural networks architectures that use

convolutions or attention mechanisms [43], [44] rather than

recurrent cells has challenged this assumption, given that

RNNs present some significant issues such as being sensitive

to the first examples seen, having complex dynamics that

can lead to chaotic behavior [23] or being models that are

intrinsically sequential, which means that their internal state

computations are difficult to parallelize, to name only a few

of their issues.
In [38], Song et al. elegantly combine the use of an LSTM-

based neural network for human action recognition from

skeleton data with a spatio-temporal attention mechanism.

While this approach seems promising, we rather seek to find

a convolution-only architecture rather than a recurrent one.
Zheng et al. propose a convolution-based architecture

that does not involve recurrent cells in [50], although this

architecture can easily be extended with recurrent cells: [32].

Zheng et al. introduce a general framework (Multi-Channels

Deep Convolution Neural Networks, or MC-DCNN) for

multivariate sequences classification. In MC-DCNN, mul-

tivariate time series are seen as multiple univariate time

series; as such, the neural network input consist of several 1D

time series sequences. The feature learning step is executed

on every univariate sequence individually. The respective

learned features are later concatenated and merged using a

classic MLP placed at the end of the feature extraction layers

to perform classification. The major difference between MC-

DCNN and other deep (skeletal) gesture recognition models

lies in the fact that MC-DCNN networks are skeleton-

structure agnostic. A naive direct use of the model pro-

posed by that paper does nevertheless not yield to results

significantly competitive against other approaches results, but

still gives a first glimpse of neural architectures for multi-

variate sequences such as hand gesture skeleton data. The

current paper introduces a new neural network built upon

this framework.

III. DATASET

To evaluate performances of several variations of the

proposed neural network model architecture we conducted

experiments on the Dynamic Hand Gesture-14/28 (DHG)

dataset [9] created and introduced by DE SMEDT et al. in

the SHREC2017 - 3D Shape Retrieval Contest.
The DHG dataset consists in a total of 2800 labeled

hand gesture sequences performed by 28 participants.

The sequences are recorded by an Intel RealSense depth

camera and have variable lengths. Each labeled sequence

consists of the raw data sequence returned by the camera,

associated with two labels representing the category of

the recorded gesture. For all sequences a depth image of

the scene is provided at each timestep, alongside with

both a 2D and a 3D skeletal representation of the hand.

The hand skeleton returned by the Intel RealSense depth

camera is presented in a paragraph below. Each gesture

falls into one of 14 categories : Grab (G), Tap (T),

Expand (E), Pinch (P), Rotation clockwise
(RC), Rotation counter-clockwise (RCC),

Swipe right (SR), Swipe left (SL), Swipe up
(SU), Swipe down (SD), Swipe x (SX), Swipe +
(S+), Swipe v (SV), Shake (Sh). Moreover, each

gesture can be performed with either only one finger or

with the whole hand. That means that gestures are classified

with either 14 labels or 28 labels, depending on the number

of fingers used.
The gesture recognition method we introduce in the next

section only uses the 3D hand skeletal representation re-

turned by the Intel RealSense depth camera. At each time

step the 3D hand skeleton consists in an ordered list of 22

joints with their positions pi = (xi,yi,zi) ∈ R
3, ∀i ∈ �1;22�

in the 3D space. The structure of the skeletal returned by the

camera is presented in figure 1.
The dataset is split into 1960 train sequences (70% of the

dataset) and 840 test sequences (30% test sequences).

IV. PARALLEL CONVOLUTIONS MODEL

A. Motivation

The goals of the original contest where the DHG dataset

was introduced were to (1) study the dynamic hand gesture

recognition using depth and full hand skeleton, and to (2)

evaluate the effectiveness of recognition process in terms

of coverage of the hand shape that depend on the number

of fingers used. Nevertheless, the goals of this paper are

different. Our first goal is to demonstrate that carrying out

hand gesture recognition with a sparse representation of the

hand (i.e. the 3D hand skeleton) only is competitive with

other existing approaches that often focus on RGB-D images.

The second goal of this paper is to propose a generic neural

network that does not require recurrent cells to achieve this

recognition.

B. Model Architecture

We introduce a multi-channel convolutional neural net-

work with two feature extraction modules and a residual

branch per channel. The whole model architecture is de-

picted in figure 2. The architecture is inspired by the high-

resolution and low-resolution networks from [26]. The use

of residual branches in our architecture is inspired from the
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Fig. 2. Illustration of the proposed parallel convolutional neural network. Every channel is processed separately before the Multi Layer Perceptron. The
parallel feature extraction module presented on the right is not shared between the 66 channels.

original Residual Networks paper [17]. Residual branches

make networks easier to optimize because of a better gradi-

ent backpropagation in the training phase; they empirically

improve the accuracy of deep networks.
Our network inputs consist of multiple, fixed-length, 1D

sequences (s1,s2, . . . ,sc) where c ∈ N
∗ is the number of

sequences (channels). Each of these sequences si is directly

fed to three parallel branches. The first branch1, improperly

called residual branch in this paper, is almost an identity

function. Instead of outputting exactly its input we perform

a pooling on the input in order to reduce the risk of overfit-

ting. The second and third branches both present a similar

architecture, detailed below, designed for feature extraction.
In these two branches, the input is processed as follows.

The input is passed to a convolution layer, whose output is

subsampled using a pooling layer. This process is repeated

two more times. For a single branch, the difference between

all the three convolutions resides in the number of feature

maps used; the difference between the two branches resides

in the size of the convolutions kernels. Having two kernel

sizes for the time convolution layers allows the network to

directly work at different time resolutions.
Formally, let h(l,β ) represent the input of the l-th con-

volution layer of the β branch, K(l,β ) be the number of

feature maps, W (l,β )
k the k-th convolution filter of the l-th

convolution in the β branch, and b(l,β )k the bias shared for

the k-th filter map. The output h(l+1,β ) of the l-th convolution

layer is calculated as

h(l+1,β ) = σ
(

h(l,β ) ∗W (l,β )
k +b(l,β )k

)

where σ is the activation function. This output h(l+1,β )

serves as the input of the pooling layer that directly follows

1middle branch in figure 2

the convolution layer.
For a single channel, the outputs of the three branches

are concatenated into a single vector. Finally, a multi layer

perceptron “merges” the -concatenated- vectors of all the

channels together and acts as a classifier. There are as many

MLP outputs as the number of gesture classes.
In our experiments, we have two branches (high resolution

and low resolution branches): β ∈ �1;2�, 3 convolution and

pooling layers: l ∈ �1;3�, and K(l,β ) = 8 feature maps for

l = 1 or l = 2 and K(l,β ) = 4 feature maps for l = 3. The

multi layer perceptron has 1 hidden layer with 1996 hidden

units. All of the neurons in our network use the ReLU

activation function: σ(x) = ReLU(x) = max(0,x), with the

exception of the output neurons which use the softmax

activation function. All of the 3 [×2×c] subsampling layers

use an average pooling with a temporal pool size of 2.

Average pooling computes the average value of features

in a neighborhood (of 2 time steps in our case), while

max pooling extracts the maximum value of the features in

the neighborhood. Empirically, it has been shown that max

pooling outperforms average pooling in image recognition

problems [3]. Nevertheless, experiments we conducted on

the choice of the pooling method for our model showed that

our model exhibits better results with average pooling (we

see a 0.88% decrease in validation accuracy for the model

with maximum pooling rather than the average one for the

model configuration presented in this paper).

C. Training

In this section we detail the hyperparameters we used as

well as some other information related to the training.
1) Data preprocessing: Multidimensional full sequences

of joints’ trajectories were split into unidimensional se-

quences that were later re-sampled in order to serve as inputs

of our model. The resize was performed by a simple linear
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G(1) G(2) T(1) T(2) E(1) E(2) P(1) P(2) RC(1) RC(2) RCC(1) RCC(2) SR(1) SR(2) SL(1) SL(2) SU(1) SU(2) SD(1) SD(2) SX(1) SX(2) S+(1) S+(2) SV(1) SV(2) Sh(1) Sh(2)

G(1) 71.4 17.9 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G(2) 0.0 96.7 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T(1) 15.2 0.0 54.5 15.2 0.0 0.0 6.1 0.0 3.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0

T(2) 0.0 10.7 0.0 57.1 0.0 3.6 0.0 0.0 0.0 10.7 0.0 7.1 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 3.6 3.6 0.0 0.0 0.0

E(1) 0.0 0.0 0.0 0.0 85.2 3.7 3.7 0.0 0.0 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

E(2) 0.0 0.0 0.0 3.6 10.7 71.4 0.0 3.6 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6

P(1) 7.4 0.0 0.0 0.0 0.0 0.0 85.2 3.7 0.0 0.0 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P(2) 0.0 8.3 0.0 0.0 0.0 0.0 8.3 75.0 0.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RC(1) 0.0 0.0 3.4 0.0 0.0 0.0 0.0 0.0 69.0 24.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0

RC(2) 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 15.4 80.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RCC(1) 0.0 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 81.3 15.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RCC(2) 0.0 15.4 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.7 69.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0

SR(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 87.9 9.1 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SR(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.2 79.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0 0.0 0.0 0.0

SL(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 84.6 7.7 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SL(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 0.0 0.0 0.0 7.1 85.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SU(1) 0.0 0.0 0.0 3.1 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.1 3.1 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.0 0.0 0.0

SU(2) 0.0 0.0 0.0 0.0 0.0 13.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.9 69.4 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SD(1) 0.0 0.0 0.0 3.2 0.0 0.0 6.5 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80.6 3.2 0.0 0.0 0.0 0.0 3.2 0.0 0.0 0.0

SD(2) 0.0 13.3 0.0 3.3 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 73.3 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0

SX(1) 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 90.9 0.0 0.0 0.0 3.0 0.0 0.0 0.0

SX(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.2 0.0 2.8 0.0 0.0 0.0 0.0

S+(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0

S+(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0

SV(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 89.3 7.1 0.0 0.0

SV(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.7 0.0 0.0

Sh(1) 0.0 0.0 2.9 0.0 0.0 0.0 8.6 0.0 11.4 5.7 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.0 8.6

Sh(2) 0.0 0.0 0.0 0.0 0.0 2.9 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 91.4

In this confusion matrix each row represents the real class of performed gestures while each column represents the predicted class of the gestures.

TABLE I

CONFUSION MATRIX FOR DHG-28 USING OUR PROPOSED APPROACH

interpolation of the time series. The few data points outside

the boundaries of the input were filled with a reflection. After

interpolation, every sequence has a fixed length of 100 time

steps.

2) Weights Initialization & Batching: Each training batch

contained a set of 32 skeletal gesture sequences of length

100, where a skeletal gesture sequence is a list of 22×3= 66

unidimensional sequences.
For the training, we used the Xavier initialization (also

known as GLOROT uniform initialization) [12] to set the

initial random weights for all the weights of our model.

3) Implementation: Our model was implemented twice

using either PyTorch or Keras as a high level library

above Tensorflow. CUDA/CuDNN were used for GPU

parallelization of the computations.

4) Hardware: We trained our model on one machine

with a GPU (NVIDIA GeForce GTX 1080 Ti). Using the

hyperparameters presented in the paper, each training step

took about 12 seconds. We trained the model for 1000

steps. As a comparison, other experiments -not presented in

this paper- that involved GRU recurrent cells were trained

for over 10000 steps of approximately 45s each while not

exhibiting better performance on the testing data.

5) Loss & Optimizer: We selected negative log-likelihood

as the cost function. To train our model, we used the

popular Adam optimization algorithm [20] which calculates

an exponential moving average of the gradient and the

squared gradient. For the decay rates of the moving averages

we used the parameters β1 = 0.9, β2 = 0.98. The values of

other parameters were α = 10−3 for the learning rate, and

ε = 10−8.

6) Regularization: Dropout [39] served as a regularizer,

with a drop rate of p = 0.2 for the model presented in this

paper. Numerous experiments on variations of both the model

architecture and the dropout rate empirically showed that

higher dropout rates like p = 0.4 often reduced the training

accuracy but did not increase the validation accuracy.

D. Results on the DHG dataset

We work on the DHG dataset presented on section III.

All sequences are preprocessed as described in the previous

section. Each resampled skeletal sequence is split into 22

joints’ sequences, and then into 3 × 1D sequences of the

(x,y,z) positions of the joints. This leads to 66 = 22× 3

input sequences that are fed to model we introduced. The

outputs of the last layer of the MLP represent the labels we

will attribute to the gesture corresponding to the 66-channel

input. Since there are two classification tasks, depending on

the number of classes, we use two different neural networks

with the same architecture, except that one has 14 outputs

and the other has 28 outputs.
On the DHG dataset, our model achieves a 91.28%

classification accuracy for the 14 gesture classes case and

a 84.35% classification accuracy for the 28 gesture classes

case. These are the best recognition accuracy scores known

for this challenging dataset at this day (see table II).
In [33], [11], [9], [31], [8] more or less complex but

handcrafted features are used in the classification pipelines.

The main advantage of deep-learning approaches is to auto-

matically discover such (sometimes complex) features. [5]

is based on deep-learning architecture. It directly applies

LSTMs -but without applying CNNs beforehand- to the

skeletal data (and to the handcrafted features). Introducing a

convolution step before the LSTMs could possibly improve

the model in [5]. Our model likely uses more efficient

representations due to the use of the parallel branches. A

comparison of the different approaches is presented in table

II.
In classification, precision is defined as the ratio

precision = T P
T P+FP where T P is the number of true positives
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Approaches Accuracy 14 gestures Accuracy 28 gestures

OREIFEJ & LIU [33] 78.53 74.03

DEVANNE et al. [11] 79.61 62.00

GUERRY et al. [9] 82.90 71.90

OHN-BAR & TRIVEDI [31] 83.85 76.53

CHEN et al. [5] 84.68 80.32

DE SMEDT et al. [8] 88.24 81.90

Ours 91.28 84.35

TABLE II

ACCURACY RESULTS ON THE DHG DATASET

G T E P RC RCC SR SL SU SD SX S+ SV Sh

G 94.8 1.7 0.0 1.7 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T 11.5 77.0 0.0 3.3 4.9 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0

E 0.0 5.5 90.9 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 1.8

P 15.7 0.0 0.0 78.4 3.9 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RC 0.0 1.8 0.0 0.0 98.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RCC 3.4 6.9 0.0 1.7 5.2 77.6 0.0 1.7 0.0 1.7 0.0 0.0 0.0 1.7

SR 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SL 0.0 0.0 0.0 0.0 7.4 0.0 3.7 88.9 0.0 0.0 0.0 0.0 0.0 0.0

SU 2.9 2.9 10.3 0.0 0.0 0.0 1.5 0.0 79.4 1.5 0.0 0.0 1.5 0.0

SD 3.3 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 91.8 0.0 0.0 1.6 0.0

SX 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 89.9 1.4 5.8 0.0

S+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0

SV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

Sh 0.0 8.6 2.9 0.0 12.9 0.0 2.9 0.0 1.4 0.0 0.0 0.0 0.0 71.4

In this confusion matrix each row represents the real class of performed
gestures while each column represents the predicted class of the gestures.

TABLE III

CONFUSION MATRIX FOR DHG-14 USING OUR PROPOSED APPROACH

and FP the number of false positives, while recall is defined

as the ratio recall = T P
T P+FN where T P still is the number

of true positives and FN is the number of false negatives.

The F1 score (given by F1 =
2×precision×recall

precision+recall ) is an harmonic

average of the precision and recall; an F1 score reaches its

best value at 1 and worst score at 0. A comparison of F1

scores between our approach and the best performing method

that exists at this day shows that our approach offers better

F1 scores for all but 3 of the 14 gesture classes. It shows

that our model is more balanced than other approaches for

DHG hand gesture recognition for most of the gestures. For

more detailed results, we present the confusion matrices we

obtained with our model on the DHG in table III for DHG14,

and in table I for DHG28.

E. Discussion

1) Privacy: In personal and human-related applications,

personal information may leak into the model, e.g. due to

overfitting issues. Differential privacy techniques such as

Differential Stochastic Gradient Descent [1] or Adversarial

Training can be used to prevent such leaks. Nevertheless, for

applications such as gesture recognition for smart-screens -

trained on datasets such as the DHG dataset- slightly over-

fitting is not an issue from a practical perspective.

2) Dataset Size: A common barrier to using deep-learning

is small datasets. The DHG dataset has roughly 3000

Ours DE SMEDT et al. Difference

Gesture Precision Recall F1-score Precision Recall F1-score F1-score

G 72.4% 94.8% 82.1% 67.5% 57.0% 61.8% 20.3%

T 71.2% 77.0% 74.0% 85.2% 87.0% 86.1% -12.1%

E 84.7% 90.9% 87.7% 84.8% 87.0% 85.9% 1.8%

P 90.9% 78.4% 84.2% 52.1% 61.0% 56.2% 28.0%

RC 69.2% 98.2% 81.2% 80.0% 77.5% 78.8% 2.5%

RCC 97.8% 77.6% 86.5% 90.9% 85.5% 88.1% -1.6%

SR 91.2% 100.0% 95.4% 85.1% 92.5% 88.6% 6.7%

SL 98.0% 88.9% 93.2% 78.4% 85.5% 81.8% 11.4%

SU 98.2% 79.4% 87.8% 89.3% 85.5% 87.4% 0.4%

SD 93.3% 91.8% 92.6% 80.8% 88.0% 84.3% 8.3%

SX 100.0% 89.9% 94.7% 95.8% 85.0% 90.1% 4.6%

S+ 98.3% 100.0% 99.1% 90.2% 98.5% 94.1% 5.0%

SV 90.6% 100.0% 95.1% 93.2% 92.0% 92.6% 2.5%

Sh 96.2% 71.4% 82.0% 88.6% 81.0% 84.7% -2.7%

TABLE IV

COMPARISON OF F1 SCORE IN THE 14 GESTURE CLASSES CASE

F1 scores by gesture, for a version of the model without the “residual”
branch; very similar results are obtained for the model with the

“residual” branch.

balanced sequence instances (1960 train sequences + 837

test sequences) of 100 timesteps with 66 1D-channels. The

proposed model has 13829454 free parameters in total, or

13829454/66 ≈ 209537 free parameters by channel. Given

that each of the 1960 training sequences has 100 timesteps,

and because of the regularization applied, the model likeky

does not overfit. Qualitatively speaking, no overfitting was

observed experimentally. The lower bound of the size of

datasets needed for deep learning is hard to determine, as

it depends on factors difficult to evaluate such as the task

complexity, and the model complexity. As a general rule

of thumb, without any regularization, one may arguably say

that the size of a dataset should be at-least 1 or 2 orders of

magnitude than its dimensions.

Zero-, One-, or Few-shot learning [47], as well as data

augmentation, transfer learning, model compression and dis-

tillation techniques can help to reduce the minimum size of

the dataset required for training and validating deep learning

models.

3) Preprocessing, Average Pooling & Data Regularity:
The input to the network assumes a sequence of poses, which

are provided by the Intel RealSense camera. The poses can

also be retrieved by using body-worn sensors or estimated

by segmenting videos [36].

We re-sampled signals to a vector of size 100 due to

the nature of the motions that were all both relatively short

as well as all being about the same duration in order of

magnitude. This may not hold for motion capture data with

very variable time spans for which one may prefer encode

with a convolution and memorize with an reccurrent cell

like an LSTM or a GRU. Average pooling seems to function

better than max pooling on the input data for our model. 1D

physical sensors data and 1D motion capture data present

more regularity than other 1D data such as text, which means

that the data is more compressible (in the time domain). With

1D gesture data it is easier to filter outliers (e.g. because

of of physical constraints on the gesture), and outliers have

less meaning than outliers in the text domain. For specific
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gesture recognition applications involving a lot of semantics

like sign languages, such assumptions may probably not

hold. We suppose that averaging values from a 1D channel

sequence helps to reduce outliers weight with the smoothing.

Average pooling may act as a regularizer. As gestures are

smooth, averaging the signal probably leads to more signal

removal than noise removal. Since we stick to the MC-

DCNN framework with an application- and camera-agnostic

architecture with no a priori knowledge, our model is directly

extensible to other input formats with different 2D or 3D

joints. It does not rely much on specific channels, which

may occasionally be corrupted in real-world scenarii if the

camera does not work perfectly.
4) Recurrence; Speed: One of the goals of this paper was

to study if a convolution-only network could lead to state-of-

the-art results for gesture classification. While this result is

established for short gestures with limited semantic meaning,

the question remains open for gestures with very variable

time span. For those cases, re-sampling the input might not

always work and it might probably more efficient to insert

recurrent cells in the model, e.g. after the convolutions,

in order to benefit from the (long time range) context by

keeping track of the processed input in a memory. In that

case, one should carefully check if the model does not overfit,

as memory cells are often harder to regularize [42]. Recurrent

cells also tends to significantly increase the training time

although there is ongoing work, e.g. [4], to alleviate this

issue. LSTMs and GRUs can warp time through their gating

mechanism, but since CNNs can have gating mechanisms

too, it would be interesting to see if gestures with very

variable time span and limited semantic meaning could be

efficiently classified without involving any recurrent or auto-

regressive mechanism. One of the main advanges of using

sparse (skeletal) input data instead of dense (image) input

data lies in inference speed. On a (good) Intel Xeon CPU

E5-1630 v4 @ 3.70GHz processor, without any GPU, the

inference time is as low as∼ 10−5s for a batch of 32 gestures,

which is several orders of magnitude sufficient for real-time

applications, even on less efficient processors for embedded

systems.
5) Architecture variations; Branch ablation: Very nu-

merous variations on the model architecture are possible,

including weights sharing or progressive channels fusion.

Regarding the existing model for instance, a partial grid

search was the reason behind the choice to use convolution

kernels sizes of 3 and 7.
Removing the residual (res. high, low) branch from the

model with 14 gestures leads to small a degradition of the

accuracy by −1.05% (resp. −0.53%, −1.31%). Though, we

can highlight the importance of the three parallel branches:

with 28 classes, the model accuracy decreases way more:

−5.24% (resp. −6.38%, −4.96%).

V. CONCLUSION & FUTURE WORKS

A. Conclusion

We introduced a new convolutional neural network to

classify (recognize) hand gestures using skeletal data only.

This neural network extends the MC-DCNN framework in

several ways. First, it introduces parallel processing branches

for each signal. The advantage of two convolutional branches

over a single one seems to be that it allows the architecture

to access different time resolutions of each signal. Second,

the use of residual connection for each signal allows the

gradient to better backpropagate in the neural network.

Experimentally, it seems to be useful not only regarding the

duration of network training, but also in terms of accuracy

results. Finally, dropout is also used as a regularization

technique. From a neural network perspective, we observe

that (intra- and inter-) parallel processing of sequences us-

ing convolutional neural networks can be competitive with

neural architectures that use cells specifically designed for

sequences such as GRU and LSTM cells. We applied our

model to perform hand gesture classification on a challenging

hand gesture dataset (DHG dataset). Our method outper-

forms all existing published methods on this dataset. Our

model achieves a 91.28% classification accuracy (+3,04%

improvement) for the 14 gesture classes case and an 84.35%

classification accuracy (+2,45% improvement) for the 28

gesture classes case.

B. Future Works

The biggest drawback of our gesture recognition system

is that it only works on complete sequences. One way

to overcome this issue to get a realtime, step by step,

classification could consist in the usage of non-overlapping

short time windows. The recognition model would emit a

classification of the gesture data inside each window. Finally,

the use of an objective function such as the Connectionist

Temporal Classification Loss (CTC) [15] could allow an

alignment of the classes obtained from the time windows

with the desired (actual) ones.

Sharing all the convolutions’ weights between all the

channels decreases the overall performance of the model, but

also greatly decreases the total parameters count. We plan to

study the relation between the model accuracy and its total

parameters count to find a possibly better trade-off.

Low-level features present more similarities between chan-

nels than more abstract, higher-level, features. Sharing the

weights of the first convolutions between all channels -for the

high-resolution and the low-resolution branches respectively-

could probably help to reduce the model parameters’ count

while keeping an accuracy comparable to the accuracy ob-

tained with the current model.

Another possible follow-up work may involve the in-

troduction of a spatio-temporal attention module over the

parallel features extraction module.
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