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ABSTRACT

Virtual reality (VR) applications such as interior design typically
require accurate and efficient selection and movement of indoor
objects. In this paper, we present an indoor object selection and
movement approach by taking into account scene contexts such as
object semantics and interrelations. This provides more intelligence
and guidance to the interaction, and greatly enhances user experi-
ence. We evaluate our proposals by comparing them with traditional
approaches in different interaction modes based on controller, head
pose, and eye gaze. Extensive user studies on a variety of selection
and movement tasks are conducted to validate the advantages of our
approach. We demonstrate our findings via a furniture arrangement
application.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—Interaction techniques—Pointing

1 INTRODUCTION

How to select and manipulate objects in a virtual environment (VE)
is a fundamental problem in virtual reality (VR), and has a sig-
nificant influence on human interaction experience [1, 8, 35]. Vari-
ous techniques have been proposed based on different interaction
modes including contact based interaction [41], remote controller
based interaction [4, 40], and interactions using head pose and eye
gaze [28, 39]. Despite interaction modes, research attention has
been primarily paid to how to improve the interaction accuracy
and speed in VE with different object settings (e.g., size, density,
occlusion) [8, 24, 31].

Indoor navigation and interaction are among the most important
applications in virtual and augmented reality (AR). The recent de-
velopment in this area enables customized interior design based on
VR/AR techniques, as witnessed by a number of interactive tools
(e.g., IKEA Immerse, Wayfair Spaces) launched by IKEA, Wayfair,
etc. A typical interior design process requires the user to frequently
select the right objects and place them in the right positions. This
poses new challenges for existing human-object interaction tech-
niques, where the objects in the scene are simply treated as indi-
vidual entities, while scene contexts such as object semantics and
interrelations are not taken into account.

In this paper, we study the virtual indoor scene manipulation task
in terms of object selection and movement, which have potential
applications such as interior design and indoor navigation in VR.
Different from previous studies [4,6,31,64] that manipulated objects
in abstract or simplified scenes, we conducted experiments in high-
quality virtual indoor scenes (see Figure 1). Specifically, we focus on
interacting with target objects (e.g., chairs, cups) that can be selected
and moved within 3D indoor scenes and investigate the selection and
movement interactions using raycasting based technique, where the
user selects an object by pointing to it using controller, head pose or
eye gaze, and move it to another indicated position. Travelling in the
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Figure 1: Examples of virtual indoor scenes used in our interaction
experiments (©ArchVizPRO Interior).

VE is allowed to complete challenging tasks. For example, the user
may want to take a walk and adjust his/her viewpoint to the object
to complete a selection.

We propose to facilitate raycasting based object selection and
movement by exploiting the surrounding scene contexts, includ-
ing object semantics (its role in the scene) and object relationships
(its relation with other objects in the scene). Based on the scene
contexts, we design two experiments where the first experiment in-
vestigates the performances of controller, head pose, and eye gaze
based selection techniques under different conditions regarding ob-
ject size/occlusion/density, and the second experiment studies the
movement methods under different moving distance/angle/occlusion
conditions. Both experiments are conducted within high-quality
virtual indoor scenes, with the selection and movement tasks specif-
ically designed to meet the practical scenarios for virtual indoor
object manipulation. Through extensive user studies, we demon-
strated the advantages of our approach in terms of saving interaction
time and enhancing user experience. We further developed a furni-
ture rearrangement application to exemplify our findings.

Overall our work makes the following major contributions: 1)
we apply contextual information to 3D selection and manipulation
specifically for interior design scene in VR, and 2) we verify the
effectiveness of our approach by comprehensive user experiments
and a practical application.

2 RELATED WORK

2.1 Selection Techniques in VR
Selection techniques in VR are commonly divided into two types:
contact based selection and raycasting (pointing) based selection [2].
The former requires the user to virtually touch an object, which is
more natural, but less convenient for faraway objects. The latter
allows the user to select a distant object by just pointing to but not
walking to it. We will mainly discuss three primary raycasting based
selection techniques with different interaction modes, as they serve
as the baselines for our work.

Controller based technique (Figure 2(a)) utilizes handheld con-
troller to select objects by emitting a ray to the scene [1]. The first
object that is intersected by the ray can be selected [29]. Since it
is simple and efficient, various works have been presented using
this technique [15–17, 63]. However, the accuracy of selecting small
or/and dense objects can be easily affected by hand movement. To
solve this problem, Dang et al. [15] proposed to use cone-shaped ray
with a certain range of tolerance. But the additional range requires a
second confirmation [12, 21], or heuristic search [16, 48], especially
for dense objects. Progressive refinements of selection with spatial



context was proposed in [3, 27]. However, without object-level con-
text analysis of the scene, multiple steps that interactively narrow
down the selected candidates were required. Lu et al. [31] made
improvements based on bubbles, but the effect is not ideal for dense
and occluded objects. Yu et al. [64] refined promising raycasting
techniques and performed better for fully-occluded object selection.

Head pose based technique (Figure 2(b)) leverages head move-
ment and fixation to point to object for selection, and has been
applied in various scenarios in VR [13, 16, 55]. In particular, re-
cent work on head movement for text input [62] showed its accu-
racy and speed for long and intensive interactions. Head pointing
is well-known for its benefits of providing no submission, but its
performance and usability are considered inferior to the raycast-
ing technique. An early investigation [23] reported that the joystick
points faster than the head. Lin et al. [30] compared head and hand
pointing methods on large stereoscopic projection displays. The re-
sults showed that hand pointing generally performs better with lower
muscle fatigue and better usability, while head pointing provides
higher accuracy. Bernardos et al. [6] compared the two modes using
a wall-sized projection screen. They did not find significant differ-
ences in task performance, but hand based pointing shows better
user experience.

Eye gaze based technique (Figure 2(c)) relies on eye movement
to select objects. Research on gaze based interaction dates back to
the 1980s [9, 10]. Poupyrev et al. [38] showed that eye movement
performs better than mouse movement for 2D selection. But eye
movement also has problems such as high error rate and instability
due to the restriction of the capturing device. Based on investigating
different selection methods using eye tracking, Mackenzie [33] made
an overview of several issues caused by eye trackers. Kytö et al. [28]
studied eye pointing and head pointing in AR, and found that eye
pointing is faster while head pointing is more accurate.

Overall, controller based technique has been widely used in com-
modity VR handheld devices. Head and eye selections are devel-
oping very fast and can be treated as promising complements [14].
Compared with eye selection, head selection is easier to learn and
more stable. Eye selection is faster with better mobility, while its
learning curve is steeper and it requires a higher workload [5,25]. In
our work, we evaluate the presented approach in all three selection
modes to demonstrate its effectiveness.

2.2 Context-aware Interaction in VR
Context-aware interaction techniques for 3D data have been inves-
tigated [20, 42, 45]. For example, it has been demonstrated that
semantic information, such as gravitational hierarchy [37] and clus-
ters [18, 44, 65], can improve the performance of group selection.
Besides, some work revealed that spatial information can also bene-
fit selection techniques in 3D scenes. An early work by Bukowski
et al. [11] presented a framework to help design and implement
convenient 3D object manipulation methods in a 3D virtual envi-
ronment, where object associations using spatial context played an
important role. A series of efficient techniques [36,46,49,50,52,53]
have been proposed for 3D object creation and positioning in vir-
tual environments by using group and contextual information. For
example, Smith et al. [46] showed that with 2D user interfaces, 3D
object motion and orientation can be automatically adjusted using
contextual constraints. It is worth noting that our research is not the
first to use contextual information in a 3D scene, and we focus on
applying contextual information to pointing based 3D selection and
movement techniques in VR, specifically for interior design scenes.

2.3 Virtual Indoor Object Movement and Arrangement
The interactive movement of indoor objects in VR consists of a
series of drag-and-drop operations to move virtual objects to target
positions. In contrast to object selection, object movement is less
explored in VR literature. One main approach is to virtually con-

(a) Controller (b) Head pose (c) Eye gaze

Figure 2: Three raycasting based interaction methods are investigated.
(a) Raycasting using handheld controller. (b) Raycasting by head pose
fixation. (c) Raycasting by eye gaze fixation. The user points to the
target object via (a) (b) or (c) then press the trigger on the controller
to complete a selection task.

tact and grasp objects, then make movements [26, 35]. Although
human hands are capable of forming various gestures by nature, and
conform to moving objects in the real world, the labor cost could
be considerably high for applications that require frequent object
movements such as interior design. Kang et al. [26] demonstrated
that the worlds-in-miniature technique provided better usability and
performance than gaze and pinch interaction and direct touch and
grab interaction. In our experiment, raycasting based non-contact
object movements with scene contexts are studied. Compared to
traditional raycasting based methods, the influence on movement ac-
curacy can be largely improved by involving contextual information
of the scene.

In the graphics field, how to generate plausible indoor furniture
arrangements has attracted attention in the last few years. The main
aim is to accelerate the interior design process by automatically
exploring the high dimensional layout space and providing quality
arrangements for later design refinement. Early research optimizes
arrangement by implementing a set of explicit design guidelines
that represent not only object-object but also object-scene relation-
ships [34, 60, 66]. Recent works leverage a data-driven approach
to learn how to make arrangements from existing furniture lay-
outs [57–59]. A detailed review in this area is beyond the scope of
this paper. Interested readers may refer to [67] for a comprehensive
survey. Our research focus is on how to interactively select and move
indoor objects [46]. It can be used to interactively generate satisfying
indoor furniture arrangements as demonstrated in the application.

3 SCENE CONTEXT-AWARE INDOOR OBJECT INTERACTION

To explore how scene contexts contribute to such interactions, we
make an assumption that the contextual information is available as
prior knowledge, and focus on user interactions with indoor objects.
This is reasonable for interior design applications where furniture
types (e.g., chair, table, bed) and combinations (e.g., dining set)
are usually given [54, 61]. And objects with strong relations can
be easily identified by matching their properties such as shape and
texture (e.g., a set of congruent chairs), or/and checking their spatial
locations (e.g., alignment, support, etc.). Next, we will introduce the
strategies to leverage representative indoor scene contexts, and how
we integrate them into object selection and movement operations.

3.1 Indoor Scene Contexts
Depending on the functionality, an indoor scene usually exhibits
fruitful contextual information provided by the constituent objects
in the scene. Below we summarize the contextual information that
we used in our experiments. Note that scene contexts have also
been employed to improve furniture arrangement computation as
in [32, 34, 66]. Our work shares a similar spirit but our goal is to
improve indoor object interaction.

Object category: object category is the most basic semantic infor-
mation in a scene context. In our experiments, furniture categories
such as chairs, sofas, beds, and decorations such as vases are used.

Dependence relationship: object in one category might depend
on object in another category to realize its functionality, see Figure 3
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Figure 3: Examples of indoor virtual objects with dependence relation-
ship and group relationship.

(Top). For example, nightstands are placed next to the bed, and
vases are usually supported by a table. Without loss of generality,
we denote the primary object (e.g., table) as a parent object and the
smaller objects (e.g., chairs, vases) as child objects. A parent object
can have more than one child object, while a child object has only
one parent object to eliminate any ambiguity during selection. Such
a relationship can be used to enhance the selection. For example, if
the target for selection is a table, one can firstly select a chair, then
switch to the table following the dependence relationship.

Group relationship: objects of the same category that are placed
closely are considered as a group, see Figure 3 (Bottom). For exam-
ple, congruent chairs are typically placed together next to a table,
and decorative objects are placed as a group inside a cabinet. If one
object is selected, the user can easily switch to other objects within
the same group.

Spatial relationship: based on functionality and aesthetics con-
siderations, objects can be spatially correlated in terms of position
and orientation in the scene context. For example, chairs usually
have rotational symmetry around a round table, and reflective sym-
metry next to a rectangular table. A bedside table is usually aligned
to the bed top, etc.

3.2 Context Integration for Selection and Movement
3.2.1 Selection
As mentioned before, we evaluate three pointing based interactions
based on controller, eye gaze, and head pose, respectively. Compared
to contact based selection, pointing based selection also allows users
to select distant objects. It performs well on isolated objects that are
clearly separated from others. However, pointing based interaction
may degenerate when handling complex cases of partial occlusion
or dense environment. To resolve these challenging cases, many re-
searchers have modified the original raycasting based selection [31]
such as bending the ray or zooming-in the region of interests (ROI).

As a complementary to raycasting, our strategy is to allow the user
to select other nearby objects with good visibility first, then switch
to the target object by leveraging scene contexts as in Section 3.1.
Intuitively, this strategy can reduce unnecessary and error-prone
trials, avoid travelling in the scene or operating on additional inter-
faces (e.g., zoomed display) [12]. To this end, we propose specific
strategies to enhance the selection operation for the aforementioned
two challenging cases:

Partial occlusion: for the cases when a target object Ot is oc-
cluded by other objects, the user can point at a 3D position P on its
parent object Op and switch to the target Ot with a single press of
the menu button on the controller, if Ot is the parent object to P, or
the closest child object to P:

Ot = argmin
O∈C (Op)

||Pc(O)−P||2, (1)

where C (Op) is the set of child objects of the parent object Op, and
Pc(O) is the centroid of object O.

Dense environment: sometimes a target object Ot locates closely
to a group of n objects G (Ot) = {O1,O2, ...,On} (including Ot ).
This situation can cause trouble for selection, because the user may
travel heavily to a position close to Ot to make an accurate selection.
We utilize the group relationship for a more flexible selection. Specif-
ically, the user is allowed to select an object Os from G (Ot) with the
ray intersection point P, then use the touchpad on the controller to
specify a 2D direction d, and switch back to the target object Ot as:

Ot = argmax
O∈G (Os)

cos(Pro j(Pc(O))−Pro j(P),d), (2)

where Pc(O) is the centroid of object O, Pro j(·) is the function to
project the 3D point to the camera coordinate system.

3.2.2 Movement
We proposed a strategy to handle the cases when placing a target
object onto an occluded target location. In order to allow the user to
focus on accurate placement rather than tedious adjustment of the
object orientation, we also proposed auto orientation adjustments
during placing the target object.

Orientation adjustment: we automatically adjust the yaw of an
object during its movement. When moving a target object Ot , whose
current 2D location projected to the floor plane is pOt , we adjust
its forward direction dOt (parallel to the floor) by considering the
spatial relationship to other objects within a circular region with the
radius of 1 meter. Specifically, objects O = {O1,O2, . . . ,On} within
the same group or being Ot ’s parent object can have an influence on
dOt :

dOt = ∑
O∈O

ω(O,Ot) ·D(O,Ot), (3)

where ω(O,Ot) is the weight of object O for orientation adjustment
considering the distance, defined as:

ω(O,Ot) =
max(− ln(||pOt − pO||2),0)

∑O′∈O max(− ln(||pOt − pO′ ||),0)
, (4)

and D(O,Ot) is the direction vector of object O that contributes to
the orientation adjustment:

D(O,Ot) =

{
dO O ∈ G(Ot)
−dO O = parent(Ot).

(5)

Intuitively, when O is the parent of the target object Ot , Ot should
face O. On the other hand, if O and Ot are next to each other while
being in the same group, the forward direction of Ot and O should
also be the same. Such automatic yaw adjustments work for the
conversation mode [34], such as chairs and table, sofa and tea table,
etc., see Figure 4.

(a) Without Scene Contexts (b) With Scene Contexts
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Figure 4: Scene contexts for automatic movement refinement: orienta-
tion adjustment and occlusion handling (a) without and (b) with scene
contexts.



Occluded target position: it could happen that the target position
Pt for placing target object (Ot ) is occluded by some other objects.
When selecting an occluded position, the raycasting technique will
always point to the first object that is intersected with the ray. In-
spired by [51,64], we allow the ray to penetrate all supportive objects
(including the floor) O = {O1,O2, . . . ,On} along the ray with inter-
section points P = {Pi(O1),Pi(O2), · · · ,Pi(On)}, and locate on the
nearest object O′ that is legal to support Ot , at the point P′t :

P′t = argmin
O∈O

||Pi(O)−Pt || if Legal(O,Ot), (6)

where Legal(O,Ot) is a Boolean function that returns true if O is
legal to support Ot based on contextual knowledge. Figure 4 shows
an illustration of our improvement.

Brief summary. In this section, we have proposed refinements
to raycasting based selection techniques, that can simply relocate
selected objects to nearby targets based on the dependence or group
relationship, by a single press of a button on the controller. To
simplify the movement procedure after selecting a target object, au-
tomatic orientation adjustment and occlusion handling are computed,
with tedious and laborious operations avoided.

4 EXPERIMENT OVERVIEW

We have presented the indoor object selection and movement prob-
lem that we aim to investigate, and how to leverage indoor contexts
in object selection and movement interactions. We designed two
experiments to evaluate the proposed approach in virtual indoor
scenes. To mimic practical scenarios for interior design applications,
participants were allowed to travel. However, if the participant failed
some trials and chose to travel, the completion time would increase
accordingly, which can reflect the user performance and difficulty
of the tasks. In the first experiment, we conducted a user study to
evaluate raycasting based selection methods and the proposed refine-
ments (3 baselines + 3 refinements). Selection tasks under various
conditions were tested, with measures such as the selection time, er-
ror count, and walking distances recorded. Subjective questionnaires
were collected as further evidence for comparison.

The second experiment compared the performance of the auto-
matic refinements for the controller, eye gaze, and head pose in-
teractions on movement tasks. A pilot study revealed that without
our refinement, the manual tuning of object orientation and han-
dling occluded target placement location significantly increased the
processing time and walking distances. Thus we only evaluated
the refined methods in this study. We clarify that while simple 3D
docking tasks were used for evaluating 3D object manipulation tech-
niques in the literature [7, 47, 56], our goal is to study how the scene
contexts facilitate indoor object movement techniques on various
angle/distance/occlusion conditions in a practical indoor scene.

We further demonstrated the usage of the interaction methods via
an application, where the user employed the best-ranked methods
in the studies to rearrange furniture objects, with a sequence of
selection and movement interactions.

Switch by
dependence relationship

Selection
confirmation

Switch by
group relationship

Figure 5: Key mapping of the controller.

5 EXPERIMENT 1: SELECTION STUDY

We studied the performance of controller, head pose, and eye gaze
based methods, as well as corresponding refinements with contextual
information integration, for virtual indoor object selection.

5.1 Participants and Apparatus
We recruited 12 participants (4F/8M, Mean age = 21, SD = 1.76)
from a university in this study. 8 participants had prior VR ex-
perience. The experiment duration ranged from 30 minutes to 40
minutes. The apparatus included an HTC Vive Pro Eye with a Vive
controller, and a desktop PC (Core i7 9700K, GTX 2080Ti Graphics
card, 32 GB RAM) with Microsoft Windows 10. We used Unity 3D
v2018.3.5f1 software for implementation. The virtual scenes were
from Unity Asset Store - ArchVizPRO Interior Vol. 4-6.

5.2 Selection Methods
Six pointing based METHODS were investigated, where the first three
were baseline methods, and the last three were our refinements:

Controller: In this method, a ray is emitted from the top of the
controller. The first object hit by the ray is assumed to be selected.
The selection is confirmed if the user presses the trigger on the
controller (see Figure 5). To select target objects, the user can move
the handle or/and travel in the scene.

HeadPose: The user selects objects by turning the head. In this
method, an invisible ray is emitted from the forehead instead of the
controller, to the virtual scene, with the intersection point indicated
by a cursor. The user confirms the selection by pressing the trigger
on the controller.

EyeGaze: This method requires capturing the eye gaze. We used
an HTC Vive Pro Eye HMD that was able to track eye gaze, and the
API provided by Sranipal to obtain this information. An invisible
ray is emitted from the eye, and the direction is determined by the
eye gaze. The user needs to look at the object for localization, and
uses the controller trigger to confirm the choice.

Controller+: In this method, the integration of scene contexts is
implemented as explained in Section 3.2.1 on top of Controller. The
user can press the menu button or the touchpad to switch selected
object based on the dependence/group relationships (see Figure 3
and Figure 5).

HeadPose+: Similar to Controller+, a simple press of the con-
troller button can activate the semantic integration.

EyeGaze+: This method is the same as HeadPose+, except the
pointing is based on eye gaze.

5.3 Design and Procedure
An indoor scene usually contains objects with different properties
and distributions. Following Fitts’s law [19] and evidence from pre-
vious work, we chose five representative conditions of indoor objects
for evaluation (see Figure 6). When starting a trial, the participant’s
initial location and the target object was specified, where the object
was guaranteed visible from the current view.
• Non-occluded large object: an object which is close to the par-

ticipant or with a large size, and is not occluded by other objects.
• Non-occluded small object: an object which is far from the par-

ticipant or with a small size, and is not occluded by other objects.
• Partially occluded object: an object that is partially occluded by

other objects.
• Non-occluded object in dense environment: a non-occluded ob-

ject with distractors around.
• Partially occluded object in dense environment: an object that

is partially occluded by other distractive objects around.
For each condition, we created 3 variations with different target
objects. Based on a within-subject experimental design, each par-
ticipant completed 6 methods × 5 conditions × 3 variations × 3
repetitions = 270 trials.
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Figure 6: Conditions for selection task. (a) Non-occluded large object. (b) Non-occluded small object. (c) Partially occluded object. (d) Non-
occluded object in dense environment. (e) Partially occluded object in dense environment. The target objects for selection are highlighted with
blue silhouettes. Zoom-in views are shown at top-right corners.

(a) (b)

Figure 7: Training scenes of the experiments. (a) The training scene of
the selection study. The target object is highlighted with a blue contour.
(b) The training scene of the movement study. The target object is
highlighted with a yellow contour and the target placement position is
indicated with a green arrow.

The experiment was approved by the ethics committee of the
university. After welcoming the participant into our lab, the exper-
imenter instructed the participant about the aim and procedure of
the study. The participant was aware that he/she was encouraged to
complete the tasks as fast and accurately as possible. She/he then
signed an informed consent form and filled a demographic form.

Before formal tests, the participant practiced each method in a
simple training scene as shown in Figure 7(a). Although being sim-
plified, the scene contains all 5 conditions as in the formal test. For
each practice trial, a random target sphere was highlighted with a
blue contour, the user then made a selection using the corresponding
testing method. The participant was aware that contextual informa-
tion from indoor scenes will replace the simple ones.

In the formal tests, the order of the selection methods was coun-
terbalanced using a Latin Square approach, and the order of condi-
tion/variation was randomized in three repetition loops. In each task,
the target object for selection was highlighted using a blue contour.
The participant was asked to successfully select the correct object
unless exceeding a 30-second time limit. During the experiment, we
recorded the selection time and the travelling distance for each trial.
After experiencing each selection method, the participant was asked
to first complete the UEQ-S [43] and NASA-TLX [22] question-
naires, then take a 2-minute break (for the next test if exists). The
experiment took about 40 minutes.

After the experiment, the participant was asked to rank the meth-
ods based on his/her overall preference. In the end, we conducted
a short interview to receive feedback on the overall experiment. A
voucher of 10$ was given to the participant for acknowledgment.

5.4 Results
We have collected 3240 data points (12 participants × 270 trials),
where the outliers above three standard deviations from the mean
(75 trials, 2.3%) were removed to analyze the selection time and
travelling distance. The data were normally distributed, and we
performed a repeated-measures ANOVA and pairwise comparisons
with Bonferroni adjustment to analyze method performance.

A Mauchly’s Test was used to test the sphericity. Once violated,
the degrees of freedom produced by repeated-measures ANOVA
were then adjusted using Greenhouse-Geisser correction. Figure 8
shows the results of the selection time. We note that the travelling dis-

tance values were mostly less than 0.1 meters, except when objects
were partially occluded. Considering very small travelling distances
would be less meaningful, we only analyze the travelling distance
on partially occluded objects. The travelling distance results were
provided in the supplementary file.

Non-occluded Large Object METHOD had a significant effect
on selection time (F(3.76,131.62) = 6.573, p < 0.001,η2

p = 0.158).
Controller+ was on average the fastest, and was significantly faster
than HeadPose+ (−0.39s, p = 0.003).

Non-occluded Small Object METHOD had a significant effect
on selection time (F(3.79,132.72) = 6.573, p < 0.001,η2

p = 0.179).
Controller+ was the fastest, and was significantly faster than Head-
Pose (−0.67s, p < 0.001), EyeGaze (−0.65s, p = 0.002) and Head-
Pose+ (−0.50s, p = 0.001).

Partially Occluded Object A significant effect of METHOD
was found on selection time (F(5,175) = 43.602, p < 0.001,η2

p =
0.555). EyeGaze+ was significantly faster than HeadPose
(−2.27s, p < 0.001), EyeGaze (−2.43s, p < 0.001) and Controller
(−1.83s, p < 0.001). There were significant improvements when
using scene contexts, with HeadPose+ faster than HeadPose
(−2.00s, p < 0.001), EyeGaze+ faster than EyeGaze (−2.43s, p <
0.001), and Controller+ faster than Controller (−1.75s, p < 0.001).
A significant effect of METHOD was found on travelling distances
(F(2.15,75.14) = 131.883, p < 0.001,η2

p = 0.790). EyeGaze+ had
the lowest travelling distance and was significantly lower than
baseline methods (−0.396m for HeadPose, −0.437m for EyeGaze,
−0.420m for Controller, p < 0.001 for all). Post-hoc analysis in-
dicated that HeadPose+ was significantly smaller than HeadPose
(−0.392m, p < 0.001), EyeGaze+ was significantly smaller than
EyeGaze (−0.437m, p < 0.001), and Controller+ was significantly
smaller than Controller (−0.417m, p < 0.001).

Non-occluded Object in Dense Environment METHOD had
a significant effect on selection time (F(3.53,123.68) = 9.603, p <
0.001,η2

p = 0.215). The fastest method was EyeGaze+, and it was
significantly faster than HeadPose (−0.82s, p < 0.001) and Head-
Pose+ (−0.59s, p = 0.001).

Partially Occluded Object in Dense Environment METHOD
had a significant effect on selection time (F(3.52,123.33) =
21.042, p < 0.001,η2

p = 0.375). Controller+ was the fastest and
was significantly faster than Controller (−1.77s, p < 0.001), Head-
Pose (−2.52s, p < 0.001) and EyeGaze (−2.49s, p < 0.001). There
was significant differences between EyeGaze+ and EyeGaze
(−2.38s, p < 0.001), HeadPose+ and HeadPose (−2.03s, p <
0.001). METHOD has a main effect on travelling distance
(F(2.94,102.73) = 32.552, p < 0.001,η2

p = 0.482). Post-hoc anal-
ysis indicated that the travelling distances for all techniques with
refinements were statistically smaller (p < 0.001 for all) than the
baselines. However, the effect sizes were very small, with distance
differences being−0.068m,−0.051m, and−0.072m for head pose,
eye gaze and controller based methods respectively.
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Figure 8: Selection time for methods regarding the interaction conditions with non-occluded large object, non-occluded small object, partially
occluded object, non-occluded object in dense environment, and partially occluded object in dense environment. Error bars indicate the 95%
confidence interval. Significance codes: ∗∗∗p < .001, ∗∗ p < .01 and ∗p < .05.

Table 1: UEQ-S results show the pragmatic rating, hedonic rating,
and overall rating of methods in the selection study.“>avg.” represents
“above average”, “<avg.” stands for “below average” and “exc.” means
“excellent”.

METHOD Pragmatic Hedonic Overall

Controller 1.36 (>avg.) 0.88 (<avg.) 1.12 (>avg.)
HeadPose 1.40 (>avg.) 1.34 (>avg.) 1.37 (>avg.)
EyeGaze 1.21 (>avg.) 1.61 (good) 1.41 (>avg.)

Controller+ 1.89 (exc.) 1.68 (good) 1.76 (good)
HeadPose+ 1.80 (exc.) 1.76 (good) 1.78 (good)
EyeGaze+ 1.99 (exc.) 1.88 (good) 1.94 (exc.)

Subjective Results We summarized the subjective results of
UEQ-S in Table 1 and the average ranking in Table 2. The UEQ-S re-
sults revealed that EyeGaze+ was most favored, while the subjective
ranking indicated the highest ranking of Controller+. NASA-TLX
results concluded that the refinements were better than the baselines,
see supplementary material.

The open comments were mostly focused on Controller+, Eye-
Gaze+ and HeadPose+. Most participants (N = 11,91.67%) felt
EyeGaze+ and Controller+ were “performing very well when se-
lecting large object”. Some participants (N = 4,33.33%) thought
EyeGaze+ was hard to select objects in dense environment. Head-
Pose+ was commented “I felt tired after completing a lot of tasks”
(N = 3,25.00%). In summary, the comments on improved methods
were more positive than those on original ones.

Most of the participants (N = 10,83.33%) confirmed that the in-
tegration of contextual information improved the baseline methods
well. Almost all participants (N = 11,91.67%) thought scene con-
text was helpful when selecting occluded objects. However, when
selecting non-occluded large objects, some (N = 9,75.00%) thought
scene context only slightly improved the performance.

5.5 Discussion
The experimental results showed that the improved methods gen-
erally performed better than the original ones. The performance
difference is particularly significant for complex tasks such as se-
lecting a partially occluded target in dense environment.

For non-occluded large objects, Controller+ performed best, fol-
lowed by EyeGaze+ and Controller. Other selection methods were
similar. As the selection task is not difficult in this case, Controller+
was more flexible.

In the case of non-occluded small objects, Controller+ performed
best. This was because the accuracy of eye tracking was limited, and
head tracking only allowed slow rotation. Selecting small objects
usually doubled the time than large objects, or even worse.

For partially occluded objects, the improved methods preformed
better by halving the selection time. The performance of EyeGaze+
and Controller+ were almost the same, and EyeGaze+ was slightly
better. Travelling distances were also shortened, showing that the

Table 2: Subjective ranking results of the selection and movement
studies. The average ranking with standard error (“Ranking”), and the
times each method was on the first or second place (“#1/2”) are listed.

METHOD
Selection Movement

Ranking #1/2 Ranking #1/2

Controller 4.08 (1.04) 0/1 - -
HeadPose 5.00 (0.71) 0/0 - -
EyeGaze 5.50 (0.76) 0/0 - -

Controller+ 2.00 (0.71) 3/6 1.42 (0.64) 8/6
HeadPose+ 2.25 (1.09) 5/0 2.25 (0.72) 5/5
EyeGaze+ 2.17 (1.21) 4/5 2.33 (0.75) 2/4

dependence relationship of occluded objects really helped.
Regarding non-occluded objects in dense environment, the results

were similar to small objects. This was due to the fact that selecting
these objects was basically the same as selecting small objects,
except that there were more surrounding objects. EyeGaze+ and
Controller+ took less time than others, which demonstrated that the
group relationship was helpful.

Finally, for partially occluded objects in dense environment, our
refinements also performed better than baselines. Controller+ was
the best, followed by EyeGaze+. This was because occlusion caused
by distractors made the selection task challenging. It was easy to
switch selected objects based on dependence or group relationships.

The NASA-TLX and UEQ-S results also showed similar statistics.
Participants were more satisfied when using Controller+. EyeGaze
and HeadPose were not convenient to select objects under some com-
plex conditions. Participants preferred the improved methods with
scene context as it was convenient to understand and use, making
the selection more efficient. In summary, Controller+ had the lowest
selection time, and EyeGaze+ had the lowest travelling distance.
The refinements were better than the baselines when dealing with
occluded objects or objects with distractive surroundings.

6 EXPERIMENT 2: MOVEMENT STUDY

Apart from selection, we also studied indoor object movement using
controller, head pose, and eye gaze based methods with the help of
scene contexts.

6.1 Participants and Apparatus

We recruited 15 participants (4F/11M, Mean age = 21, SD = 1.68)
from a university. 10 participants had prior VR experience. The
experiment duration ranged from 20 minutes to 30 minutes. The
apparatus for implementation and experiment is the same as before.

6.2 Movement Methods

Three context-aware indoor object movement METHODS were in-
vestigated as follows:
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(a) Moving depth (b) Moving angle (c) Occlusion

Figure 9: Conditions for movement task. (a) moving depth (small and
large). (b) moving angle (small and large). (c) occlusion of target
position (unoccluded and occluded). Objects highlighted with yellow
silhouette indicate the target object for moving, and green circles with
an arrow indicate its target position.

Controller+: The user needs to select the target object first. Then
by moving the controller, the object will be moved to the position
where the ray emitted from the controller intersects the scene. The
user can also travel in the scene to better adjust the intersection
position. The movement is successful when the user put down the
object in the vicinity of the target position via pressing the trigger.

HeadPose+: Same as the previous method, the user needs to
select the target object via head-based selection. The object will then
be moved to the indicated position of the ray from the head, until
the same condition of success is met.

EyeGaze+: This method is the same as HeadPose+, except that
raycasting based selection and movement is determined by eye gaze
instead of head pose.

Remarks. To focus on the movement test and facilitate user
interaction, the above methods do not require any extra operation
(e.g., switch objects) from the user. Also, the user does not need to
laboriously fine-tune object movement, especially when the target
position is occluded by other objects in the scene. This is because
the position and orientation of the object are already pre-computed
based on scene contexts when applicable (e.g., rotational/reflective
symmetry of chairs w.r.t. the table, sofa, and wall alignment). Be-
sides, to eliminate the influence of selection before movement, the
target object is prepared to be easy for the user to select. There is
no distraction or occlusion. To ensure a fair comparison on object
movement between different methods, we only counted the move-
ment time once the target object was picked up, until a successful
placement on the target position.

6.3 Design and Procedure
As shown in Figure 9, for each trial, the user needs to move the target
object to the target position. Both targets are highlighted so that
the user clearly understands the task. We chose three experimental
variables to evaluate indoor object movement as follows:
• Moving depth (DEPTH): the distance between the initial position

and the target position in depth, which is mainly related to the
elevation of the ray pointing to the scene.

• Moving angle (ANGLE): the horizontal change between the initial
position and the target position, which is mainly related to the
azimuth of the ray pointing to the scene. Once the target position
is out of the current view, an arrow is shown to indicate the
moving direction.

• Occlusion of target position (OCCLUSION): the target position
can often be occluded by other objects in the scene (e.g., move
chair behind table, move corner table behind sofa, etc.), which
mainly affects the intersection between the ray and the scene.
Under each variable, there were 2 cases (small/large, small/large,

unoccluded/occluded) in 2 scenarios. With 3 repetitions, each partici-
pant completed 3 methods× 3 variables× 2 cases× 2 scenarios× 3
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Figure 10: The movement time of methods on different levels of (a)
moving depth, (b) moving angle, and (c) occlusion of the target posi-
tion. “CL+” represents Controller+, “HP+” represents HeadPose+, and
“EG+” stands for EyeGaze+. Error bars indicate the 95% confidence
interval.

repetitions = 108 trials. Similar to the selection study, the movement
study consists of three phases: training, experiment, and interview.
The participant first familiarized himself/herself with the test envi-
ronment and procedure (see Figure 7(b)), and filled in the relevant
information. Then in the formal tests, the participant practiced each
technique with different parameter settings in random order. Dur-
ing the experiment, we recorded the time for movement and the
travelling distance from the participant. After the experiment, the
participant was asked to complete a subjective questionnaire and
attend a short interview. A voucher of 5$ was given to the participant
for acknowledgment.

6.4 Results
To analyze the movement time and travelling distance, we discarded
the outliers of 47 trails (4.35%). Figure 10 shows the movement
time for tested methods (travelling distance results are provided in
the supplementary file). We used a repeated-measures ANOVA (with
Greenhouse-Geisser correction) for effect analysis and Bonferroni-
adjusted pairwise comparisons for post-hoc analysis. Because we are
aiming at investigating the difference between methods, we analyze
the interaction effects and main effects related to METHOD.

Movement Time No significant METHOD × DEPTH effect was
found (F(2,58) = 0.063, p = 0.939,η2

p = 0.002). METHOD had a
significant main effect on the movement time (F(2,58) = 7.649, p=
0.001,η2

p = 0.209). EyeGaze+ was the fastest but only significantly
faster than HeadPose+ (−0.24s, p = 0.004).

A significant interaction effect of METHOD × ANGLE was found
(F(1.43,41.46) = 7.110, p = 0.005,η2

p = 0.197). METHOD had a
significant effect only under small angle condition (F(2,58) =
6.929, p = 0.002). HeadPose+ performed best, significantly faster
than EyeGaze+ (−0.49s, p = 0.003).

There was a significant interaction effect on movement
time of METHOD × OCCLUSION (F(1.33,38.64) = 12.774, p <
0.001,η2

p = 0.306). METHOD had a significant effect on move-
ment time when moving an object onto occluded target position
(F(1.23,35.59) = 6.67, p = 0.01). HeadPose+ was the fastest, and
being significantly faster than EyeGaze+ (−0.55s, p = 0.016).

Travelling Distance Although a statistically significant interac-
tion effect of METHOD × ANGLE was found (F(2,58) = 8.047, p =
0.001,η2

p = 0.217), the travelling distance differences were very
small (less than 0.04m), thus resulting in a very small effect size.

Subjective Results As in the selection study, we collected sub-
jective responses to UEQ-S and NASA-TLX questionnaires. Table 3
lists the UEQ-S results (see supplementary file for the NASA-TLX
results). The rankings of the methods are given in Table 2.

Most participants (N = 11,73.33%) felt HeadPose+ “can accu-
rately move the object to its destination”. However, half participants
(N = 8,53.33%) complained about HeadPose+ that “I felt tired



Table 3: The UEQ-S results of the movement study. “>avg.” means
“above average” and “exc.” stands for “excellent”.

METHOD Pragmatic Hedonic Overall

Controller+ 1.96 (exc.) 1.45 (>avg.) 1.71 (good)
HeadPose+ 1.81 (exc.) 1.70 (good) 1.75 (good)
EyeGaze+ 1.70 (good) 1.78 (good) 1.74 (good)

after completing a lot of tasks”. Besides, participants thought Eye-
Gaze+ was disappointing in moving objects to target position that
was occluded (N = 12,80%), with large angle (N = 13,86.67%),
and with long distance (N = 12,80%), but felt that HeadPose+ and
Controller+ performed very well in general. The feedback on Head-
Pose+ was the most positive except that it was tiring.

6.5 Discussion
The experimental results showed that by taking into account scene
contexts, users can focus on selecting an object and moving it to
the target position without tedious fine-tuning on object location
and orientation. Moving depth had a similar impact on all meth-
ods. As it increased, the movement time of all three techniques
also increased significantly. There seems to be a linear correlation
in-between. Controller+ and HeadPose+ performed best here. Mov-
ing angle influenced HeadPose+ a lot, but not for EyeGaze+ and
Controller+. One potential reason is that HeadPose+ is more tiring,
while EyeGaze+ and Controller+ are more flexible without rotating
the head by a large angle. Besides, scene contexts also benefit the
situation when the target position is occluded, which is comparable
to cases with no occlusion. This is because the target object can
only be placed at where it can be supported in the right context. For
example, a chair should be placed on the floor (behind a table) but
not on the table. It also showed that Controller+ and HeadPose+ are
more stable than EyeGaze+, as it is difficult to gaze at the occluded
target position in EyeGaze+.

7 APPLICATION

The selection and movement studies showed that the refined meth-
ods with scene contexts generally performed well. We further imple-
mented a furniture rearrangement application based on the selection
and movement interactions, as a preliminary demonstration of our
approach. Compared to the user studies, the application reflected the
performance of tested methods in a more complex scenario.

In this VR application, a set of furniture objects were initially
placed outside a virtual room, the task for the user was to select and
move each furniture object into the room sequentially, following the
target layout that was displayed as a picture on the wall (see Figure 11
and the supplementary video). Scene contexts that existed in this
application includes: 1) dependence relationship: sofa and hanger,
chair and footrest; 2) group relationship: candles, potted plants; and
3) spatial relationship: desk and sofa, desk and chair. We conducted
a small-scale user experience experiment with three participants
(all male). Each participant was initiated with his location outside
the room. The task was to select, move and rearrange the furniture
object as fast as possible. The participant was allowed to decide
the order of objects for selection and movement. The average time
for completing the furniture rearrangement task using Controller+,
HeadPose+ and EyeGaze+ was 94.5seconds, 127.4seconds and
91.8seconds, while the average travelling distances were 1.8meters,
1.7meters and 3.1meters, respectively.

Participants overall preferred Controller+ most, because using
the controller, they were able to select and move the target object
more flexibly and frequently in the overall application about selec-
tion and movement. We clarify that if the user prefers a specific
object orientation, he/she can easily make an adjustment after the
movement operation. However, we did not observe such intention
and feedback from users during the experiment.

(a) Before rearrangement (b) A�er rearrangement

Figure 11: Virtual furniture rearrangement application. The user se-
lects furniture objects outside a room and moves them into the room
following the target layout illustrated as a picture on the wall. (a) Furni-
ture objects before rearrangement; (b) rearranged furniture objects.

8 LIMITATIONS AND DISCUSSION

Our work has limitations. First, we only used controller buttons to ac-
cess the scene context. Notwithstanding it was a natural way to blend
context with traditional selection methods, other approaches can be
further investigated, such as using voices or gloves, or visualizing
the context via user interfaces (e.g., zoomed-in region, overhead
view, etc.). Second, in our experiment, only typical contexts of
indoor scenes were used in our selection and movement tasks. For a
totally new scene with an unfamiliar context, the user may need time
to learn how to use the scene context. Third, we acknowledge that
scene context was not fully exploited, some more global contextual
information, such as the overall balance of furniture objects, the
functional relationships between objects (sofa in front of TV set),
can be further explored in the future. Meanwhile, the tested tasks
involved only two levels of hierarchy. Nevertheless, we clarify that
our refinements are compatible with multiple levels of hierarchy.

In this paper, we presented an indoor object selection and move-
ment approach by further considering its surrounding scene context,
including object semantics and object interrelationships. We em-
ployed our approach on three major object selection and movement
methods based on handheld controller, head pose, and eye gaze. To
compare different methods and validate the effectiveness of our ap-
proach, we performed indoor object selection and movement studies
under various conditions on object size/occlusion/distraction, and
movement distance/angle/occlusion. The selection study showed
that Controller+ and EyeGaze+ generally performed better than the
other methods. Controller+ was mostly favored by participants The
movement study showed that Controller+ performed best in general.
In summary, scene contexts are confirmed to be effective in reducing
the interaction time, especially in complex interaction tasks with
occluded object and dense environment.

To investigate how the selection and movement techniques per-
form in complex interaction scenarios, we proposed to let the users
freely combine and apply selection and movement interactions in
a furniture arrangement application. Results showed that although
HeadPose+ and EyeGaze+ performed well in the selection and
movement studies, Controller+ was more stable in the overall per-
formance, with higher user preference.

There are still many issues worthy of further discussion and
research, such as raycasting stability in long distance, intuitive se-
mantics for understanding, etc. Besides, we expect a higher accuracy
of eye gaze to further improve the performance of EyeGaze+, with
the development of eye tracking technology. Finally, we believe that
scene context will benefit human-object interaction not only for ray-
casting techniques, but also for gesture and haptics based methods
in the future.
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