
The 9th IEEE International Conference on E-Health and Bioengineering - EHB 2021  
Grigore T. Popa University of Medicine and Pharmacy, Web Conference, Romania, November 18-19, 2021 

IEEE 978-1-6654-4000-4/21/$31.00 ©2021 IEEE 

Detecting Heart Rate From Virtual Reality Headset-
Embedded Inertial Sensors: a Kinetic Energy 

Approach 
S. Solbiati1,2, A. Buffoli1, V. Megale3, G. Damato3, B. Lenzi3, G. Langfelder1, E.G. Caiani1,2 

Affiliation 1: Department of Electronics, Information and Bioengineering, Politecnico di Milano, 
Milan, Italy 

Affiliation 2: Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, National Research Council, 
Milan, Italy 

Affiliation 3: Softcare Studios Srls, Rome, Italy 

Abstract— At each cardiac beat, blood flowing through the 
arterial tree produces micro-movements that can be measured by 
positioning inertial sensors in contact with the body. The resulting 
signal is the ballistocardiogram (BCG). The study aims to 
demonstrate the feasibility to exploit inertial sensors embedded in a 
virtual reality (VR) headset to estimate heart rate (HR). Eight 
volunteers were enrolled. 1-minute head BCG signals were acquired 
in supine, sitting and standing position using the tri-axial 
accelerometer and gyroscope (fs=71[71;77] Hz) integrated in a 
Oculus Quest (Facebook) VR headset. Linear and rotational kinetic 
energies were computed and used to automatically detect cardiac 
beats. Inter-beat intervals were extracted and mean HR was 
computed. In addition, 1-lead ECG signal was acquired and used as a 
gold standard for HR measurement. The HR values computed from 
BCG in each posture were compared with the gold standard 
(Wilcoxon Signed Rank Test, p<0.05). Correlation (r2) and Bland 
Altman analyses were also performed. Best results were obtained 
using the rotational kinetic energy derived by the gyroscope, 
obtaining HRs comparable to the gold standard in both supine and 
sitting postures, with high correlation, no bias, and acceptable limits 
of agreement. In standing posture, the balancing movements for body 
equilibrium maintenance contributed reducing HR estimate accuracy. 
This is the first study in which HR has been measured using kinetic 
energy computed from the head-BCG obtained with a commercial 
VR headset, providing important insights on the possibility to expand 
the use of inertial units to accurately and non-invasively monitor 
physiological parameters. 
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I.  INTRODUCTION

At each cardiac beat, blood flowing through the arterial tree 
produces changes in the center of mass of the body [1]. This 
phenomenon was first described in [2]. By assuming the 
cardiovascular system as a Newtonian one, the subtle body 
vibrations produced by cardiac mechanical activity and blood 
flow in major vessels are explained as the result of the recoil 
forces generated by blood ejection and blood flow into the 
aorta [3]. This is at the foundation of ballistocardiography, a 

technique that measures cardiac activity by recording such 
micro-movements of the whole body.  

Recent advances in technology brought to the creation of 
wearable devices embedding Micro-Electro-Mechanical 
Systems (MEMS). Such miniaturized elements include inertial 
sensors, and specifically accelerometers and gyroscopes. 
Although being largely used to monitor daily physical activity 
(i.e. number of steps, distance walked, time spent in bed), when 
positioned in contact with the body, these inertial units can 
sense the subtle body vibrations in response to the 
cardiovascular activity, thus resulting in the so-called 
seismocardiographic (SCG) signal [4] or in the 
ballistocardiographic (BCG) signal [5]. 

We recently demonstrated the feasibility to measure mean 
heart rate (HR) and respiratory frequency from the inertial 
sensors already embedded in a commercial virtual reality (VR) 
headset [6]. Indeed, at each heart beat, 12 grams of blood flow 
towards the head from the aorta through the carotid arteries, 
causing reaction forces in the head and generating cyclic subtle 
head motion that can be used to derive information about the 
cardiac activity of the VR user. 

The use of VR in the healthcare sector is increasing [7]: it is 
utilized in medical rehabilitation, creating a simulated 
environment to provide the patient with effective training [8] 
as well as in psychiatric treatment for anxiety disorders [9], or 
even for pain and distress management during medical 
procedures [10][11][12]. However, the evaluation of the user’s 
quality of experience through monitoring physiological 
parameters while exposed to the VR environment involves the 
use of additional sensors and instrumentation, which could 
affect the evaluation and limit it into the laboratory 
environment.  

Our aim in this preliminary study was to extend our 
previous observations to propose a method to automatically 
detect beat-by beat cardiac activity from the head BCG signal 
obtained through the VR. This would create the bases to 
evaluate heart rate variability (HRV) parameters able to 
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quantify the sympatho-vagal status of the subject while 
exposed to a VR scenario, neither using additional sensors nor 
being confined to a specific laboratory study.  

II. MATERIALS AND METHODS

A. Study population and design 
Eight healthy volunteers (age: median [25th percentile; 75th 

percentile], 21[21;21] years) were enrolled. Each participant 
provided written informed consent to participate in the study, 
approved by the Ethics Committee of the Politecnico di 
Milano. Acquisitions were performed in standing, sitting and 
supine postures. The experimental protocol is schematized in 
Figure 1, and includes: 1-minute acquisition while standing, 3 
minutes of baseline while sitting followed by 1-minute 
acquisition in sitting position, 3 minutes of baseline while 
supine followed by 1-minute acquisition in supine position. 
Baseline periods prior to sitting and supine recordings were 
adopted in order to allow the stabilization of the HR to the new 
postural condition. For each subject, this acquisition protocol 
was repeated three times. 

Fig. 1.  Schematization of the acquisition protocol. 

The continuous BCG signal of the head was acquired using 
the tri-axial accelerometer and gyroscope sensors embedded in 
the Oculus Quest (Facebook) VR headset, at a sampling 
frequency of 71[71;77] Hz. To do so, Softcare Studios Srl 
(Rome, Italy) developed an “ad-hoc” application which allows 
the user to start a recording session, at the end of which the 
samples of linear acceleration (m/s2) and angular velocity 
(rad/s) acquired with the triaxial accelerometer and gyroscope 
are saved. 

In addition, continuative 1-lead electrocardiographic (ECG) 
signal (sampling frequency = 1024 Hz) was acquired by the 
EcgMove4 sensor (Movisens, GmbH), which was used as a 
gold standard for HR measurement. To allow the 
synchronization between BCG and ECG signals, at the 
beginning of each repetition, the subject performed a small 
jump. As the EcgMove4 Movisens sensor also embeds a tri-
axial accelerometer and a tri-axial gyroscope acquired at 64 
Hz, the artifact generated by this movement was used to 
synchronize in post processing the signal of the VR-embedded 
sensors with the ECG signal. Moreover, at the beginning of the 
1-minute sitting and supine acquisitions, a head rotation 
movement was performed and used as a start marker.  

During the acquisitions, the subjects were asked to maintain 
their head still, thus avoiding major head motion artefacts 
which could compromise BCG signal robustness.  

B. BCG signal processing 
Given the slightly uneven sampling rate, the raw BCG 

signals acquired from the VR headset were resampled at 100 
Hz. Afterwards, a 2nd order band-pass (10–13 Hz) Butterworth 
filter was applied to each component of both the accelerometer 
and gyroscope signals [13][6].  

The linear (Klin) and rotational (Krot) kinetic energies were 
then computed from the accelerometer and gyroscope signals 
respectively, according to the formulae: 

(1) 

(2) 

where m is the body mass of the subject, 
𝑣 is the linear velocity derived from the linear acceleration by 
single-time integration, w is the angular velocity, and Ixx, Iyy 
and Izz are the orthogonal components of the moment of inertia 
of the head. These have been computed using the model 
developed by Hanavan et al. [14], where the head is 
approximated by a circular ellipsoid having radius r, height 2r 
and mass mhead equal to 7.9% of total body weight. Being the 
measures of the head unknown, the approximation of the head 
radius proposed by Weber and colleagues [15], only depending 
on subject’s body mass, was used. 

Automated heart beat identification was then performed on 
the obtained Klin and Krot signals by defining some threshold 
values: consecutive peaks with a minimum distance of 500 ms, 
and a minimum amplitude equal to 3 times the standard 
deviation for Klin and 40% the standard deviation for Krot were 
considered. For each subject in each position, the mean BCG 
HR was then computed from the inter-beat intervals series. 

C. ECG signal processing 
The Pan-Tompkins [16] algorithm is widely used for QRS 

complex detection which uses a bank of filters to emphasize 
the rapid heart depolarization. In this study, this method was 
applied to the acquired 1-lead ECG signal in order to identify 
the R peaks, from which gold standard measurements of HR 
were computed as average in each observation period.  

D. Statistical analysis 
For each posture, the HR values computed from Klin and 

Krot were compared with the gold standard HR (Wilcoxon 
Signed Rank test, p<0.05). In addition, linear correlation (r2) 
and Bland Altman analyses were performed. 

III. RESULTS

An example of beat identification on the Krot signal, 
together with the corresponding ECG, is presented in Figure 2. 
Noticeably, the peaks on the BCG signal do not manifest at the 
same timing of the ECG beats, with the BCG peak following 
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the respective ECG peak. This lag is attributable to the 
physiological transit time between the electrical stimulus of 
cardiac contraction (visible on the ECG signal) and the arrival 
of the pulse wave to the head (recorded by the BCG signal) 
[17]. 

Fig. 2.  Example of the results of automatic beat detection on the rotational 
kinetic energy signal (lower panel) derived from the gyroscope BCG. The 
identified beats are marked with a red dot. The synchronized reference ECG 
signal is presented in the upper panel.  

The results of the heart rates computed from the ECG as 
well as from the Klin and Krot signals are summarized in Figure 
3. Specifically, in sitting position, the mean HR values
computed from Klin and Krot appeared not different from the 
gold standard, as well Krot In the supine position. Conversely, 
in standing both Klin- and Krot-derived mean HR were 
significantly different from the gold standard HR. 

Fig. 3.  Results of the mean HR obtained by Klin and Krot compared to the 
gold standard ECG. *: Wilcoxon Signed Rank test vs HRECG, p<0.05. 

Correlation analysis resulted in low determination 
coefficients for Klin in all positions (Standing: r2=0.01; Sitting: 
r2=0.11; Supine: r2=0.24), while a good correlation was 
obtained from the Krot in both sitting (r2=0.82) and supine 
(r2=0.90), but not in standing (r2 = 0.10). Correlation and Bland 
Altman analyses relevant to the Krot in supine and sitting 
postures are presented in Figure 4. Bland Altman analysis for 

Krot showed no bias (Sitting: -0.85 bpm; Supine: +1.4 bpm) and 
acceptable limits of agreement (Sitting: [-9.6;+7.9] bpm; 
Supine: [-9.5;+12] bpm). 

Fig. 4.  Resuls of the correlation and Bland Altman analyses relevant to 
mean HR obtained by the Krot compared to the one extracted by the ECG in 
supine and sitting postures. 

IV. DISCUSSION

Our results showed for the first time the possibility to 
extract reliable beat-by-beat information from the VR headset 
by exploiting subtle head movements synchronous with the 
heart beat. 

Differently from our previous study [6], where the mean 
HR was obtained by applying frequency domain methods to 
the tri-axial accelerometer and gyroscopes signals acquired 
using an Oculus Go (Oculus, Microsoft, USA) headset, the 
present study explored the possibility to detect single heart 
beats by thresholding the linear and rotational kinetic energy 
signals computed from the accelerometer and gyroscope 
signals, respectively.  

In our experimental protocol, the keeping of a still head 
position during the acquisitions was crucial for a good HR 
estimation, as major body or head movements would have 
introduced high amplitude noise into the BCG signal [18], thus 
reducing the signal-to-noise ratio, and generating potential 
artifacts in the HR computation. This observation could explain 
the critical results that were obtained for the standing posture, 
in both this and the previous [6] study. Indeed, while standing, 
the balancing movements relevant to keeping the body 
equilibrium introduce a noise component to the BCG signal, 
thus resulting in poor automated HR estimations. 

Our results confirm previous observations [6] that the 
gyroscope signal is able to provide better HR estimation 
compared to the accelerometer signal. In sitting position, the 
obtained accuracy is comparable to that previously obtained in 
30 subjects [6], while in supine it largely outperforms previous 
results, in which the highest r2 (0.44) was obtained with the 
adjusted FFT method [6].  
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Also, the use of a different VR headset, with a more stable 
sampling frequency of the accelerometer and gyroscope signal, 
potentially contributed in improving signal quality, as the 
interpolation and digital filtering operations for non-uniform 
sampling rate could amplify the noise and introduce 
undesirable artifacts [19]. Adopting a different ECG gold 
standard (instead than 30-sec separate acquisitions obtained 
without electrodes by simple contact of the device with the 
chest or the thumbs) also improved the signal quality and the 
synchronization with the BCG signal. 

Additional improvements in HR estimation can also be 
attributed to the computation of the kinetic energy, which 
allowed single-beat identification by thresholding. Future 
studies should consider further improvement in BCG beats 
identification by applying advanced techniques, considering for 
example also the cross correlation of the signal with a template 
[20], as well as machine learning methods [21]. Moreover, 
rejection artifacts algorithms should be implemented to allow 
accurate beat-to-beat HR measurements from which to extract 
additional physiological markers of cardiac activity, such as 
ultra-short HRV indices related to the sypatho-vagal 
modulation of the heart.  

Such improvements would pave the way to the 
development of health-related VR applications, conveying bio-
feedbacks aimed at modulating and personalizing the user 
experience according to the measured physiological reaction to 
the proposed scenario. 

V. CONSLUSION 
This preliminary study demonstrated the feasibility to 

automatically detect beat-by beat the cardiac activity from the 
head BCG signal obtained through the VR headset embedded 
inertial sensors, by computing and opportunely thresholding 
the derived kinetic energy signal. Best results were obtained 
using the rotational kinetic energy while maintaining the head 
still in both supine and sitting positions. The proposed 
approach provides important insights on the possibility to 
monitor physiological parameters in an accurate and non-
invasive way, using MEMS already embedded in commonly 
used devices. 
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