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Figure 1: NailRing is an intelligent finger ring that recognizes micro gestures based on fingertip physiological characteristics
to achieve interactive input in MR. (a) The user wears the NailRing on a flat surface to perform interaction tasks by fingertip
micro-gestures; (b) In the walking state, the user responds quickly to interaction requirements by one-handed gestures; (c) The user
interacts with the MR application through the NailRing with the back of the auxiliary hand as the interaction plane.

ABSTRACT

Gesture interaction is currently a main interaction technology in the
field of mixed reality. However, long-term and large-scale gesture
in mid-air will lead to muscle fatigue and privacy problems, which
cannot meet the comfort requirements of continuous interaction and
inevitably hinder the development of mixed reality systems. To solve
this problem, we propose NailRing, an intelligent ring to recognize
fingertip micro-gestures using a micro-close-focus camera on a fin-
gertip bracket. Such fingertip physiological characteristics as the
changes in fingertip color distribution and muscle shape changes
caused by fingertip pressure have been studied. According to the
recognition principle, ten types of micro-gestures have been de-
signed and used for contact interaction and one-hand interaction
respectively. The accuracy of gesture recognition (cross-session
FMacro = 98.3%; cross-person FMacro = 86.4%) in user studies veri-
fies the performances of NailRing under different interaction con-
ditions. Finally, the capability of NailRing in a series of potential
application scenarios has also been discussed and analyzed.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented re-
ality; Human-centered computing—Human computer interaction
(HCI)—Interaction techniques—Gestural input

1 INTRODUCTION

In recent years, more and more mixed reality (MR) devices (e.g.
Hololens 2) and virtual reality (VR) devices (e.g. Quest 2) have
begun to adopt gesture recognition technology as system input [16].
Gestures have gradually replaced traditional controllers and been
used in the interaction of MR systems due to their simplicity and
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naturalness. At present, the main gesture interaction solution in the
MR field is to first use the built-in camera of the HMD to obtain the
gesture in front of the user’s line of sight, and then use the detection
algorithm to track and recognize the gesture. However, this kind of
long-term hovering gesture will cause fatigue of arm muscles, and
the large-scale gesture action will also bring unnecessary interaction
burden to the user [13], which has become a key obstacle to the
interaction of MR scenes.

In order to improve interactive experience in MR applications, it
is necessary to simplify interaction scenarios of macro gestures to be
mainly used in the interaction with virtual objects, such as “grasping”
and “moving” virtual objects. Non-essential operations such as com-
mand input and UI control should be performed in a more convenient
interactive way. Current recognition schemes use voice interaction
to replace part of the function of gestures, but which is generally
regarded as indecent and privacy affecting in many occasions [12].
At the same time, users have requirements for fast and eyes-free
interaction [22]. For example, when dialing in happens during a
meeting or in public, users may want to hang up or mute the call
immediately instead of reaching out and clicking the corresponding
function button in mid-air [23]. Therefore, there is an urgent need
for a private, fast and eyes-free interaction method to replace some
of the macro-gesture functions to improve the interactive experience
of MR systems under various scenarios.

Existing researches have explored the use of micro-gestures as
a new interaction method for MR applications. Compared with the
interaction scheme of macro-gestures, micro-gestures enable users
to interact with MR systems in a more private and convenient way.
Tung [26] found that users wearing MR head-mounted displays
prefer to use finger-based and less obvious interactive gestures in
public. Though micro-gestures have many advantages in the field
of interaction, such as naturalness and convenience. However, due
to the complexity of micro-gesture features and the serious occlu-
sion problems in the interaction process, it is not feasible to use the
built-in camera of HMD to obtain and identify data. The state-of-
art work focuses on exploring suitable wearable devices to realize
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micro-gesture interaction, but majority of the current solutions has
such problems as uncomfortable interaction posture [10], the de-
tection method’s prone to environmental interference [8, 32] and
device’s possibly causing interference to the user [25], etc. During
the research, we found that most of the research works focused
on sensing devices and recognition algorithms for the detection of
micro-gestures, thus ignoring the characteristics of fingers due to the
unique physiological structure during the interaction process, which
is a direction worth exploring.

In order to solve the above interaction problems in MR appli-
cations, we propose NailRing, an eyes-free intelligent ring that
recognizes fingertip micro-gestures. NailRing obtains fingertip im-
ages through a miniature close-focus camera on the fingertip bracket.
Fingertip micro-gestures are identified according to the color distri-
bution change of the nail bed caused by blood perfusion mechanism
(formed by the interaction of the phalanx, nail cap and muscle when
the finger pulp is compressed). The muscle shape and color changes
of fingertip are also used as a recognition feature for joint detection.

Figure 1a shows the application scenario of NailRing. When the
user has interaction requirements in MR environment, the finger
wearing the ring can be used to slide on the desktop to complete
micro-gesture command input. The interaction scope of NailRing
covers most surfaces in our daily life. In addition to the commonly
used flat surfaces such as desktops and walls, users can interact with
narrower surfaces such as seat armrests and clothing surfaces on
the legs in a sitting state with NailRing. The user can also use the
back of the auxiliary hand as the plane of interaction. As shown in
Figure 1b, NailRing can recognize the micro-gestures of one hand
for urgent operation requirements when there is no interactive plane,
and perform fast and conceal interactive operations in special states
as walking. Figure 1c shows the application example of NailRing in
the MR system. The micro-gesture recognition algorithm processes
the gesture data, and the recognition results are used as input control
function buttons to interact with the UI panel.

In user experiment, we evaluated the recognition performance of
NailRing with 10 participants. Experimental results show that Nail-
Ring can reliably recognize micro-gestures (cross-session FMacro =
98.3%, cross-person FMacro = 86.4%), and the recognition deviation
among different subjects is within an acceptable range (SD=0.05).
In our experiments, NailRing exhibits recognition robustness under
different colors, material interaction planes, and different lighting
conditions. Under various situations, users can complete an input
task in an average of 1.14 seconds. We also evaluate the perfor-
mance of NailRing in different poses (Accuracy: Sitting=0.875,
Standing=0.816) using the back of the hand as the interaction plane.

The main contributions of this work are summarized as follows:

• For the first time, we proposed an intelligent ring based on the
characteristics of fingertip blood perfusion and muscle shape
change as a human-computer interaction device in MR. Our
solution is eyes-free and natural, which can realize relatively
hidden input.

• We implemented a prototype of NailRing with 10 targeted
micro-gestures with clear meanings and achieved high recog-
nition accuracy.

• A 10-participant user study was conducted to evaluate system
performance under multiple scenarios, possible applications
and potential of the technology in MR systems were also dis-
cussed.

2 RELATED WORK:
2.1 Wearable devices that recognize finger interactions
Wearable devices have become the main technical solutions in the
field of micro-gesture recognition. In recent years, researchers have
proposed a variety of wearable devices for finger interaction based

on different sensing principles. Among them, inertial measurement
units (IMUs) has become one of the most commonly used sensing
methods due to its small size and low power consumption. Inertial
sensing technology is widely used in finger tracking and pointing
tasks [7, 33], as well as touch detection tasks [6]. It can also be
combined with other sensing methods [11] for micro-gesture inter-
action tasks. In addition, various other sensing methods are also
used to recognize micro-gestures. For example, Chan [2] used the
magnetic sensor installed on the fingernail to recognize the interac-
tive micro-gestures of the fingertip and realized the hidden input.
Based on this research, Chen [3] proposed a multi-point tracking
system using magnetic field sensing to identify the subtle move-
ments of the fingertips to realize interactive tasks such as air writing;
Zhang [34] used the thermal imaging sensor worn on the auxiliary
hand to recognize the sliding, clicking and other movements of the
interactive hand. In recent years, researchers have also carried out a
lot of explorations in the micro-gesture recognition work based on
wearable devices. Among these solutions, ring-based recognition
approaches are widely adopted, and a summary of ring-based ges-
tures and recognition devices is presented by Vatavu [27] et al. Still
and all, the current solutions are still flawed in some aspects.

2.2 Interactions based on fingertip physiology

The research on the principle of using blood infusion was first pro-
posed by Mascaro in 2001 [14], in which miniature light-emitting
diodes and photodetectors were used to measure the change in the re-
flected intensity of the nail surface when pressed, and then estimated
the degree of finger pressure based on the change in intensity called
”reflected light volume scanning”. In subsequent work, Grieve [4] et
al. verified in a stationary platform with a good light source that the
blood infusion mechanism was also available for other fingers, and
Sato [20] et al. explored the possible application of this recognition
mechanism to patients with absolute rest. In 2019, Saito et al. [18]
proposed a wearable device that estimated the contact force of the
fingertip according to the deformation of the fingertip skin when the
force was applied. The device uses multiple photo-reflective sensors
(PRSs) to measure the distance to the side of fingertip. However,
it is unstable to judge the pressing situation only based on the dis-
tance, and calibration is required each time of wearing. The work
in this paper is mainly inspired by the above work. We fabricate an
intelligent ring to obtain real-time images of fingertips, and judge
the user’s input instructions more accurately according to the prin-
ciple of blood infusion of fingertips and changes in the shape of
fingertips muscles. The unique perspective allows us to recognize
the interactive gestures of thumb and fingers. We also explored the
usability of the proposed wearable device in the MR field through
multiple aspects. In recent years, other uses of human physiological
structure as identification features are also worthy of attention. K
Sakuma et al. [19] proposed a wearable strain sensor, which used the
feature of fingernail deformation under the conduction of complex
human structure when the finger pulp was under force to detect input
gestures, so as to perform human-computer interaction.

2.3 Micro gesture interaction in MR domain

Gesture recognition is currently the main interaction scheme in the
MR field, and micro-gesture interaction has received quite a few
attentions as one of the main directions. For example, Weng et
al [28] used the infrared camera installed on the HMD to recognize
hand-to-face gesture, which can be used as a gesture interaction
input in the MR system, but the proposed scheme is not in line with
the user’s interaction habits. Meier et al. proposed TapID [16], a
wrist-based inertial sensing system that recognizes fingertip clicks
and complements headset-tracked hand poses. It is worth mentioning
that we believe many micro-gesture recognition schemes based on
wearable devices proposed in recent years also have potential as MR
interaction inputs [11, 22], but these schemes need to be verified in
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Figure 2: Hardware for the NailRing prototype

Figure 3: The color distribution of the nail bed and the shape of the
muscle color change due to the blood perfusion mechanism formed
by the interaction of the finger bone, nail cap and muscle when the
finger belly is compressed. (a) Schematic of fingertip structure; (b)
Change in fingertip color distribution due to contact force; detail dia-
gram of fingertip color distribution due to different pressing forces: (c)
Finger lightly touching the table; (d) Fingertip pressing downward; (e)
Fingertip sliding to the left; (f) Fingertip sliding to the right;

real situations for usability in MR environments.

3 DESIGN AND IMPLEMENTATION OF NAILRING:
3.1 Hardware design
Figure 2 shows a prototype of NailRing, which uses a 3D-printed
bracket as its main support and then is secured to the front of
the user’s index finger by a flexible elastic band. NailRing uses
OV5640(1/4 ”) as an image sensor to obtain image data (640*480)
at an operating frequency of 30Hz. Due to size constraints, we used
a close focal length optical lens with structure 2G2P (F/No=2.4,
EFL=3.7mm, FOV=100°). The lens and sensor module mounted on
a bracket have been modified several times, making it possible to
obtain a clear image of the fingertip when pressed. In order to make
the NailRing adapt to various lighting environments, we designed a
lighting module symmetrically distributed with 4 patch LEDs. The
raw data is digitally signal processed on the PCB and then trans-
ferred via Universal Serial Bus to a python program running on a
PC for online recognition, and then transferred over the network for
input on the MR device. In the process of testing the equipment, we
found that the NailRing consumed about 930mW of power.

3.2 Recognition principle
Figure 3 depicts the color distribution of the nail bed and the changes
in muscle color and shape caused by the blood perfusion mecha-
nism when the finger pulp is compressed. As shown in Figure 3(a),
the nail bed and fingernail are tightly combined with the fingertip
muscles and distal phalanx in a complex manner [15]. As shown

in Figure 3(b), when the finger pulp contacts the plane, the contact
plane interacts with the complex physiological structure composed
of the fingernails and bones, resulting in the compression of the
capillaries in the nail bed and the muscle, and the blood volume
flowing through the fingertip is affected. The effect is manifested as
obvious changes in the color of the nail bed and fingertip muscles,
and at the same time, the muscles of the fingertips will show obvi-
ous shape changes under the action of nails, bones and interaction
planes. As shown in Figure 3(c), when the pressure reaches about
0.3N, the venous vascular return constricts, and the arterial blood
accumulates in the capillaries of the fingertips. Because the arterial
blood is rich in hemoglobin, the color of the nail bed becomes red.
When the contact force reaches about 1N, as shown in Figure 3d, the
vein is completely blocked. With the increase of contact pressure,
the blood in capillaries is gradually squeezed out of the fingertip
area, resulting in the white area at the free end of fingertip, and
the muscle shape begins to change. The variation increases with
increasing pressure until it reaches a limit when the contact pressure
reaches approximately 4N [14]. Figures 3(e) and (f) show the color
pattern of the fingertip when swiping left and right, respectively. The
nail bed and muscles also exhibit complex, regular color patterns
under different contact pressure patterns. The degree of variation
in these patterns may vary from person to person, but the fingertip
characteristics determined by its physiology apply to most healthy
nails.

3.3 Microgestures Category

To improve the usability of NailRing, we targeted 10 finger-based
micro gestures as shown in Figure 4. Detecting touch events is a
long-standing challenge in MR interaction [29,31], but NailRing can
solve this problem well based on the blood perfusion mechanism.
We define the finger contact state as two micro gestures, with good
touch detection to optimize the interaction experience, and non-touch
state for gesture segmentation and elimination of interference. The
different directions of force on the finger pulp will lead to changes
in the color distribution of the fingertips. We define the natural
sliding of the index finger on the plane in four directions as different
micro-gestures, and the clicking of the index finger on the plane as
a micro-gesture with the meaning of “Enter”. Through the above
five gestures, the user can use NailRing to naturally complete the
operation of movement and selection in various tasks. NailRing can
obtain the relative position of the index finger and thumb. According
to this principle, we define three one-handed micro-gestures for
fast interaction without interaction plane. And such gestures can
complement the interaction mode of planar interaction (such as
switching between upper and lower menus in the UI). These micro-
gestures mean exactly what the user is used to and are smaller in
magnitude than traditional gestures, allowing for faster and more
comfortable interactions.

4 MICRO GESTURE RECOGNITION

4.1 Recognition Algorithm

NailRing transmits the fingertip images to a processing program,
which is normalized and fed to a neural network classifier. The clas-
sifier estimates the probability of occurrence of each micro-gesture.
Using supervised learning, we train the network by adjusting the
network weights through backpropagation to minimize the cross-
entropy loss on the training dataset. The dataset that we construct in
our subsequent work includes data for each micro-gesture as well as
the labels.

Our classifier is mainly implemented as a deep residual network
with DenseNet [9] as the backbone framework. To improve the
recognition of fingertip physiological features, the extracted feature
maps are subjected to adaptive feature refinement. We improve the
network structure by integrating the CBAM [30] module into the
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Non-contactN ct Contact Right Left

Backward Click

Forward

Thumb Top Thumb Side Thumb Under

Figure 4: Ten micro gestures are designed based on fingertip interaction features. A schematic diagram of the micro gestures is shown on the left
of the figure, and a detailed view of the fingertips during interaction is shown on the right, with the names of the gestures labeled at the bottom.
The different colors of the labeled text in the figure represent different categories of gestures: (green) fingertip contact state (blue) flat interaction
gestures (black) one-handed interaction gestures. The text checked with ’ ’ in the labeled text is the code for the micro gesture.

layer of the last dense block, which is spatially and channel-wise
optimized for high-dimensional features.

Figure 5 illustrates our micro-gesture recognition network struc-
ture, which is designed to use small convolutional kernels with a
deeper network structure considering the complexity of the physio-
logical features of the fingertips. Compared to shallow networks with
large convolutional kernels, deeper networks have stronger fitting
ability due to the additional nonlinearity between layers [21], while
the successive convolution of multiple small-sized kernels works
similarly to large convolutional kernels and also can reduce the com-
putational effort [24]. We use DenseNet as the backbone of the
network, which achieves a deeper network structure through residual
connectivity, while mitigating the gradient disappearance problem
and reducing the number of parameters through feature reuse. In
the dense block, each layer takes the output of all previous convo-
lutional layers as input to achieve residual connectivity and feature
reuse. In the transition layer, dimension aggregation is performed by
convolution and pooling. To perform adaptive optimization of the
high-dimensional features of the fingertip information in channel
and space, we aggregate CBAM into the last dense block. Figure 5
shows the network structure of the optimized Attention dense block.
As a result of the unique residual connection, the Nth layer connects
the outputs of all previous layers in dimension [X0,X1, · · · ,XN−1] as
input, and the network layers are computed as follows:

XN = HN [X0,X1, · · · ,XN−1] (1)

X
′
N = Mc (XN) ⊗XN (2)

X
′′
N = Ms

(
X ′N

) ⊗X ′N (3)

where HN is defined in the same way as DenseNet-BC, the difference
with the previous network is that we pass the output of each layer
first through the channel attention module Mc for feature weight
proportion optimization, and then through the spatial attention mod-
ule Ms for feature map location focus, the attention weights are
calculated as follows:

Mc (XN) = σ (MLP(AvgPool (XN))+MLP(MaxPool (XN))) (4)

Ms

(
X
′
N

)
= σ

(
f 7×7

[
AvgPool

(
X
′
N

)
,MaxPool

(
X
′
N

)])
(5)

The attention module performs AvgPool and MaxPool operations
on the input features to aggregate the spatial information of the fea-
ture map. The pooled features are input to the multilayer perceptron
and then output and summed to obtain the channel attention weight
coefficients. The spatial attention module performs AvgPool and
MaxPool operations along the feature map dimension to generate
two 2D maps, and then passes through a convolution layer to obtain
the spatial attention weight coefficients. In the aggregation of high-
dimensional features of fingertip information, the channel attention
module adaptively selects the weights of different features, while
the spatial attention module enhances the important information in
the feature map. Through feature extraction in the deep network
and feature optimization in the attention module, the network can
accurately classify the fingertip information through the output layer.

The complete network includes less than 1.1 million trainable
parameters. We implemented the model in Pytorch and trained 300
iterations using the Adam optimizer with a learning rate of 10−3,
ε = 10−8 and β =(0.9,0.999), and reduced the learning rate to 10−4

starting from the 200th epoch, we optimized these hyperparameters
over a micro-gesture dataset spanning multiple users and sessions.

4.2 Dataset Acquisition

4.2.1 Participants

In order to collect the dataset for training the micro-gesture classifi-
cation network, we recruited 10 volunteers whose ages ranged from
22 to 26 years (MEAN=23.9, SD=1.23). Four of them were female
and six were male, and half of them had experience with wearable
interactive devices. All were right-handed, and thus, the NailRing
can be worn on the participants’ right index finger. Each participant
was informed of the methodology, and the experiments were pro-
cessed according to the requirements from the ethics committee in
our university.

4.2.2 Acquisition Procedure

We performed data acquisition using a NailRing worn on the index
finger. Prior to the acquisition of each micro-gesture, the participant
was asked to familiarize with the corresponding gesture, which was
then completed on the back of the participant’s left hand as well as
on nine other contact planes of different colors, materials, and fric-
tion coefficients. Under each plane of interaction, the participant was
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Figure 5: Fingertip micro-gesture recognition network structure. NailRing feeds the acquired fingertip information into the network to recognize
gesture categories. The deep neural network is based on the DenseNet backbone, and the CBAM module is integrated into the network to form
the Attention Dense Block for spatial and channel optimization of high-dimensional features.

asked to complete the micro-gesture six times at different locations.
When participants were fatigued, the experiment could be paused at
any time until the participants were ready to continue with the col-
lection. We eliminated ineligible data from the acquisition process
and performed a re-acquisition. The total experimental time for each
participant was approximately 40 minutes. After completing the ac-
quisition, we obtained a total of 10 micro-gestures * 10 participants
* 10 interaction planes * 6 attempts = 6000 micro-gesture datasets
with 600 attempts of each gesture.

4.3 Identification Effect Evaluation
In order to evaluate the effectiveness of micro-gesture recognition,
we conducted an evaluation experiment using the acquired data. The
evaluation experiment is divided into two parts, the first part is called
Cross-session test, which focuses on the overall recognition effec-
tiveness of the system, and the second part is called Cross-person
test, which tests the recognition effectiveness of micro-gesture recog-
nition for unused users and the usability of the device for new users.

Figure 6: Left: Normalized confusion matrix for 3-fold cross-validation
for cross-session identification. Right: 10-fold cross-validation for
cross-person identification.

Cross-session Testing In this experimental part, we evaluated the
data from all participants as a whole, and we took a 3-fold cross-
validation approach, using two blocks for training and one block for
validation. Across all participants, the average accuracy for all poses
was 98.25% and the Fmacro score was 98.33%.The confusion matrix
on the left of Figure 6 shows the average recognition accuracy of
all participants for each gesture. It can be seen from Figure 6 that
almost all micro gestures are correctly recognized, which proves
that our recognition method is effective and accurate. However, in
a real-world scenario, when a new user uses our device without
calibration, it is impossible for the recognition algorithm to learn the
user’s features in advance, so we conducted experiments to test the

system’s recognition effect on new users to investigate the usability
of the micro-gesture recognition system in a real-world scenario.

Cross-person Testing In this experimental part, we performed 10-
fold cross-validation, testing on each participant’s events and training
on all other participants, and the experimental results showed that
the average recognition accuracy of all micro gestures was 86.45%
and the Fmacro score was 86.38%. The confusion matrix on the right
side of Figure 6 shows the average recognition accuracy of each
gesture in the Cross-person case in which one-handed interactive
gestures have the highest recognition accuracy (Code I, S, U, av-
erage accuracy = 97.6%), because this type of gesture recognition
relies on the relative position of the fingers and therefore varies less
between users. The gestures with the lowest recognition accuracy
were forward and backward swipes (Code B, F, accuracy = 73%),
and we hypothesize that this result is caused by the differences in
fingertip physiology between users, including external shape, fat
content, and nail length. Among the planar interaction gestures, the
click operation has the highest accuracy rate (Code C, Accuracy
= 99%) because it results in a distinct change in fingertip features
(touching the table with the nail causes most of the nail bed to turn
white and a certain degree of perspective change occurs during the
operation) and is easy to recognize. The highest accuracy of dif-
ferent participants in the Cross-person case is 93.37%, the lowest
is 77.8%, the median is 86.5%, and the standard deviation is 0.05.
According to the experimental results, the accuracy of micro-gesture
recognition in the Cross-person case is high, which proves that it
has good usability in the addition of new users and can meet the
requirements of interaction.

In this section, we demonstrate the effectiveness of the NailRing
prototype for micro-gesture recognition. In a real-world scenario,
the model parameters can be optimized by user calibration, i.e., us-
ing a small amount of user data to further improve the recognition
accuracy. We also indirectly demonstrate the validity of the recogni-
tion principle that “the degree of variation in fingertip information
because pressure may vary from person to person, but the similar
physiological structure makes it applicable to most healthy nails”.

5 USER STUDY

The purpose of this user experiment is to evaluate the effectiveness
of NailRing recognition in different usage scenarios. In our previous
work, we evaluated the effectiveness of micro-gesture recognition,
but in practice, users may face different interaction environments,
such as different colors of interaction planes and friction, as well
as changes in the brightness of the interaction environment lighting.
Therefore, we selected four main influencing factors and conducted
targeted user experiments to evaluate the usability of NailRing in
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Figure 7: Experimental environment

different environments. The experiments test the recognition of flat
interaction micro gestures as well as one-handed interaction micro
gestures. We invited participants who performed data acquisition
to participate in this part of the experiment and used the previously
collected data to train a micro-gesture recognition network to obtain
a fingertip micro-gesture classifier. Throughout the experiment, each
participant used the same classifier for the experiment.

5.1 Task
Figure 7 shows our experimental scenario, where participants sit
comfortably in an office chair in front of a table, place right arm on
the table and wear NailRing on right index finger. In each task, the
participant is asked to complete the corresponding micro-gesture
according to the instructions of the monitor. The experiment is
divided into 4 parts as a result of the following influencing factors:

• Color of interaction planes: We measured the average spectral
tri-stimulus values (CIE 1931 X: 15.48, Y: 16.06, Z: 8.76)
of the fingertip areas of five users using a spectral luminance
meter (model: OHSP-350L) and converted them to CIE 1976
L*a*b* color space. The interaction planes were then mea-
sured using the same method and seven interaction planes
(ΔEmin = 6.10,ΔEmax = 55.35) were selected based on the
magnitude of the color difference with the fingertip, where the
color difference was calculated as follows:

ΔE∗ =
√

ΔL∗2+Δa∗2+Δb∗2 (6)

where ΔL∗ represents the difference in lightness between the
two colors, and Δa∗ and Δb∗ represent the difference in chro-
maticity. The selected seven interaction planes are consistent
in all parameter indices except color.

• The luminance of the interaction plane: We obtained different
lighting environments with adjustable light sources and mea-
sured the reflected luminance of the table using an apparatus.
Four luminance ([L1 = 1.7,L2 = 45.5,L3 = 81.6,L4 = 120.3]
cd/m2) were selected for the experiment.

• Materials of the interaction plane: Six different materials of
the interaction plane were selected for the experiment, namely
Desktop, Reflective material, Stretchy, Smooth fabric, Coarse
fabric and Plush fabric.

• Interaction posture: Experiments were performed in sitting
and standing positions, and the back of the left hand was used
as the plane of interaction in this part of the experiment.

5.2 Procedure
At the beginning of the user study, an experimenter introduced our
project and outlined the study’s procedure. The experimenter then

helped the user wear the ring, ensuring that it was securely and
comfortably placed on the correct position on the index finger to
avoid unnecessary rotation. Next, the experimenter demonstrated
each of the micro-gestures and asked participants to be familiar with
them. During the first three parts of the experiment, participants
were seated. Each participant was requested to complete a total of
304 random micro-gestures under different experimental conditions.
After completing each micro-gesture, the results were displayed
on the screen in real time. If the results matched the requested
gesture, a correct mark appeared. Otherwise, an incorrect sign was
displayed with the incorrect predicted gesture. When recognition
was completed, participants were asked to return to the “no-touch”
state within two seconds and prepared to recognize the next micro-
gesture. Between each test phase, participants had a short break.
After the completion of four parts of the experiment, all participants
were asked to fill out a questionnaire to collect information about
gender, preferred hand use and use of the wearable interaction device.
Participants also provided subjective feedback on system usability,
comfort and specific comments on the micro-gesture design.

5.3 Result

Throughout the experiment, we recorded the recognition accuracy
of NailRing under different experimental conditions as well as the
total time for the user to execute the micro-gesture and the micro-
gesture recognition pipeline to complete the recognition. During the
experiment, participants can complete an input task in 1.14 seconds
on average, and the inference time is about 48.3ms.

Color of interaction planes: As shown in Figure 8(a), the av-
erage accuracy of micro-gesture recognition was 86.9% (SD=0.04)
in the experiments of seven interaction planes with various values
of color difference of skin, and the recognition module showed
better performance in such case. We found that as the color differ-
ence between the interaction plane and the fingertip increased, the
recognition accuracy increased to a certain extent and the gesture
recognition time also showed a decreasing trend. We believe that the
large color difference makes it easier for NailRing to extract finger-
tip feature information and achieve faster recognition of relatively
obscure features earlier in the micro-gesture execution process. We
found that anomalous recognition occurred when Δ = 30.96, the rea-
son is that the green channel in the RGB image has a higher weight
for fingertip information extraction [5], and the green interaction
plane corresponding to Δ = 30.96 interferes with feature extraction
to a certain extent. The data in the green interaction plane can be col-
lected as training data to improve the model’s and we will optimize
this in our subsequent work.

The luminance of the interaction plane: Figure 8(b) shows
the experimental results under different luminance conditions, with
an average accuracy of 89.5% (SD=0.04) for micro-gesture recog-
nition, and NailRing demonstrates its usability under different lu-
minance conditions. We found the highest recognition accuracy at
L = 41.7cd/m2, a lighting condition that is closest to the reflected
light brightness of a desktop in everyday situations. NailRing also
recognizes micro gestures well both in bright and dark cases. How-
ever, when the ambient brightness is too high, the lighting module
of the implemented prototype cannot automatically adjust the bright-
ness, making the contrast of the information collected by NailRing
lower and the recognition effect worse. This problem can be solved
by hardware optimization.

Materials of the interaction plane: Figure 8(c) shows the results
of the experiments with different contact materials. The average
accuracy of micro-gesture recognition is 89.4% (SD=0.01), and
NailRing can accurately recognize micro-gestures on various ma-
terials. In this set of experiments, participants showed relatively
larger differences in recognition results, which may be attributed to
the different execution of micro-gestures of some participants on
different material of interaction planes. For example, higher friction
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Figure 8: Results of user experiments with four different experimental conditions: (a) Color of interaction planes; (b) The luminance of the
interaction plane; (c) Materials of the interaction plane; (d) Interaction posture. The results in each section contain the accuracy and the experiment
time. The error line in the figure shows the upper and lower edges of the data, the horizontal line in the box is the median, and the mean of the
experimental data is marked by the symbol “X”.

sometimes caused some participants to be hindered in the execution
of sliding gestures, etc. We also do not recommend using NailRing
on Plush fabric because the excessively long lint will obscure the
fingertips and affect the recognition effect.

Interaction posture: Figure 8(d) shows the results of the differ-
ent experiments in standing and sitting postures, with an average
accuracy of 84.5% (SD=0.03) for micro-gesture recognition, which
is lower because the skin color of the back of the hand being close
to the fingertips and unevenness of the back of the hand. The recog-
nition accuracy decreased and became more unstable in the standing
situation, which may be caused by the instability of the left arm in
the standing situation. The longer total recognition time in standing
can be attributed to the longer gesture execution time. This experi-
mental result demonstrates that users can use NailRing to perform
interaction tasks on the back of the left hand in the absence of an
interaction plane.

Subjective feedback: All participants were willing to interact
with NailRing in both MR (MEAN=4.4, MEDIAN=4.5, SD=0.66)
and VR (MEAN=4.2, MEDIAN=4.5, SD=0.87) environments, and
participants felt that the meaning of the system’s micro-gesture cate-
gories was clear (MEAN=4.8, MEDIAN=5, SD=0.4). NailRing had
good usability according to the System Usability Scale (MEAN=89).
Participants completed a seven-point Likert scale on four indicators
of micro-gesture, and the results are shown in Figure 9. Participants
preferred the “Click” gesture the most, probably because of the
large number of repetitive swipes, and the “comfortable” option of
“Forward” and “backward” gestures was the least rated. The average
score for all gestures was 6.46 (Learnability=6.48, Effective=6.51,
Intuitive=6.64, Comfortable=6.19).

6 APPLICATION

NailRing can be used in many MR scenarios to provide micro-
gesture inputs. In this section, the interaction advantages and ap-
plication potential of NailRing are first described, and then several
applications are implemented as demonstrations to prove the useful-
ness and scalability of NailRing.

6.1 Application Forms
NailRing’s micro gesture recognition can be used as a complemen-
tary input to MR interaction systems because of its simplicity, speed
and eyes-free, releasing unnecessary functions such as command
input from traditional macro gestures and improving the usability
and comfort of MR interaction systems.

Figure 9: Results of participants’ evaluation of the four aspects of
each gesture on a 7-point Likert scale (7 being the best and 1 being
the worst) and the error line is the standard error.

The proposed NailRing can be used as an interaction area on any
surface that the finger with the device touches, such as a desktop,
wall or MR device surface. In the walking state, NailRing can be
used for interactive input on the back of the assisted hand or on the
worn watch, and for sudden interaction needs, such as phone dialing,
NailRing can respond quickly with one-handed gestures. What’s
more, NailRing is easy to learn and intuitive, its gesture meaning
basically matches the user’s interaction cognition. And the gesture
content covers the micro-gesture interaction required to move (Code:
“R”, “L”, “F”, “B”), switch (Code: “T”, “U”), confirm (Code: “C”)
and other different functions which can be implemented for a variety
of applications such as listening to music, communication and so on.
The gestures are also redefined to enable more complex functions,
such as activating the voice function and prompting the user when a
continuous “T” gesture is detected, and performing voice input and
recognition during the gesture duration. Users can use NailRing to
achieve natural and comfortable micro gesture interaction.

6.2 Application Scenarios
Based on the set of gestures designed in this paper, we designed
and developed several MR applications to demonstrate the potential
use of NailRing. The applications include home, video player and
contacts, which we chose because they are representative of tasks
on MR devices. We used a client-server architecture to implement
our application, where the detection algorithm runs on a local server,
recognizes real-time information as it becomes available, and sends
the results to the application running on the MR HMD via Wi-Fi.

Home: It contains a user interface that is the entry point to other
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Figure 10: MR applications based on NailRing and micro gestures:
(a) home application; (b) contact application; (c) dial-in call application
(d) video playback application

applications. We invoke the Home interface with the symbol “S”
gesture, and then the user can use the move gesture to select the
application icon and enter the application with the confirmation
gesture. Our implementation of the Home application contains six
icons, of which we will present two applications.

Contacts: The user uses the up and down movement function to
browse and select a contact after entering the program, and uses the
confirmation gesture to dial out the call. For dial-in calls, we have
implemented three one-handed gestures as connect, hang up, and
mute functions for quick processing. The volume can be adjusted by
swiping the gesture up and down after entering the call screen.

Video Player: We run the user-controlled video player through
NailRing to complete operations such as pausing and switching.
Specifically, the user starts and pauses video playback by tapping (
“C” ) gestures, switches between videos with “T” and “U” gestures,
swipes left and right “R” and “L” are used to fast forward and fast
rewind the video, and swiping “F” and “B” up and down is used to
adjust the video volume. Unlike the current finger tapping or eye
movement method, NailRing supports a simpler eyeless operation.

7 DISCUSSION

NailRing has driven research on wearable interactive devices based
on physiological information, however there are a number of issues
and directions that need further discussion.

7.1 Potential Application Platform
With the development of IoT, the number of smart home devices has
increased dramatically, but these devices use different input methods,
thus increasing the complexity of interaction [1, 17]. NailRing
can also serve as a unified human-computer interaction interface,
providing a simple, consistent interaction experience. NailRing can
be connected by scanning the device’s identification code, and then
directly controls the smart devices through micro gestures. It can
also work with MR devices to achieve a richer IoT device interaction
experience.

7.2 Limitations and Optimization
In this paper we have implemented a prototype of NailRing, our cur-
rent implementation still has some limitations. In terms of hardware,
the current prototype is limited by the hardware solution, processing
and manufacturing, the size of the form can still be optimized. We
will continue to optimize the hardware to better meet the interaction
needs. In the optimized solution NailRing can integrate WiFi module

to communicate with HMD and perform micro-gesture recognition
on MR devices. The necessary control of the lighting module could
effectively improve NailRing’s performance under certain lighting
conditions. In order to further enhance the interactive experience,
feedback from the interactive device is necessary, and vibration
motors can be added to the future implementation to prompt and
provide feedback to the user, increasing the user’s confidence in
using the device. In the next step we will explore dynamic micro
gesture sequences for multiple situations to increase the richness of
the interaction as well as to implement more functions to further
optimize the interaction experience.

7.3 Differences Among Individuals
NailRing relies on fingertip physiological features resulting from
interactions to recognize micro-gestures, and each user’s fingertip
physiology is not exactly the same, such as nail size and fingertip
muscle shape. We have demonstrated through previous experiments
that fingertip feature information varies among users, but still has
uniform and recognizable features. In order to improve the recog-
nition efficiency for a specific individual, a calibration operation
can be used to improve the generalization performance of NailRing
across users by fine-tuning the parameters of the recognition model
with a small amount of data at the first use. We also noticed in our
experiments that NailRing does not work properly for users with
excessively long nail lengths, because the excessive nail will be in
direct contact with the plane causing a change in the force state of
the fingertip.

8 CONCLUSION

In this paper, we introduce NailRing, a wearable intelligent ring
that uses fingertip feature information generated during interaction
for micro-gesture recognition. It enables eyeless, fast and natural
interaction and replaces some of the functions of macro gestures in
existing MR interaction schemes to optimize the interaction expe-
rience. We design ten targeted micro-gestures, mainly divided into
touch detection, flat interaction and one-handed interaction, and the
rich gesture meanings increase the usability of NailRing in various
situations. We propose a deep neural network-based recognition
algorithm and validate the recognition performance and usability
across users (FMacro: Cross-session=98.3%, Cross-person=86.4%).
We demonstrate the performance of NailRing in various scenarios
through a series of user experiments. We then demonstrate the
practical usability of NailRing through a custom MR application.
Finally we discuss the optimization directions and potential appli-
cation platforms for NailRing. In summary, our exploration shows
that NailRing has great potential for MR HMD implementation and
for driving interaction using fingertip physiological information.
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