3D User Interface Evaluation II

Lecture #14: Example Evaluations
Spring 2023
Joseph J. LaViola Jr.

Usability Evaluation in 3DUIs

- **Usability Evaluation in 3DUIs**
 - **User Involvement**
 - **Requires Users**
 - Formal Summative Evaluation
 - Informal Summative Evaluation
 - Post-Hoc Questionnaire
 - **Does Not Require Users**
 - Intrinsic Evaluation
 - Application-Specific Performance Metrics
 - **Type of Results**
 - **Quantitative**
 - Generic/Performance Models
 - **Qualitative**
 - Observations

Example Evaluations

- Non-isomorphic rotation (3DUI 07)
- Visual interface study (SIGGRAPH Video Game Symposium 2009)

IEEE Symposium on 3D User Interfaces 2007

An Exploration of Non-Isomorphic 3D Rotation in Surround Screen Virtual Environments

Joseph J. LaViola Jr.*
Michael Katzourin
Brown University
March 10, 2007

* Now at the University of Central Florida
Talk Outline

- Motivation and Goals
- Non-Isomorphic Rotation
- Related Work
- Experiment
- Results
- Discussion
- Conclusion

Motivation and Goals

- Rotating objects in 3D space is a fundamental task
- Want to understand how 3D rotation techniques perform
- Isomorphic and non-isomorphic approaches
- Explore these approaches in SSVE
 - extend and augment existing knowledge
 - does existing knowledge transfer?
Non-Isomorphic 3D Rotation

- Human-Machine interaction
 - input device
 - display device
 - transfer function (control to display mapping)

- Non-isomorphic – scaled linear/non-linear mapping
 - manual control constrained by human anatomy
 - more effective use of limited tracking range (i.e. vision-based tracking)
 - additional tools for fine tuning interaction techniques

- Isomorphic – one-to-one mapping
 - more natural

Non-Isomorphic Rotation Technique

- Quaternion – four-dimensional vector \((v, w)\) where \(v\) is a 3D vector and \(w\) is a real number

- Let \(q_c\) be the orientation of the input device, \(q_d\) be the displayed orientation, and \(q_o\) be the reference orientation then

\[
q_q = q_c^k, \quad q_d = (q_c q_o^{-1})^k q_o, \quad k = \text{CD gain coefficient}
\]

- Using relative mapping

\[
q_{d_i} = (q_{c_i} q_{c_{i-1}}^{-1})^k q_{d_{i-1}}
\]
Related Work

- User performance with different 3D rotation techniques (Chen 1988, Hinckley 1997)
- Rotating real and virtual objects (Ware 1999)
- Framework, design guidelines, non-isomorphic effectiveness (Poupyrev 2000)
- GlobeFish and Globe Mouse (Froehlich 2006)
- Hybrid haptic rotations (Dominjon 2006)

Experimental Study

- Further explore non-isomorphic rotation of virtual objects
- Systematic evaluation of different rotation amplifications
- Understand benefits of non-isomorphic in SSVE
 - head tracking
 - stereoscopic vision
Experimental Design

- 16 subjects (13 male, 3 female)
- Conducted in Brown “Cave”
- Based on Poupyrev 2000 → Hinckley 1997 → Chen 1988
- 4 x 2 x 2 balanced, within-subjects design (16 conditions)
- Independent variables
 - amplification (1, 2, 3, 4)
 - rotation amplitude (20-60, 70-180 degrees)
 - Error threshold (6, 18 degrees)
- Dependent variables
 - completion time
 - orientation error

Experimental Procedure

- Task – rotate house from random to target orientation
- Pre-questionnaire
- 16 practice trials
- 16 sets of 10 trials each
- Ordering was randomized
- Post-questionnaire
Results - ANOVA

Repeated measures, three way ANOVA

<table>
<thead>
<tr>
<th>Effect</th>
<th>Time</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$F_{3,13}=3.26, p=0.056$</td>
<td>$F_{3,13}=4.8, p<0.05$</td>
</tr>
<tr>
<td>T</td>
<td>$F_{1,15}=13.66, p<0.05$</td>
<td>$F_{1,15}=22.96, p<0.05$</td>
</tr>
<tr>
<td>A</td>
<td>$F_{1,15}=55.46, p<0.05$</td>
<td>$F_{1,15}=0.001, p=0.98$</td>
</tr>
<tr>
<td>S x T</td>
<td>$F_{3,13}=0.29, p=0.83$</td>
<td>$F_{3,13}=1.575, p=0.243$</td>
</tr>
<tr>
<td>S x A</td>
<td>$F_{3,13}=0.87, p=0.523$</td>
<td>$F_{3,13}=0.562, p=0.649$</td>
</tr>
<tr>
<td>T x A</td>
<td>$F_{1,15}=5.03, p<0.05$</td>
<td>$F_{1,15}=0.573, p=0.46$</td>
</tr>
<tr>
<td>S x T x A</td>
<td>$F_{3,13}=0.73, p=0.55$</td>
<td>$F_{3,13}=0.97, p=0.436$</td>
</tr>
</tbody>
</table>

S = scaling factor T = error threshold A = angle

Results - Post Hoc Analysis

Pairwise comparisons on scaling factor using Holm’s sequential Bonferroni adjustment

Significant differences between S1 and S2 and S1 and S3

Significant difference between S1 and S4
Results – Subject Preferences

Subject Scaling Factor Preferences

- Subjects performed 11.5% faster with S2 and 15.0% faster with S3 with no statistically significant loss in accuracy.
- Appears to be a correlation between subject preferences and mean completion time.
 - Scaling factor of 3 is preferable amplification coefficient.
Discussion - Error

- Interesting differences with previous studies
- Poupyrev – 6.8 degrees
- Hinckley – 6.7 degrees
- Ware (physical objects) -- 4.4 degrees
- Our study – 3.9 degrees
 - threshold of 6 – 3.41, threshold of 18 – 4.4

Discussion – Completion Time

- Poupyrev
 - 5.15 seconds for isomorphic
 - ≈4.75 seconds for non-isomorphic
- Hinckley
 - 17.8 seconds for isomorphic (no training, accuracy focus)
- Our study
 - 2.2 seconds for isomorphic
 - 1.96 seconds for non-isomorphic
Discussion – Implications

- Differences attributed to
 - different hardware configurations
 - previous studies on desktop
 - our study in SSVE
 - Poupyrev’s amplification factor (1.8)
 - Hinckley – “… accuracy of rotation less affected by interface then by difficulties in perception of error…”
 - head tracking
 - stereoscopic vision
 - Others – display size, refresh rate, video game proficiency, tracking lag

Conclusion

- Presented experiment exploring non-isomorphic rotation in SSVE
- Rotation task completed 15% faster with amplification factor of 3 than with isomorphic rotation
 - no statistically significant loss in accuracy
 - subjects preferred this amplification factor
- Faster and more accurate performance in SSVE in general
 - perception of objects closely matched with physical reality
 - many other factors could contribute
- Further work needed
Overview

- Problems with Current Dance Games
- RealDance Description
- Visual Interface problems with Dance Games
- Visual Interface Descriptions
- Experimental Design
- Results
- Conclusions
Interface Problems with Dance Games

- Among rhythm games, dance still doesn’t feel like dancing
- Full body interface games are now mainstream
- Initial Research Goal:
 - Create a video game that feels like dancing
 - Detect more specific movements
 - To teach better
 - To prevent cheating
 - Make fitness gaming more fun

RealDance Overview

- Dance Game Prototype
 - No buttons
 - No cameras
 - No wires
- Gesture Scoring
 - Impact
 - Impulse
 - Freeze

Real Dance (Charbonneau et al, 2009)
Visual Interface Trouble
- Icons scrolling along a path
- Goal to make as many different moves as possible
- But how to display it without being confusing?
 - Current rhythm games have 4-6 colored shapes
 - More specific icons get more confusing

Visual Interfaces in Video Games
- Surveyed 76 rhythm related games from about 10 years
- Current and previous rhythm game needs:
 - When to press button
 - What button to press
- 3DUI requires three things
 - When to move
 - Which body part to move
 - Where to move it to
Visual Interface: DDR and Rock Band

- Almost every rhythm, music and dance game uses a variation of this
 - Icons stream along path
 - A perpendicular line indicates when to press
 - Color, position and shape used to assist in deciding between actions
- Our first prototype as well!

Images from konami.com and rockband.com

Visual Interface: Timeline

Spring 2023
Visual Interface: Elite Beat Agents
- A.K.A. Osu! Tatakae! Ouendan
- For Nintendo DS
- Uses touchscreen and stylus
- User taps the number circle when the outer circle shrinks to it
- For some notes they trace along a path
 - Only three other games with this UI
 - Image from Nintendo.com

Visual Interface: Beat Circles
Visual Interface: We Cheer

- Wii game using two Wiimotes as pompoms
- Player follows characters and arrow paths
- Timing is done by ghost image
- Color for different hands
 - Only two similar games
 - Image from Namco Bandai

Spring 2023

Visual Interface: Motion Lines

Spring 2023
Experimental Hypothesis

- Run a user study comparing three visual interfaces
- Users play RealDance with all of them
- Study their preferences and performance
- Our hypothesis: players will prefer Motion Lines or Beat circles over the Timeline interface, because the streaming icons must present too much information

Subjects and Apparatus

- Participants
 - 24 participants: 13 male, 11 female
 - Ages 18-29
 - 19 had no formal dance experience
 - 17 play video games > once a month
 - 14 familiar with Dance Dance Revolution
- Apparatus
 - Implemented in C# using XNA on a PC running Windows Vista
 - 50 inch Samsung HDTV, 1920 x 1080 resolution
Experimental Design

- Experiment takes place in an enclosed space
- Consent form, Pre-questionnaire, Icon sheet
- Suited up into Wiimote sleeves
 - One each wrist, one each ankle
- Experimental Task
- Post Technique Questionnaire
 - 16 questions, 4 open answer
- Post Questionnaire
 - 10 questions, 8 open answer

Spring 2023

Experimental Task

- For each interface
 - Two practice sessions to Ghostbusters theme
 - Gameplay session to Thriller
 - RIP Michael Jackson 😊
- Scored based on timing if correct movement
 - Each move either 100, 75, 50, or 0
 - Compound moves scored per limb
 - Max score 6700

Spring 2023
Results: Learning Effects

- Each participant received one of six arrangements
- Even though order was randomized, choreography was identical
- Repeated measures one way ANOVA
 - $F_{2,22} = 0.306, \ p = 0.738$
 - No significant improvement from game play session order

Results: Score Analysis

- Participants performed better at spatial interfaces
- Holm’s sequential Bonferroni adjustment with three comparisons at $\alpha = 0.05$
 - ML > TL
 - $(t_{23} = -4.38, \ p < 0.0167)$
 - BC > TL
 - $(t_{23} = -3.26, \ p < 0.025)$
 - No significance between ML, BC
 - $(t_{23} = -1.20, \ p < 0.243)$
Results: Post Technique

- Easy to Follow?
 - BC > TL (Z = -2.69, p < 0.0167)
 - ML > TL (Z = -2.39, p < 0.025)

- Position of the icons confusing?
 - TL > BC (Z = -3.08, p < 0.0167)
 - ML > TL (Z = -2.38, p < 0.025)

- Score matched how you felt you did?
 - BC > ML (Z = -2.50, p < 0.0167)

Results: Post Questionnaire

- Only question 1 was found significant:
 - Which interface did you perform the best in? (Beat Circles)

- Worth noting that Timeline was least chosen interface for each question except for question 7:
 - Which did you like the least?

- Spatial nature of Motion Lines and Beat Circles may have divided choices
Discussion

- **Timeline**
 - Liked to see the approaching moves ahead of time
 - Still found it hard to know when to start moving

- **Motion Lines**
 - Much better sense of where to go, which body part to use
 - Repeated movements were harder to see

- **Beat Circles**
 - Icon position defined ending position, timing was easier
 - Overlapping circles made repeated movements confusing

Conclusion

- So far, the Timeline interface has worked well for rhythm dance games
- But as video game consoles explore 3D user interfaces, they can now create new gameplay experiences
 - Nintendo, Sony, and Microsoft all made interface announcements at E3 2009
- In our study spatially designed interfaces were easier and preferred overall
- Identified pros and cons for each design

Spring 2023
Next Class

- Future of 3D UI
- 3DUI Book – Chapter 12