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Abstract

In this paper, we present a Virtual Reality (VR) based environment where the engineer interacts with incoming
data from a fleet of aeroengines. This data takes the form of 3D computer-aided design (CAD) engine models coupled
with characteristic plots for the subsystems of each engine. Both the plots and models can be interacted with and
manipulated using speech or gestural input. The characteristic data is ported to a knowledge-based system underpinned
by a knowledge-graph storing complex domain knowledge. This permits the system to respond to queries about the
current state and health of each aeroengine asset. Responses to these questions require some degree of analysis, which
is handled by a semantic knowledge representation layer managing information on aeroengine subsystems. This paper
represents a significant step forward for aeroengine analysis in a bespoke VR environment and brings us a step closer
to a Jarvis-like system for aeroengine analytics.

1 INTRODUCTION

Our work presented in this paper has been inspired by the popular culture, specifically by well-
known science-fiction novels and movie franchises. In these movies, the protagonists, are seen
visualizing data, drawing inference and making decisions based on interactions with the some sort
of artificial intelligence (AI) assistant, such as Jarvis. The ability to query such an assistant—
particularly for quantitative insights—is appealing and can potentially reduce engineering-hours
with the promise of more efficient and analytically-grounded decisions.

In this paper we develop a bespoke 3D interface-based [2] immersive virtual reality environ-
ment, where the engineer interacts with incoming data from a fleet of aeroengines [3]. This data
is ported to a knowledge-based system underpinned by a knowledge graph that stores complex
turbomachinery-specific domain knowledge. This system is capable of responding to queries such
as, “What is the pressure ratio of the intermediate pressure compressor for Engine A?” or, “Where is
the engine with the highest average efficiency of fleet B currently?,” or, “Compute the average pres-
sure ratio after 100 hours of flying time for component C in Engine D”. Responses to these questions
not only involve access to data but also require some degree of analysis. Our knowledge-based sys-
tem is able to handle such queries. Further, a degree of flexibility is embedded that permits the user
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Figure 1: A video snapshot showing the user operating the Jarvis system [1]. The user’s VR view is shown on the
laptop screen. The VR HMD is an Oculus Rift including two Oculus sensors. Hand-tracking and gesture recognition
is facilitated by a Leap Motion sensor attached to the front of the HMD. Voice interaction uses Rift’s built-in speakers
and microphone.

to construct queries from a broader lexicon. The key idea is that we have leverage over more con-
temporary deep-learning based systems, because our subject matter is very specific and the number
of topics limited.

The knowledge-based system described here provides a semantic knowledge representation layer
for capturing information. This knowledge is used for dynamic hinting during design and visual-
ization. The representation mechanism uses a triple-set representation (subject-predicate-object)
using the RDF (Resource Description Framework) language [4]. A set of triples creates a (directed)
knowledge graph, where subject and object are nodes and predicate describes an edge. In such a
graph, automatic reasoning is used to infer new knowledge that is derived from existing knowledge,
or to verify the aptness of the knowledge base. Knowledge in the knowledge graph can be accessed
using an SQL-like language called SPARQL [5]. Voice-to-SPARQL translation is a very complex
task. However, owing to the fact that the system has a very limited scope, we can provide an in-
terface based on a set of interaction templates. This approach is more reliable than a generic voice
recognition system while still allowing a natural way of interaction from the user’s point of view.
There have been some prior attempts to utilize voice-operated interfaces, or particular parts of it,
such as speech recognition, natural language processing (NLP) or speech synthesis in the aerospace
domain, see, for instance, [6, 7, 8, 9, 10].

This paper represents one of the first forays of aeroengine analysis in a bespoke VR environment
and brings us a step closer to a voice-operated assistant for aeroengine analytics. A description of an
earlier, non-voice operated version of this system is provided in Tadeja et al. [3, 11]. The snapshot
from the video-clip1 showcasing our work, as seen in Fig. 1, is available online [1].

1https://youtu.be/TmjmRD8YJYI
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2 VIRTUAL REALITY FOR AERONAUTICS AND ASTRONAUTICS

Some of the earliest examples of how to exploit 3D interfaces within the aerospace domain can
be traced back to Hale [12] and Mizell [13]. In both cases, the authors lay the groundwork for
research concerning the utility of applying VR in design.

García-Hernandez et al. [14] identify three related areas in which the usage of VR holds the most
promise: (i) the extraction of information from coupling multiple 2D data into 3D-like structures;
(ii) visualization of perplexed, non-planar graphs (for a survey of graph visualization techniques
see Herman et al. [15]); and (iii) the 3D version of the parallel coordinates plots (PCP) [16]. Ex-
amples of VR-based immersive parallel coordinates plots (IPCP) used to visualize datasets from
aerodynamic design case studies can be found in Tadeja et al. [17] and Tadeja et al. [18]. Further,
García-Hernandez et al. [14] recognize a number of areas of VR which currently are, or have the
potential, to be successfully exploited, including spacecraft optimal path analysis [19]; exoplanet re-
search [20]; mission planning; launch/abort decision making [21], space debris, asteroid and near
earth object (NEO) orbit analysis [22]; citizen science [23] in aerospace; and spacecraft design
optimization [24] as well as aerodynamic design [25]. Other, not listed, include collaborative envi-
ronments [26, 27]; haptic systems [28, 29]; aerospace simulation [30]; planetary exploration [31];
and management of aerospace telemetry and sensor data [31, 32, 33].

In particular, the latter application area is closely related to what we are trying to achieve with
the help of our immersive system for aeroengine analytics in VR. For instance, Wright et al. [31]
propose the idea of interlinking CADmodels with sensor and telemetry data where a change in such
a data stream would lead to an appropriate change in the CAD visualization as well. Both Russell et
al. [32] and Lecakes et al. [33] present approaches for using VR environments for system diagnosis
and health management for rocket engine tests.

3 SYSTEM ARCHITECTURE

In this section we present and discuss the overall system architecture of the Jarvis system by
decomposing a function model using using FAST (Function Analysis Systems Technique) [34] and
by analyzing signals between the main function structures. We also present a brief task analysis to
distill the main tasks of the user interacting with the system.

3.1 Function Model

Fig. 2 shows a FAST-diagram decomposing the main functions of the Jarvis system. The FAST-
diagram should be read from left-to-right going top-to-bottom. We use the FAST analysis to carry
out a brief task analysis later in this section. The FAST-analysis is carried out at the functional level
to avoid design fixation and does not make any explicit reference to solutions (function carriers).

3.2 System Model

We study our Jarvis system model by analyzing signal flow. Here we pinpoint, list, analyze, and
discuss all the uni- and bi-directional signals sent and received by the key components of our system.
The signals flowing between various VR elements are shown in Fig. 3. The six key components are
the following:

3



Analyse 
aeroengines status 

Why? How?

Analyse data

Visualize 
aeroengines

Acquire status 
data

Couple data with 
models

Inspect models

Prepare models

Visualize models

Rotate model

Displace model

Resize model

Explore data

Manipulate model

Disassemble to
sub-models

Inspect model

Select model

Interact with data

Figure 2: The FAST (Function Analysis Systems Technique) [34] diagram of the Jarvis system. Diagram adapted from
Tadeja et al. [11] with permission.

(A) The user: The user interacts with the system using a range of paired methods. These are:
(1) gaze-tracing & ray-tracing; (2) hand-tracking & gesture-recognition; and finally, (3)
speech-recognition & speech-synthesis. All these pairs exhibit bi-directional signal flow as
shown in Fig. 3. To approximate gaze-tracking we use a cross-hair placed at a fixed distance
from the user’s gaze (see Fig. 4). From the center of the cross-hair we continuously extend
rays invisible to the user. Whenever the cross-hair circles over an interactive object, the
system recognizes this situation and the object is highlighted—indicating to the user that
it can be interacted with. Direct manipulation of the objects is achievable with the user’s
hands. The gestural input is facilitated with hand-tracking that communicates in real-time
with the virtual hand representations, which are in turn signaling the hand’s current position
and gesticulation to the user (see Fig. 7). This mechanism is discussed in more detail in
the description of the hand-tracking component (item B). Finally, speech-recognition and
speech-synthesis are supported via a microphone and speakers integrated in the headset and
a range of external resources. This mechanism will also be described in more detail in the
description of the speech component (item D).

(B) The hand-tracking bundle: To interact with the Jarvis system the user is required to main-
tain their hands within the Leap Motion [36] hand-tracking sensor’s field of view. This
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Figure 3: The diagram of the signals flow between the five key components of the Jarvis system. These elements are:
(a) the user; (b) the hand-tracking bundle; (c) the globe gizmo; (d) the speech bundle; and (e) the engine 3D models.
The signal can have a form of visual clues (e.g. cross-hair, hand avatars) and stimuli (e.g. object’s highlights), audio
(recorded and synthesized speech) and others. The diagram is adapted from Tadeja et al. [35] with permission.

tracking state is signaled to the user using the virtual representation of the user’s hands—
the hands avatars (see Fig. 5 and Fig. 6(a)). The hand avatars with the visualized joints
will instantaneously follow and emulate the user’s hand gestures, hence, the hand-tracking
bundle is in a constant signal loop with the user. An articulated gesture will immediately
influence the currently selected interactive object, allowing the user to release the handle
over an object, or select and manipulate another object. Object selection and deselection is
signaled to the user by manipulating the highlight state of objects.

(C) The globe gizmo: The globe gizmo consist of three components: (1) the simplified globe
model [37]; (2) a number of interactive 3D models of the airplanes [38] circling around the
globe on predefined trajectories; and (3) the movement selector for the gizmo (a red sphere
placed in a fixed position above the gizmo). All these elements can be seen in Fig. 5. Both
the movement selector and the airplane models are interactive and respond to the user’s
gaze tracking. Airplane models can be selected and highlighted in response to user actions
over (E) the compressors characteristics, (F) the engine 3D models, or in response to (D)
the user’s voice commands.

(D) The speech bundle: The user interacts with the speech-bundle by pressing a button on
the left-hand pop-up menu (see Fig. 7). Next, once the user has formulated a query and
spoken it, the acoustic signal is decoded into text and fed to the the knowledge graph. The
outcome of a query processed within the knowledge-graph is signaled to the user using a
text-to-speech service. If appropriate, this outcomemay also be signaled using an automatic
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selection of an appropriate (F) aeroengine model, as well as (C) an airplane model on the
globe gizmo, and/or (E) a marker on one of the compressors characteristics. Further, if the
speech-to-text translation fails this event is also signaled to the user with a voice message.

(E) The compressors characteristics plots: The compressor characteristics plots are con-
structed using three elements: (1) interactive movement selectors in the form of large spher-
ical markers in the top-right corner; (2) color-coded static contour lines representing con-
stant speed lines; and (3) interactive small spherical markers representing operating points
for each engine. All these elements can be seen in Fig. 4.

(F) The engine 3D models: The aeroengine 3D CAD models [39] (see Subsection 4.3.1) are
highlighted in response to the user’s gaze to signal to the user that they can be interacted
with. Once selected, they switch their color for a couple of seconds to inform the user that
they have been selected (see Fig. 6). Such signaling can also take place in the system’s
response to a (D) voice command issued by the user after (B) pressing the appropriate
button on the left-hand pop-up menu (see Fig. 7(a)) or upon selection through the (C) globe
gizmo. In response to (B) hand-tracking, bi-manual manipulation carried out by the user
over an engine model which results in in a change in either a model’s position, shape, or
rotation [3] is immediately visible.

3.3 Task Analysis

Using the FAST-diagram as a base, we distill two key user tasks:
T1—Visualize aeroengines: The system should simultaneously visualize an array of aero-

engine 3D models (see Subsection 4.3.1) together with their accompanying data.
T2—Analyze data: The system should support and aid the user in effective and efficient analysis

of the performance data associated with the given components of the aeroengines. Here we focus
on the LPC, IPC, and HPC components (see Subsection 4.3.1).
These two tasks—T1 and T2—can be split into a series of sub-tasks as the data pertaining to each
aeroengine is coupled with the 3D models of the individuals engines (see Subsection 4.3.1). For
instance, in the case of one particular aeroengine, its IPC sub-component has been damaged, which
is also reflected in the associated graph. To see such connections the user has to inspect both the
data and the models in either order. With this in mind, we list the following additional sub-tasks:

T3—Explore performance data: As each of the aeroengine 3D models is associated with
performance characteristics of the selected engine parts (see Subsection 4.3.2) the system should
support the user in an effective exploration of such data. Here we are focusing on the LPC, IPC,
and HPC parts (see Subsection 4.3.1) coupled with the compressors characteristics plots (see Sub-
section 4.3.2).

T4—Select aeroengine model: The system should allow the user to easily select the desired
aeroengine from an array of CAD aeroengines 3D models (see Subsection 4.3.1).

T5—Inspect aeroengine model: The system should support the user in efficient inspection of
a given aeroengine 3D model (see Subsection 4.3.1).

T6—Manipulate aeroengine model: The system should support a form of manipulation of the
individual CAD models. This, in turn, should aid the user in fulfilling the tasks T3, T4, and T5.

6



4 APPARATUS & VISUALIZATION FRAMEWORK

4.1 System Structure

Figure 4: An overview of the AeroVR system as seen by the user from the initial viewing position. The four aero-
engines are visible in the back, coupled with the compressors characteristics plots (LPC, IPC and HPC from left to
right respectively) and the globe gizmo [37] in the middle. The user’s gaze is focused on a marker on the HPC plot via
an orange cross-hair. The pop-up textbox informs the user about the operating point of this particular HPC on engine 5
and simultaneously draws a line (in the same color as the marker, that is, light green) pointing towards the appropriate
turboengine’s CAD 3D model [39].

The visualization framework used to support the Jarvis system was first developed to explore
and assess the feasibility of using digital twins of aeroengines embedded in a VR environment [3].
Details of the development and verification of this system, as well as the results of a qualitative user
study with domain experts, can be found in Tadeja et al. [3]. Here, we discuss how this framework
has been extended and updated with additional features. Those extensions allow the user to interact
with the objects and the system itself in a novel voice-based manner. We have also switched the
initial point of the user’s focus to a globe-like interactive gizmo that allows the user to track the
trajectory of the individual airplanes in real-time (see Fig. 5).

4.2 Hardware

The Jarvis VR system was developed and tested on a computer setup consisting of NVIDIA
GeForce GTX 1060 GPU coupled with the Oculus Rift head-mounted display (HMD) used to fa-
cilitate the VR environment. The hand-tracking was achieved using a Leap Motion sensor [36]
attached to the front of the headset.

4.3 Visualization

The visualization was developed using the Unity engine [40] and is based on the VR system for
digital twinning, details of which can be found in Tadeja et al. [3]. This system was updated and
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Figure 5: The interactive globe gizmo [37] with airplane models [38] circling it on a given predefined trajectory. If
coupled with real-life streamed data, such as the flight paths, current positions and speed, it could be used to provide
the user visual aid in tracking the current status of a fleet of airplanes. The user can select the gizmo by gazing over the
movement selector (an orange marker positioned above the North Pole) and making a double-pinch gesture [3]. The
user can bimanually manipulate the model (a)—(d). For example, the user can rotatea model, decrease or increase its
size, or move it to a different position in 3D space. Airplane models [38] can be selected in the same way as the gizmo
and will upon selection automatically highlight and select the appropriate aeroengine CAD model [39].

extended with a range of new features and visualization components. It now includes a speech-
based interface and the globe-based interactive gizmo (see Fig. 5) that can be used to track the
current geoposition of a fleet of aeroengines around the world.

4.3.1 Aeroengines Models

Figure 6: The aeroengine 3D CAD model [39]: (a) a full aeronengine model in a selected state with hand avatars
manipulating the model; (b–d) low (LPC), intermediate (IPC), and high pressure (HPC) compressors. For clarity, the
respective sizes of the compressors with regards to each other, as well as to the engine model shown in (a), are not
preserved in this figure.

Each of the aeroengine CAD models [39] can be disassembled into these eleven, non-separable
sub-parts: (a) casing; (b) low pressure compressor (LPC); (c) intermediate pressure compressor
(IPC); (d) high pressure compressor (HPC); (e) low pressure turbine, shaft and nozzle; (f) fan;
(g) nose cone; (h) high pressure shaft; (i) intermediate pressure shaft; (j) intermediate pressure
turbine; and (k) combustor and high pressure turbine.

The key sub-components of each model are the low pressure compressor (LPC) (see Fig. 6(b)),
the intermediate pressure compressor (IPC) (see Fig. 6(c)), and the high pressure compressor (HPC)
(see Fig. 6(d)).
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4.3.2 Compressors Characteristics Plots

Compressor characteristics are standard plots within the turbomachinery community for assess-
ing the performance of a compressor. The horizontal axis of these plots typically shows a non-
dimensionalized massflow rate (or flow function), while the vertical axis shows the pressure ratio.
Data is typically shown at multiple speed lines, corresponding to different compressor shaft speeds.
Iso-contours of efficiency are also plotted, which, in conjunction with the pressure ratio and non-
dimensionalized massflow rate, offer a global perspective of a compressor’s performance.

The compressors characteristics plots can be seen in Fig. 4. Further details about those plots
as well as a description on how they can be manipulated using hand-tracking [36] can be found in
Tadeja et al. [3].

5 MULTIMODAL INTERFACE

The system combines three interaction modalities: 1) gaze-tracking; 2) hand-tracked gestures;
and 3) speech recognition.

Figure 7: The gestures recognized by the system: (a) the left-hand pop-up gesture and the button press gesture; (b) the
single or double pinch gesture; and (c) the thumb-up gesture. For the left-hand menu shown in (a) the menu options are
as follows: (1) [RESET ]—resets the entire visualization to its default state; (2) [GEAR_MODE]—switches to a
systemmode in which the user can pull an engine model apart; (3) [REV ERT ]—is used to automatically assemble the
previously dissembled engine model; (4) [EMPTY ]—an empty placeholder that allows another button to be placed
there; (5) [HELP ]—displays the help menu; (6) [ENGINE_MODE]—switches to a system mode where the user
canmanipulate an enginemodel as a composite unit; (7) [PLOTS]—toggles between visible and invisible compressors
characteristics plots; and (8) [SOUND]—instructs the Jarvis system to record a voice command and respond to the
user’s spoken query. Subfigure (b) shows the gesture for selecting and manipulating an interactive element of the
visualization using either one hand or both hands. Subfigure (c) shows the gesture for releasing a hold on a selected
object. Icons by Icons8 (https://icons8.com).

5.1 Head- and Gaze-Tracking

Head-tracking is provided by the Oculus Rift HMD [41]. As Oculus does not support built-in
gaze-tracking capabilities, we approximate the user’s current gaze location by placing a cross-hair
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in the center of the user’s field of view at a fixed distance from the user (see Fig. 4). Whenever
the cross-hair passes over an interactive object, the object is automatically highlighted to signal its
interactive status. This part of the system is based on the Unity VR Free Sample Pack [42].

5.2 Hand-Tracking and Gesture Recognition

The hand-tracking and gesture recognition processing is achieved with the help of the Leap Mo-
tion sensor and its software development kit (SDK) [36]. The range of gestures recognized by our
system is reported in Tadeja et al. [3] and consists of (i) a pinch gesture; (ii) a double-pinch gesture;
(iii) a left-hand palm-up gesture; and (iv) a thumbs-up gesture. These gestures enable the user to: (a)
pull the engine apart using their hands; (b) decrease or increase the sizes of the whole engine or its
individual sub-components; and (c) rotate the whole engine or any of its sub-components [3]. The
same manipulation techniques can be applied to the compressors characteristics plots (see Fig. 4)
as well as the globe gizmo (see Fig. 5). However, these two elements cannot be pulled apart. An
example of a user manipulating and disassembling an aeroengine model can be seen in Fig. 6. The
details of this bimanual manipulation techniques of the 3D models is available in Tadeja et al. [3].

5.3 Voice Recognition and Information Capture

The voice interface is based on the observation that our subject matter is very specific and the
number of topics that can be mentioned while the user interacts with the system is limited. There is
therefore no need to use a very large vocabulary speech recognition system, which would raise many
challenges related to grammatical decomposition, understanding of concepts and their relation to
the knowledge base, etc. Instead, we provide a set of specific queries that can be used to interact
with the system. During the operation of Jarvis we only match the user’s voice query with prepared
patterns that are stored in the system.

Having first used a voice-to-text service to decode the user’s spoken query to text, we use then
use the Rasa NLU (Natural Language Understanding) module of Rasa [43], an open source set of
Python libraries for building human-machine conversational interfaces. Rasa is based on machine
learning models. Therefore, in the beginning, we prepared an appropriate sample of possible user
queries from potential users, which was used to bootstrap the system by training an appropriate
model. As can be seen in the excerpt (see Listing 1), the sample file consists of several groups
starting with ## intent:[NAME]. Each of these groups represents different types of user queries. We
provide a list of sample sentences for each intent. There is a possibility to put placeholders in the
queries in the form [VALUE](NAME), where NAME is the name of the placeholder and VALUE is one of the
possible values. Training the model on such a file is only done once. It is carried out offline before
the system is used for the first time. Thereafter the trained model is used to parse a given sentence
and extract information about the intent name and the identified placeholder’s values is returned by
Rasa NLU module.

The voice interface workflow is as follows:

1. The user selects the “speak” button in the VR interface. This is done only for the prototype.
In the final version, the microphone will be constantly monitored and commands will be rec-
ognized on-the-fly.

2. The audio signal is captured using a microphone.
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1 ## intent:show_engine
2 - Show engine [0](engine_name).
3 - Show engine [1](engine_name).
4 - Show me engine [2](engine_name).
5 - Show me engine [3](engine_name).
6 - Where is the [fourth](engine_name) engine right now?
7 - Where is the [fifth](engine_name) engine right now?
8

9 ## intent:get_engine
10 - Identify which engine’s [fan](subsystem) is operating at [74](num_value)% [shaft speed](characteristic).
11 - Identify which engine’s [LPC](subsystem) is operating at [104](num_value)% [speed](characteristic).
12 - Identify which engine’s [IPC](subsystem) is operating at [one hundred](num_value) [efficiency](

↪→ characteristic).
13 - Identify which engine’s [HPC](subsystem) is operating at [99](num_value) [efficiency](characteristic).
14

15 ## intent:get_value
16 - At roughly what [speed](characteristic) is engine [1](engine_name)’s [LPC](subsystem) running at?
17 - At roughly what [speed](characteristic) is engine [7](engine_name)’s [IPC](subsystem) running at?
18

19 ## intent:closest
20 - Identify which engine’s [IPC](subsystem) is the closest to [choke](subsystem_state).
21 - Identify which engine’s [HPC](subsystem) is the closest to [stall](subsystem_state).
22 - Identify which engine’s [fan](subsystem) is operating dangerously close to [choke](subsystem_state).
23 - Identify which engine’s [LPC](subsystem) is operating dangerously close to [stall](subsystem_state).
24

25 ## intent:the_best
26 - Which engine’s [fan](subsystem) is running at the [lowest](best_direction) [efficiency](characteristic)?
27 - Which engine’s [LPC](subsystem) is running at the [highest](best_direction) [efficiency](characteristic)?
28 - Which engine’s [IPC](subsystem) is running at the [lowest](best_direction) [efficiency](characteristic)?
29 - Which engine’s [HPC](subsystem) is running at the [highest](best_direction) [efficiency](characteristic)?

Listing 1: An excerpt from RASA NLU training file.

3. The issued voice command is decoded into text using the SpeechRecognition2 Python li-
brary coupled with the speech-to-text service offered by the Google Cloud Speech API.

4. The recognized user command is transmitted the knowledge graph server over simple JSON-
RPC interface over HTTP. The entire speech bundle (voice recognition and the knowledge
graph) is implemented as a separate HTTP server to facilitate remote work of multiple users
in the system. The entire knowledge base is therefore located in one place accessible via, for
example, a local network.

5. The speech bundle server processes the command (using RASA NLU, as described above,
and the knowledge graph, as described in Sect. 6) and prepares a system response. Sample
commands sent to the speech bundle server and system responses (based on the knowledge
graph prepared for the demo use case) are presented in Listing 2.

6. The system response is transmitted via a JSON-RPC interface. It consists of three elements:
engineID and subsystem indicate which part of the visualization should be presented to the user,
while message is communicated to the user using a text-to-speech service. Text-to-speech is
performed using the eSpeak Speech Synthesizer3 used under version 3 of the GNU General
Public License.

2https://pypi.org/project/SpeechRecognition
3http://espeak.sourceforge.net/
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1 Command: Which engine’s HPC is running at the highest efficiency?
2 Answer: { "engineID": 0,
3 "subsystem": "HPC",
4 "message": "HPC of engine 0 has the highest value of Efficiency. It is equal to 88.1635" }
5

6 Command: At what speed is HPC of Engine 3 running at?
7 Answer: { "engineID": 3,
8 "subsystem": "HPC",
9 "message": "HPC of engine 3 has Speed equal to 80.0" }

Listing 2: Sample commands sent to speech bundle server and answers returned by the server.

6 Knowledge Graph

Domain knowledge, such as the characteristics of the aeroenginemodels, is stored in a knowledge-
based system. We used the RDF (Resource Description Framework) language [4] as the knowledge
representation mechanism. We chose this approach as it is a standardized formalism that is easy
to link with other knowledge bases [44], which can be useful for further project development. For
example, for integration with an external engine’s specifications. In RDF each statement is repre-
sented as the Subject-Predicate-Object triplet (for sample RDF triples, see Tab. 1). We use
IRIs (Internationalized Resource Identifiers) to allow for unambiguous identification of resources.
A triplet’s Object can be also be represented as a literal, such as string, number or date.

Subject Predicate Object
Subsystem isPartOf Engine

IPC isSubclassOf Compressor
Compressor isDepictedOn Plot
Compressor PressureRatio double
Compressor Speed double
Engine VR_ID integer

Table 1: Sample RDF triples for the aeroengine domain. The first three triplets are object properties—the object is an
IRI. The last three triplets are data properties—the object is a literal.

A set of triplets form a directed knowledge graph where Subject and Object are nodes while
Predicate describes an edge. We use automatic reasoning on this graph to either infer new knowl-
edge based on existing knowledge, or to verify the correctness of the knowledge base. Both avenues
are possible thanks to the use of a meta-layer describing the graph (e.g., restrictions on concepts and
relations), specified in a knowledge representation language, such as RDFS (Resource Description
Framework Schema) or OWL (Web Ontology Language) [44]. The structure of the graph can be
divided into two parts: TBox (terminology: concepts and relations definition) and ABox (assertions:
statements about specific instances). In our aeroengine case, a statement Compressor isDepictedOn Plot

is part of the TBox, while HPC_of_Engine_3 isDepictedOn Plot_4 belongs to the ABox. The TBox for the
discussed system is shown in Fig. 8.

We extract knowledge from the knowledge graph using the SQL-like language SPARQL (SPARQL
Protocol and RDF Query Language) [5]. Listing 3 presents a SPARQL query template for a intent

↪→ :get_value set of user commands (see Listing 1). We prepared such SPARQL query templates for
all intent/command types.

An important task is to insert precise values into placeholders. Since these values are extracted
by RASANLU from automatically generated text from the speech signal, these values may be incor-
rectly recognized and therefore not match values in the knowledge graph. We solve this problem by
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replacing these values with the closest available values in the knowledge graph before constructing
a query against the knowledge graph.

1 SELECT ?ID ?subs ?val
2 WHERE { ?chara rdfs:label [CHARACTERISTIC] .
3 ?subs rdfs:label [SUBSYSTEM] .
4 ?subs_inst a ?subs ;
5 ?chara ?val ;
6 aero:isPartOf ?engine .
7 ?engine aero:VR_ID ?ID ;
8 rdfs:label [ENGINE_NAME] .

Listing 3: SPARQL query for getting a value requested by an user. Uppercase entities within brackets are placeholders
for values gathered from the user’s command.

The steps making up the speech bundle server flow are as follows:

1. The server receives the command as text from the speech-to-text service.

2. The command is processed by the RASA NLUmodel. Intent type and values for placeholders
are returned.

3. Values are cleared: (a) for numbers the text string is parsed to extract the numbers; (b) for
enums, the closest value is selected from a hard-coded set; (c) for other text strings, the closest
value is extracted from the knowledge graph.

4. The final query is prepared using a template for the identified command type with placeholders
replaced with cleared values. This query is then processed against the knowledge graph.

5. The system formats the response for the user. This respoonse is closely linked to the values
returned by the query (see Listing 3): engineID is ?ID, subsystem is ?subs, and message is created
using a template for a specific command type, involving, for example, ?val.

The knowledge graph server not only allows the user to submit queries (using ask as an endpoint).
There are in addition three further JSON-RPC endpoints that can be accessed to manipulate the
knowledge graph. In our current prototype, they are utilized to initialize the knowledge base. In
the future, they can also be used to manipulate the knowledge graph on-the-fly. By using these
methods, the knowledge graph server can be treated as a black box, which can be fully operated by
means of appropriate queries without any need for low-level manipulation of knowledge graph files
or a codebase:

• add_engine provides the possibility to add information about new aeroengines (IDs, subsystems
and their characteristics) to the knowledge graph. This endpoint is currently used to fill the
knowledge graph when the system starts. However, it can also be used in a dynamic adaptation
of the system to accommodate introducing new aeroengines on-the-fly to the Jarvis system.

• add_update_method enables placing arbitrary Python code in the knowledge graph (see the “Func-
tion” node in Fig. 8) that can be used to calculate specific characteristics with the use of other
characteristics’ values (see Listing 4)

• update_values allows changing specific values of the selected aeroengine during the system’s
operation. Other values are recalculated if necessary according to the defined update methods.
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1 {
2 "characteristic": "SS" # Shaft Speed
3 "func_args": ["MF", "PR"] # Mass Flow, Pressure Ratio
4 "func_code": "
5 import some_library
6

7 def func(sub, mf, pr): # first value is always subsystem; then there are all func_args
8 new_val = None
9 if sub == ’LPC’:

10 new_val = # somehow calculate the value
11 else:
12 new_val = # calculate another way for other subsystems
13 return new_val
14 "
15 }

Listing 4: Sample JSON for the add_update_method endpoint.

7 DISCUSSION

Our prior work [3] explored the deploying a VR environment for design and digital twinning
in aeronautics. This paper has presented an extended system, which we call Jarvis—a speech-
enhanced VR demonstrator based on mining knowledge databases. In comparison to prior work [3]
the system has been extended to incorporate a knowledge graph that supports voice queries from
the user and which serves to amplify users abilities by allowing the use of voice interaction in
conjunction with bimanual interaction.

As demonstrated in prior work [3], the gestures recognized by our system are sufficient to support
the key tasks identified in the task analysis (see Subsection 3.3): 1) visualize aeroengines; 2) analyze
data; 3) explore performance data; 4) select aeroengine model; 5) inspect aeroengine model; and
6) manipulate aeroengine model.

While tasks 5) and 6) above are largely unaffected by the new voice interface, tasks 1)–4) are
enhanced by voice interaction. For example, tasks 3) and 4) rely on the selection of appropriate
data, for example, to select and take apart models with poor conditions in order to identify potential
physical damage.

Such advanced features require the system to not only recognize the user’s speech but to also
infer further information based on the context in which the command was issued. This in turn is
possible using the knowledge-based solution in the Jarvis system. Interaction data and information
on the current state of each of the compressors in each turboengine is captured in a knowledge-based
system underpinned by a knowledge graph storing complex domain knowledge (see Subsection 6).
This enables the Jarvis system to handle complex voice queries, such as “what is the pressure ratio
of the intermediate pressure compressor for Engine 5” or “calculate the average pressure ratio after
80 hours of flying time for HPC in Engine 3.” The Jarvis system not only provides sufficient and
precise answers to such queries but also allows a certain level of flexibility as the user can construct
queries from a broader lexicon. This is possible because the context in which the user and the
system are operating is concise and to some extent very strict, since the number of questions that
domain-expert users may ask in a given context is limited. In the future, the voice functionality
could be extended with other, non-engineering commands, such as “Recall/Hide the globe gizmo.”

A voice-operated system which proof-of-concept we are presenting here naturally has some
limitations imposed by both hardware and software alike. These limitations can be categorized
in three groups: (1) gaze- and eye-tracking; (2) gesture-tracking and gesture recognition; and (3)
speech-to-text processing.
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Regarding limitation 1), the Oculus Rift [41] VR headset does not provide built-in gaze-tracking
or eye-tracking capabilities. Hence, we developed an approximation of a gaze-tracking feature by
placing a cross-hair at a constant distance in front of the user’s face (see Fig. 4). Using integrated
eye-tracking hardware would most likely be more accurate and robust than our solution and con-
sequently increase the level of fidelity of the Jarvis system. We anticipate this limitation will be
alleviated with updated VR headsets in the near future.

Regarding limitation 2), among the gestures recognized by our system (see Fig. 7) the most
frequently used gestures are the single and double pinch gesture [3]. Some studies suggest that
replacing a pinch gesture with a grasp gesture may yield a better user experience in some circum-
stances [45]. We leave such an investigation for the Jarvis system as future work.

Regarding limitation 3), speech-to-text processing occurs in discrete 60-second chunks instead
of as a continuous process. The implementation is based on the conversation services provided
by Google Cloud4. The free resources used by our system impose these limitations in length and
size on the converted speech and this limitation can potentially be limited by licensing a bespoke
solution.

8 CONCLUSIONS

In this paper we have presented the design and implementation of the Jarvis system—a state-
of-the-art speech-enhanced VR demonstrator based on mining knowledge databases. This work
represents one of the first attempts at aeroengine analysis in a bespoke voice-enabled VR environ-
ment and hopefully brings us a step closer to a real-life version of the J.A.R.V.I.S. from the movies
for aeroengine analytics.

The Jarvis system is equipped with a new bimanually operated globe gizmo (see Fig. 5) that
allows the user to efficiently and swiftly select the appropriate turboengine 3D CADmodels [39] of
interest. Further, this gizmo, if coupled with streamed GPS and other telemetry data, can provide
the user with a broader view of the entire fleet of airplanes, including meta-information such as
their current position and operational status.

We enhanced the Jarvis system with a robust and flexible subsystem that allows domain experts
to issue voice commands while working within the VR environment. To achieve this goal, the
system not only has to be able to recognize the user’s speech. It also has to perform an analysis to
gain an understanding of the information incorporated in the command and the situational context.
This analysis allows the system to automatically infer further knowledge and act accordingly (see
Subsection 5.3). This functionality is bestowed by the knowledge-based subsystem, which is in turn
facilitated by a knowledge graph (see Fig. 8) that stores complex domain knowledge. Thanks to this
solution the Jarvis system is well-equipped to promptly answer a number of sensible context-aware
queries.
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