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Figure 1: An overview of GesturAR system workfow. (a) A user demonstrates a grabbing gesture next to a virtual cup to defne a 
trigger for a freehand AR application. (b) The user then selects the manipulating action and connects it with the hand gesture. 
(c) During testing, the user grabs the virtual cup with the pre-defned gesture. (d) The four freehand interaction scenarios 
supported by GesturAR: (d-1) A light bulb is lit after the user performs a static gesture. (d-2) The user opens the lid of a virtual 
laptop through a static gesture. (d-3) A virtual soda can is broken after a clenching dynamic gesture. (d-4) The length of a toy 
spring changes synchronously with the user’s dynamic gesture. 

ABSTRACT 
Freehand gesture is an essential input modality for modern Aug-
mented Reality (AR) user experiences. However, developing AR 
applications with customized hand interactions remains a challenge 
for end-users. Therefore, we propose GesturAR, an end-to-end au-
thoring tool that supports users to create in-situ freehand AR appli-
cations through embodied demonstration and visual programming. 
During authoring, users can intuitively demonstrate the customized 
gesture inputs while referring to the spatial and temporal context. 
Based on the taxonomy of gestures in AR, we proposed a hand 
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interaction model which maps the gesture inputs to the reactions of 
the AR contents. Thus, users can author comprehensive freehand 
applications using trigger-action visual programming and instantly 
experience the results in AR. Further, we demonstrate multiple ap-
plication scenarios enabled by GesturAR, such as interactive virtual 
objects, robots, and avatars, room-level interactive AR spaces, em-

bodied AR presentations, etc. Finally, we evaluate the performance 
and usability of GesturAR through a user study. 
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1 INTRODUCTION 
Augmented Reality (AR) technology has been broadly adopted in 
a variety of areas including manufacturing [67, 69], design [71, 
101], education [24, 89] and entertainment [55, 72]. Interacting 
with virtual content plays an essential role in most of these AR 
experiences. As a dominant approach for manipulating real-world 
objects, hand gesture has been well-accepted to be an intuitive 
method for interacting with virtual AR contents as well [12, 73], 
especially while using hands-free AR head-mounted devices (AR-
HMD) [31, 104]. Leveraging the recent advances in hand tracking 
techniques [18, 62, 86], researchers have facilitated natural gestures 
such as touching [10, 79], grasping [23, 83, 85], and holding [30] 
virtual objects without external tracking devices. Such freehand 
interactions greatly improve the immersiveness of interactions 
within the AR experiences. 

Most of the prior works [12, 23, 31, 83, 85] focus on pre-defned 
interactions for the virtual manipulation, which are unable to cover 
the complexity and diversity of the hand-based interactions used 
in our everyday life [75]. Interacting with diferent objects usually 
requires specifc hand gestures. For example, VirtualGrasp [96] has 
shown that diferent gesture preferences have been found when 
grasping books, cups, and pens in a virtual environment. Further-
more, one object may have various reactions when encountered 
with diferent gestures. For instance, a virtual soda can can be held 
tightly with one or two hands, placed on the palm, or squeezed. 
Consequently, it is difcult for an AR application to include all the 
hand-object interactions in advance. On the other hand, end-users 
have more in-depth knowledge about their activities and gesture 
preferences [19]. As a result, we are highly motivated to empower 
end-users to author personalized hand-related interactions. 

Freehand AR application typically detects hand gesture inputs 
in real-time to invoke the corresponding responses of the virtual 
contents. However, building algorithms to recognize a certain ges-
ture requires professional expertise. On the other hand, embodied 
demonstration provides an intuitive way to create gesture-enabled 
virtual contents [38]. Via the demonstration of a few examples, users 
can build customized gesture detection applications [8, 27, 53, 54] 
without looking into the low-level details. This way, even non-
expert AR consumers can design the freehand interactions accord-
ing to their personal preference and specifc surrounding contexts. 

Popular programming-based authoring tools (Unity3D [87], Un-
real [88], ARCore [4], ARKit [5], etc.) have a steep learning curve 
and are therefore cumbersome for non-professional users to create 
AR applications [66]. In contrast, the immersive experience sup-
ported by AR-HMD fosters the evolution of authoring workfows 
in an in-situ and ad-hoc fashion [41, 92]. The WYSIWYG (what you 
see is what you get) metaphor enables users to directly build 3D 
models [33] and create animations [7, 98] by manipulating virtual 
objects. Further, users are able to create interactive contents with in-
situ visual programming interfaces [29, 45, 105]. Thus, we propose 
to embrace the embodied demonstration of hand gestures into an 
immersive AR authoring environment. To this end, users can view, 
manipulate and edit the demonstrated gestures as elements of the 
visual programming interface and link them with virtual content 
behaviors to create customized gesture-enabled AR experiences. 

We propose GesturAR, an end-to-end authoring system that 
supports the real-time creation of AR applications with freehand 
inputs. We build our authoring environment on a pair of optical 
see-through AR glasses with a built-in hand tracking module [31]. 
GesturAR allows intuitive authoring of customized freehand inputs 
through embodied demonstration while using the surrounding en-
vironment as contextual reference (Figure 1a). Users then complete 
the freehand interactions by matching the hand gestures with re-
actions of virtual contents using a visual programming interface 
(Figure 1b), which is designed based on previous elicitation studies 
[75, 95]. Thus, users can create freehand interactions through sim-

ple trigger-action programming logic (Figure 1d). Further, with the 
support of a real-time hand gesture detection algorithm, users can 
instantly explore the authored AR experience (Figure 1c). 

Following is a list of our contributions: 

• A comprehensive in-situ authoring workfow for end-users 
to create and perform customized freehand interactions 
through embodied demonstration. 

• A freehand interaction model that spatially and temporally 
maps the hand inputs to responding behaviors of the vir-
tual contents based on a real-time hand gesture detection 
algorithm. 

• An AR interface for generating virtual assets, demonstrat-

ing hand gestures, and creating freehand AR applications 
through visual programming. 

• A wide range of example applications demonstrating the 
potentials of the proposed authoring system. And the user 
studies for evaluating the system usability. 

2 RELATED WORKS 

2.1 Freehand interactions in AR 
Freehand interactions (or barehand interactions) [90] have long 
been proposed in the area of HCI as a natural interaction method 
that relieves users from external tracking devices. Some works used 
freehand interactions to remotely "pan and zoom" 2D contents on 
big screens or wall displays [11, 25, 63, 80]. Meanwhile, a similar 
metaphor was applied to 3D contents in VR/AR environments. Fin-
gARtips [12] allows users to pinch and move virtual contents by 
detecting fducial markers attached to fngertips. With the devel-
opment of RGB-D and stereo cameras, 3D geometry of the hands 
was retrieved for hand-virtual object collision detection [10, 30]. 
Researchers have also explored manipulating virtual contents by 
detecting key points on bare hands. Simple gestures such as pinch-
ing [32, 59, 69], pointing [48], palming [40] and grabbing [99] can 
be recognized and mapped to the selection, translation, rotation 
or scaling of virtual contents. Furthermore, using portable devices, 
i.e. Leapmotion [86], researchers can achieve full-hand skeleton 
and perform object manipulation with higher accuracy [79, 85]. 
However, most previous works map specifed hand gestures to 
limited operations, i.e. selection, translation, or rotation. In other 
words, hand gesture detection was only used as a mouse click and 
drag-and-drop metaphor to manipulate 3D contents, while the fex-
ibility and dexterity of hands werenot fully exploited. In contrast, 

553



GesturAR: An Authoring System for Creating Freehand Interactive Augmented Reality Applications UIST ’21, October 10–14, 2021, Virtual Event, USA 

GesturAR endeavors to explore an interface that can cover a ma-

jority of the hand gestures and enrich the usage beyond simple 
operations. 

Meanwhile, instead of using predefned gestures, researchers 
encourage end-users to select preferred freehand interactions for 
multiple immersive applications [75]. VirtualGrasp [96] let users 
demonstrate how they grasp objects and utilize the object-gesture 
pairs to retrieve corresponding virtual objects. Similarly, Force Push 
[100] learned a force mapping model from users for remote object 
manipulation. Recently, MagicalHands [7] selected gestures for 
authoring particle animation from users’ demonstrations. By intro-
ducing end-users into the design process, the freehand interaction 
space is greatly expanded and the resulting AR freehand interac-
tions correspond with the end-user’s life experience. Yet, the prior 
arts above employed an ofine process where users could only try 
out the immersive applications after the researchers had collected, 
processed, and learned from the user-performed examples. On the 
other hand, GesturAR proposes a real-time authoring process where 
users not only design freehand interactions but also try them out 
immediately in the same AR context. 

2.2 Gesture authoring through embodied 
demonstration 

The metaphor of programming by demonstration [52] greatly en-
hances end-user development by overcoming low-level program-

ming details. Specifcally, embodied demonstration refers to the 
actions performed by the human’s body. The body or hand poses 
can be used as references for creating 3D models [16, 38, 43] and 
dynamic contents [7, 13, 98]. Meantime, they can become examples 
to train classifers for gesture detection. Gesture Coder [53] and 
Gesture studio [54] enable 2D multi-touch gesture creation through 
a demonstration and declaration process. Meanwhile, researchers al-
low users to record sensor outputs of demonstrated mid-air gestures, 
then use them as examples to train detection algorithms [8, 27, 102] 
such as Dynamic Time Warping or Hidden Markov Chain. However, 
these works need a desktop interface to visualize and edit the sensor 
outputs and may need iterative demonstration to improve accuracy. 
Thus these workfows are not compatible with immersive AR/VR 
environments. Recently, GhostAR [14] and CAPturAR [91] inte-
grate a human action editing interface so that users can visualize, 
manipulate and edit body gestures in AR. However, the detection 
algorithms presented in the works above [8, 14, 27, 53, 91, 102] 
mainly focus on raw sensor output or full-body actions and cannot 
be directly applied to gesture-centered interactions. 

To this end, GesturAR is designed to follow the metaphor of 
embodied demonstration while fully considering the characteristics 
of freehand interactions in AR. The elicitation studies in previ-
ous works [7, 75, 96] reveal that a typical gesture in AR contains 
two kinds of properties, (1) local properties, which refer to the 
poses of hands, i.e. relative positions of joints, and (2) global prop-
erties, which refer to the positions, directions and movement of 
the palms. Inspired by these fndings, GesturAR analyzes the key 
properties of users’ gesture demonstration and embeds a real-time 
hand gesture recognition technique for a smooth gesture authoring 
experience. 

2.3 Immersive authoring tools for AR 
applications 

AR applications enable users to interact with a mixed virtual-
physical environment. Authoring an AR application usually in-
volves two steps: 1) creating virtual contents as well as their be-
haviors and 2) defning the interactions between users and virtual 
contents [44]. While popular AR application authoring platforms 
such as Unity [87] and Unreal [88] are powerful but obscure for 
non-professional users [66], alternative tools and workfows are 
proposed for designers and end-users to create AR applications [9]. 
Some works focus on rapid prototyping of AR experience through 
Wizard-of-Oz (WOz) [2, 64] or video prototyping [49, 50] rather 
than functional AR applications. Meanwhile, in-situ authoring was 
proposed [45, 92, 103] to blend the authoring process within the AR 
interaction space and allow for intuitive 3D manipulation instead 
of 2D programming. Window Shaping [33] and SceneCtrl [101] 
empowered the creation of static 3D models and virtual scenes 
by leveraging the spatial perception of AR devices. Furthermore, 
animations of virtual contents can be created using direct in-situ 
manipulation [7, 13, 14, 98]. Moreover, the visual programming 
capability [21, 29, 91, 105] is integrated into immersive interfaces to 
pair user interactions with virtual contents behaviors. For instance, 
iaTAR[45] connected user inputs with object properties to build 
tangible virtual models, and let users test the interaction immedi-

ately after the connection. Besides, Ng et al. [68] created situated 
games using trigger-action links. However, most previous tools ac-
cept limited user input modality such as spatial location [26, 68], or 
fducial markers [36, 45, 70, 81]. While some works encourage users 
to use their hands during the authoring process [82, 92], the system 
that enables end-users to create AR applications with customized 
freehand input remains unexplored. 

To fll in this critical gap, GesturAR combines embodied demon-

stration of hand gesture and real-time gesture detection with an 
in-situ authoring interface. In addition, to enable a fuent authoring 
experience, GesturAR interface integrates well studied interaction 
techniques that are presented in previous works such as scanning 
[33] and sketching [50] for virtual content creation, animation 
creation through direct manipulation [98], as well as visual pro-
gramming using icons and connections [29, 105]. With GesturAR, 
users can create an interactive AR application from scratch, test it 
in real-time, and share it with other users. 

3 GESTURAR SYSTEM DESIGN 

3.1 AR freehand interaction model 
The input-output model has been widely adopted by previous in-
teraction prototyping systems including Examplar [27], Trigger-
Action-Circuits[3], Astral [42] and Kitty [35]. In such model, an 
interaction involves two components, an input that is initiated by 
a subject, and an output that is generated by an object in response 
to the input. An AR freehand interaction adopts the similar pattern 
where the input is a hand gesture and the output is the behavior of 
relevant virtual content. 

Previous elicitation studies on AR hand interactions [75, 95] 
categorized the AR gestures in to six dimensions: Nature, Symmetry, 
Binding, Locale, Form, and Flow. Among these dimensions, Form, 
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which describes the status of the hands, and Flow, which describes 
the response of the virtual contents, corresponding to the input and 
output respectively. Following the categories of Form and Flow, we 
derive two types of input and two types of output: 

• Static input, which is a specifc status of the hands, including 
hand pose, position, direction and handedness, 

• Dynamic input, which is a time series of hand status, 
• Discrete output, which responses right after the gesture com-

pletion, 
• Continuous output, which responses during the gesture. 

Therefore, we would like to explore the resulting AR freehand 
interactions created by combining diferent types of inputs and 
outputs and fll in the 2 by 2 table presented in table 1 to complete 
the interaction model in GesturAR. 

Table 1: AR freehand interaction model 

input 
output 

Discrete Continuous 

Static static-provoking manipulating 
Dynamic dynamic-provoking synchronous 

Static + Discrete: This category represents the interactions in 
which virtual contents respond right after a static gesture is detected. 
Thus, we name it static-provoking type. Touching a surface or 
pressing a button are static-provoking interactions. We show an ex-
ample in Figure 1d-1, where a light bulb glows after a user performs 
a two-handed holding gesture beneath it. 

Static + Continuous: This category represents the interactions 
in which virtual contents keep reacting to the user’s static gesture. 
The most common scenario, in this case, is manipulating, where 
an object follows the transform of the user’s hands. Figure 1c shows 
a virtual cup is manipulated by a user while another example is 
shown in Figure 1d-2 where the virtual laptop lid follows the user’s 
hand while being constrained and rotating along a hinge. 

Dynamic + Discrete: This category represents the interactions 
in which virtual contents respond right after a dynamic gesture is 
detected. Similar to static-provoking type, we name it dynamic-
provoking type. Waving hands, clapping hands and punching 
are dynamic-provoking interactions in daily life. An example of 
dynamic-provoking interaction in AR can be found in Figure 1d-3. 
A user breaks the soda can by clenching the fst. 

Dynamic + Continuous: This category represents the inter-
actions in which a virtual content responds synchronously to the 
movement of the hands during a dynamic gesture, like resizing an 
object with the distance between the hands. Therefore, we name it 
synchronous interaction. Figure 1d-4 shows a synchronous inter-
action where a user can stretch a spring using a pinching gesture. 

3.2 Programming AR freehand interactions 
through trigger-action connections 

To enable an intuitive authoring experience and a minimized learn-
ing curve, we adopt a trigger-action programming model in Gestu-
rAR refecting the inputs and outputs of the freehand interactions. 
We provide users with two conceptual primitives, namely trigger 

(represented as a solid triangle) and action (represented as a hollow 
triangle) (Figure 1b). This way, users can create the four types of AR 
freehand interactions by connecting diferent triggers and actions. 

While running an AR application in GesturAR, a trigger monitors 
the user’s behavior and sends information to an action through the 
connection between them. Typically, there are two kinds of infor-
mation, i.e. signal (for discrete interaction) and value (for continuous 
interaction). In GesturAR authoring interface, users can use the 
following kinds of triggers: 

• static gesture that can emit both signals (when a static gesture 
is detected) and a value (the transform of the hands). 

• dynamic gesture that can emit both signals (when a dynamic 
gesture is completed) and a value (the progress of the dy-
namic gesture). 

and actions: 

• following action (the behavior to follow another object) that 
can receive a value (i.e. the transform of the other object). 

• animation action that can receive either a signal to start 
playing the animation, or a value that controls the progress 
of the animation. 

• multiple predefned actions, such as appear/disappear, mesh 
deformation, mesh explosion, etc. that can receive signals 
from triggers (Figure 6). 

A freehand interaction is valid once the trigger and action can 
send and receive the same type of information and the type of the 
freehand interaction is decided by the combination. for instance, 

• static gesture trigger + following action leads to a manipulat-
ing interaction. 

• static gesture trigger + animation action or predefned actions 
leads to a static-provoking interaction. 

• dynamic gesture trigger + predefned actions leads to a 
dynamic-provoking interaction. 

• dynamic gesture trigger + animation action can result in 
either a dynamic-provoking interaction or a synchronous in-
teraction. GesturAR generates a synchronous interaction if 
the dynamic gesture trigger is created after the animation 
action, or a dynamic-provoking interaction otherwise. 

Besides, users can connect multiple actions to one trigger to activate 
them together or connect multiple triggers to one action so that 
every trigger can activate the same action. Users are encouraged 
to use multiple trigger-action connections to build interesting AR 
applications. To ensure valid authoring, GesturAR rejects the con-
nection between the mismatching triggers and actions. In addition, 
to enlarge the interaction space of the AR applications, GesturAR 
also provides extra event triggers (Figure 6) that are beyond the 
scope of freehand interactions, such as gaze event (user looks an ob-
ject), approaching event (user approaches an object), position event 
(a virtual object arrives at a location) and collision event (two objects 
collide with each other), etc. These triggers can emit signals and 
make discrete interactions when connected to animation action or 
other predefned actions. 

3.3 GesturAR Authoring Interface 
In this section, we introduce the interface of GesturAR, an authoring 
system for creating freehand interactive AR applications. Basically, 
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Figure 2: GesturAR system walk-through. (a) The user frst creates a virtual cookie monster by scanning around the real object 
in Creation Mode. (b) In the Authoring Mode, the user demonstrates a static double-handed holding gesture (b-1) and a dynamic 
patting gesture (b-2) spatially referring to the virtual object. (c) The user demonstrates a scale change of the virtual object by 
dragging the scale handle. (d) The user connects a manipulating with the holding gesture, and the scale change with the 
patting gesture through visual programming. (e) In Play Mode, the user can perform the same holding gesture to manipulate 
the cookie monster (e-1), or squashes it by the patting gesture (e-2). 

GesturAR interface is separated into three modes, a Creation Mode 
for users to create virtual assets, an Authoring Mode for users 
to design and edit freehand interactions, and a Play Mode for 
users to try out the authored AR application. Users can choose the 
modes using a menu foating next to the left hand (Figure 3a). To 
better understand the GesturAR workfow, we take a look at a user 
who wants to create an interactive virtual cookie monster using 
GesturAR (Figure 2). Specifcally, the user prefers to hold the cookie 
monster using two hands (Figure 2e-1) or squash it by patting 
its head (Figure 2e-2). First, the user needs to create the virtual 
asset of the cookie monster in Creation Mode (Figure 2a). Then the 
user demonstrates the gestures of holding it and patting its head 
in Authoring Mode (Figure 2b-1,2). After that, the user edits the 
behaviors of the virtual model. The user selects a following action, 
and demonstrates an animation action that "the cookie monster is 
squashed" (Figure 2c). After fnishing authoring the hand gestures 
and the object behaviors, the user connects them through visual 
programming (Figure 2d). Now the user authors two freehand 
interactions: a manipulating interaction and a dynamic-provoking 
interaction. Finally, the user enters the Play Mode to play with the 
interactive cookie monster (Figure 2e-1,2). In the rest of this section, 
we will describe the operations of each step in detail. 

3.3.1 Create virtual objects. As an all-in-one AR authoring inter-
face, GesturAR incorporates a Creation Mode for users to create 
virtual assets in-situ. Users can make a virtual object by importing 
3D models, mid-air sketching or 3D scanning. To import a 3D model, 
a user can turn on a menu with models of everyday objects using 
the right-hand menu. While doing mid-air sketching, a brush tip 
is foating in front of his/her right hand index fnger. The user can 
change the color and width of the brush (Figure 3b), or leave a trace 
while moving the right-hand (Figure 3c). To perform a 3D scanning, 
the user touches the surrounding surface with a spherical scanning 
tip (Figure 2a). The mesh pieces of the touched surface then appear. 
Note that the current implementation of GesturAR is not able to 
perform 3D scanning using the native hardware on Hololens2. The 
scanning experience is simulated with a pre-scanned mesh of the 
surrounding surfaces. 

Besides simple rigid 3D models, GesturAR enables users to build 
complex assemblies using mechanical constraints (Figure 4a). 
Figure 4b shows a user who builds a virtual chest using a hinge joint. 

Figure 3: (a) Left-hand menu. The left column is the main 
menu for the three modes. The icon of the chosen mode 
will be highlighted. The right two rows are the sub-menus 
corresponding to the Creation and Authoring Mode. The 
sub-menu that does not belong to the current mode will 
be hidden. (b) Right-hand menu to switch between "Add" 
and "Delete", and change brush color and width for mid-air 
sketching. Users can do all regular operations by choosing 
"Add". While choosing "Delete", any virtual content that is 
touched by users’ hands becomes red and will be deleted 
when the user performs a ’pinch’ gesture. (c) A user is cre-
ating 3D sketches with the brush tip. 

Users can also bind virtual objects to the environment to constrain 
the movements. A user can create a door movement using a hinge 
joint or a virtual drawer using a sliding joint. 

Figure 4: (a) Mechanical constraints supported by GesturAR. 
(b) Procedure: The user frst connects the parent and child 
objects of a hinge joint with lines, then arranges the spatial 
relationship among the three elements. The movement of 
the chest lid is constrained with the base. 

3.3.2 Demonstrate hand gestures. GesturAR enables users to defne 
a desired freehand interaction by directly performing it while using 
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real objects or virtual contents as spatial and temporal reference. 
As shown in Figure 2b-1,2, the user performs gestures against the 
scanned model. Figure 5 shows the detailed process of demonstrat-

ing a hand gesture. Once the button for creating a gesture is pressed, 
the user has fve seconds to prepare. After the preparation, Gestu-
rAR starts to record the user’s hand gestures. For static gestures 
(Figure 5a), the user holds the hand still for 2 seconds to allow for 
multiple sampling of the gesture. For dynamic gestures (Figure 5b), 
the user moves hands to perform the gesture, then holds hands 
still after fnishing the gesture. When GesturAR detects that the 
user has held the same gesture for 2 seconds, it stops recording the 
gesture and removes the last 2 seconds from the dynamic gesture. 
On completion of the demonstration, a skeleton model of the hand 
gesture is displayed as the trigger object of the gesture. The skele-
ton model also represents the position and detection range of the 
gesture. The user can move it or resize its bounding box to modify 
the gesturing space (Figure 5d). The gesture will only be detected 
when the hand enters the bounding box to prevent false positive 
detection. Besides, users can set the bounding box to be bound to a 
relevant object, stick to world coordinate, or follow the user. 

Figure 5: (a) Static, (b) dynamic-provoking, and (c) synchro-
nous gestures authoring procedure. (d) Change volume and 
position of the gesturing space by manipulating the bound-
ing box. Users can further bind the gesturing space to an ob-
ject or the world coordinate. 

Furthermore, users create synchronous interactions by creating 
dynamic gestures after the animation has been recorded (Figure 5c). 
The user frst creates a scaling animation of a rock (Figure 5c-1). 
Then he/she performs a dynamic gesture by aligning the hands 
with the size of the rock (Figure 5c-2). Thus, GesturAR pairs the 
key value of the gesture, which is the distance between the hands, 
to the progress of the rock scaling animation, and enables the user 
to synchronously control the size of the rock with both hands. 

3.3.3 Edit virtual object behaviors. For each virtual object, Gestu-
rAR displays all its possible behaviors (following, animation, etc.) 
in a nearby menu. A user can create corresponding actions objects 
by selecting from the menu. Especially, for the animation behavior, 
GesturAR lets users create an animation by directly move, rotate or 
scale the object with default hand manipulation. In Figure 2c, the 
user creates a squashing animation by scaling along the y axis of 

the virtual object. Additionally, the pre-mentioned event triggers 
(gaze event, approaching event, position event, collision event, etc.) 
are also listed in the same menu. Triggers and actions supported by 
GesturAR are listed in Figure 6. 

Figure 6: Triggers (top) and Actions (bottom) supported by 
GesturAR. 

3.3.4 Program freehand interactions. The last step of the author-
ing process is to connect the triggers and actions, which can be 
done simply through a drag-and-drop manner. To make the con-
nection, the user frst pinches the solid triangle icon of a trigger 
and picks up a line from it. Then he/she approaches the hollow 
triangle icon of an action and releases the fngers to drop the line on 
the hollow triangle. Once the user fnishes connecting, GesturAR 
color-codes the connection to better visualize the logic. Figure 2d 
shows two trigger-action connections: 1) a green one, which con-
nects a dynamic gesture and an animation, refers to the "squashing 
the cookie monster by patting its head" interaction, and 2) a purple 
one, which connects a static gesture and a following action , refers 
to the manipulation interaction using a two-hand holding gesture. 

3.3.5 Test the AR applications. Play Mode supports users to try out 
the interactive contents on-the-fy. In this mode, the system keeps 
tracking all the triggers authored by the user. An action is activated 
when any connected trigger is activated (Figure 2e-1,2). Specifcally, 
the detection of the gesture triggers will be elaborated in the next 
section. Moreover, in Play Mode, all the trigger and action icons are 
hidden, while the skeleton hand models are left as visual hints. 

3.4 Hand Gesture Detection 
We describe how GesturAR detects a user’s hand gesture for static 
gesture trigger and dynamic gesture trigger, as well as extracts key 
values from dynamic gestures in synchronous interactions in Play 
Mode. Essentially, we rely on the hand joints data provided by 
Hololens2 hand tracking API 1. 

3.4.1 Static hand gesture recognition. GesturAR detects a static ges-
ture based on the position and pose of the hand. For instance, a user 
can only grab a cup when the hand approaches the handle and per-
forms the grabbing pose (Figure 1c). While the hand position is easy 
to track, the hand pose is fexible and versatile. Therefore, rather 
than a classifcation algorithm that can only detect limited hand 
poses, we adopt the method of one-shot learning [39]. Basically, we 

1
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-

unity/features/input/hand-tracking 
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train a Siamese neural network (Figure 7b) that indicates if the two 
input hand data belong to the same gesture or not. Thus, we are 
able to detect hand gestures using only one demonstration example 
by comparing the real-time hand data with it. Since the hand poses 
are commonly performed by bending diferent fngers, we directly 
use the bending angles of the 10 hand fnger joints (Figure 7a) as 
the input to the Siamese network. Due to the symmetry of hands, 
the Siamese neural network can be applied to either hand. As for 
the two hand gestures, the left- and right-hand poses are processed 
separately. And a two-hand gesture is detected only when both 
hand poses are matched. To reduce the computational cost, we 
design a small neural network with fully connected layers (Figure 
7b). With this model, Hololens2 is able to process the hand pose 
data at 60 frames per second. 

Figure 7: Hand pose detection algorithm used by GesturAR. 
(a) We focus on the 10 hand joint angles for hand pose detec-
tion. (b) Structure of the Siamese neural network. The top 
and bottom branches of the network share same structure 
and parameters. This network returns a true or false label 
that indicates whether the two inputs belong to the same 
gesture. (c) Our data augmentation method for training the 
Siamese network. ai (i = 1 ∼ 4) and bi (i = 1 ∼ 4) repre-
sent hand poses that belong to the two diferent classes. In 
each epoch, we perform a in-class shufle on half of the data 
to produce true pairs (blue) and a cross-class shufle on the 
other half to produce false pairs (red). 

We collected a customized hand pose dataset with 18 classes of 
the hand poses (Figure 8 (top-left) ) referring to previous studies 
[75, 96]. We invited 12 volunteers (7 males, 5 females) to collect 
approximately 2000 samples for each class. We randomly select 2 
volunteers whose samples are used as the validation dataset, and 
the rest samples are used as training dataset. To train the Siamese 
neural network, each time we randomly select a pair of samples 
from the training dataset as inputs. We set the ground truth label 
as true if the two samples belong to the same class, and vice versa. 
To make sure the training data is balanced, i.e. the numbers of true 
pairs and false pairs in each training epoch are same, we perform 
an in-class shufe and a cross class shufe on the dataset as shown 
in Figure 7(c). We achieved an accuracy of 98.56% on the validation 
dataset, as shown in the confusion matrix in Figure 8. 

Figure 8: The 18 gestures included in our customized dataset. 
Roughly, the frst 9 gestures involve palm and whole hand, 
while the rest gestures focus on fnger-based manipulation 
(top-left). The confusion matrix achieved on the validation 
dataset (bottom-right). The color represents the percentage 
of true labels among all predicted labels. The overall accu-
racy is 98.56%. 

3.4.2 Dynamic gesture recognition. Traditional ways to handle the 
temporal and spatial information contained in a dynamic gesture 
are dynamic time warping (DTW) [14, 51], hidden markov model 
(HMM) [20, 60] or neural networks [17, 56], Yet these methods 
need a large amount of training data and massive computational 
power. Instead, we propose a changing-state method for a fuent 
run on Hololens2. We record a dynamic gesture as a time series 
of hand status data [f1, f2, · · · , fN ]. Each frame fi contains hand 
information including joint positions, palm position, moving speed, 
etc. It is time-consuming to directly analyze the entire time series. 
To distill key features from the time series, we apply a state to 
describe the status of a hand at each frame. A state contains three 
attributes, namely the hand pose (Pose), moving direction (mDir ) 
and palm rotation(pRot ). The latter two attributes are evaluated 
with respect to the user’s local coordinate systems. As shown in 
Figure 9a-1,2, we use verbal labels rather than numerical values to 
note the moving direction and palm rotation. Further, we implement 
the Siamese neural network described in the previous section to 
tell whether the hand poses in two diferent frames are in the same 
class. This way, we can combine the adjacent frames with same state 
and encode the dynamic gesture into a shortlist of states (Figure 9b). 
We present the detailed algorithm (Algorithm 1) below. Typically, 
a dynamic gesture can be transferred into a list with two to six 
states. In Play Mode, we apply a similar state encoding algorithm to 
the real-time hand tracking data (just change the fi in the for loop 
to the real-time data) and save the states in a queue. To detect a 
dynamic gesture, we compare the latest elements of the queue with 
its state list. If all the states are sequentially matched, we assume the 
user is performing that gesture. For the gestures that involve both 
hands, we handle the left and right hand tracking data separately. 
Such gestures are detected when the state lists of both hands are 
matched. Additionally, to avoid false-positive detection, we only 
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detect a gesture when the user’s hands enter the gesturing space of 
the authored gesture (Figure 5d). 

Algorithm 1 Calculate state series from a dynamic gesture 

1: procedure CalculateStates([f1, f2, · · · , fN ]) 
2: States ← array[]
3: get state s1 from f1 
4: add s1 to States 
5: for i ← 2, N do 
6: get state si from fi 
7: sd ← the last element of States 
8: if SiameseNetwork(si .Pose, sd .Pose) is true then 
9: if si .mDir , sd .mDir or si .pRot , sd .pRot then 
10: snew ← (sd .Pose, si .mDir , si .pRot)
11: add snew to States 
12: else 
13: add si to States 
14: return States 

I I 
Hand Pose ,- first gesture ---~ ----....--- second gesture -----t 

Moving Direction :----- left :- still - : 

Palm Rotation :- facing opposite ~ facing down : 

States I state 1 1 state 2 state 3 1 

Figure 9: (a) The labels used to describe the hand movement 
and palm rotation. (a-1) The hand movement is character-
ized by 6 moving directions (Up, Down, Lef, Right, Forward 
and Backward) or Still(not moving). (a-2) Three labels are 
used to describe the rotation of the palm. Respectively, Fac-
ing Up: the palm faces toward the user’s head; Facing Down: 
the back of the hand faces toward the user’s head; Facing 
Opposite: the palm faces the other side of the body. (b) The 
process of converting a dynamic gesture into a list of states. 
The hand changes to a new state when any of the three at-
tributes changes. 

3.4.3 Temporal and spatial mapping in synchronous interaction. To 
achieve the synchronization between a dynamic gesture and a vir-
tual content animation in a synchronous interaction, GesturAR frst 
extracts a numeric key value, like the distance between hands or 
angle between fngers, from the dynamic gesture (Figure 10). Then 

Wang and Qian, et al. 

GesturAR maps the key value to the progress of the animation to 
achieve temporal and spatial correlation between the hands and 
the virtual contents. Considering the type of hand gestures, we 
achieve the numeric key value in diferent ways. For instance, the 
pinching and clamping gestures are mapped to fngertip distances 
(Figure 10a,b); the holding and grasping gesture are mapped to a 
circle formed by the hand (Figure 10c); some gestures that involve 
fnger bending are mapped to the bending angles (Figure 10d,e); the 
gestures that involve hand movement are mapped to the moving 
distance (Figure 10f); further, the two hand gestures are mapped 
to the distance or angle between the hands (Figure 10g,h). In Au-
thoring mode, after the user has demonstrated a dynamic gesture in 
a synchronous interaction, the gesture is classifed into one of the 
types mentioned above using the changing-state method, and the 
corresponding key value is extracted. 

Figure 10: The mapping between hand gestures and the nu-
meric key values in synchronous interactions. 

4 APPLICATION SCENARIOS 

4.1 Realistic object manipulation with 
multiple ways 

Many objects in real-life respond diferently when hands interact 
with them in diferent ways. For instance, a basketball can be held 
with two hands, spin on one fnger or bounce when the user pat on it. 
Programming such various types of behaviors need vast efort [37]. 
With GesturAR, users can simply demonstrate the hand gestures 
and connect them to diferent behaviors respectively. As shown in 
Figure 11a-1, a user connects the two-hand ’holding’ gesture with 
a manipulating action of a virtual basketball, a pointing gesture 
with a ’spinning’ animation and a ’patting’ dynamic gesture with a 
’bouncing’ animation. Then, the user can interact with the virtual 
basketball in a similar way as real basketballs (Figure 11a-2). 

Furthermore, the purpose of a gesture can be inferred through its 
spatial property. For example, holding the head of a pencil implies 
’writing’ while holding the tail implies ’erasing’. Benefted from the 
in-situ visualization and spatial awareness of GesturAR, the user 
can demonstrate two ’holding’ gestures at the head and the tail of 
the pencil and connect them to the ’writing’ and ’erasing’ actions 
respectively (Figure 11b-1). The users also connect both gestures 
to a following action to let the pencil follow the movement of the 
hand. Now, the user can either write or erase by grabbing diferent 
parts of the virtual pencil (Figure 11b-2). 
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Figure 11: Virtual basketball: (a-1) A ’holding’ static gesture 
and a ’pointing’ static gesture are connected to a following 
action; the ’pointing’ gesture is also connected to a ’spin’ 
animation; a ’pat’ dynamic gesture is connected to a drib-
ble animation. (a-2) The user can hold the basketball using 
both hands, spin the basketball on the index fnger, and drib-
ble the basketball. Virtual pencil: (b-1) Two ’holding’ static 
gestures are placed at the tip and the bottom of the pencil, 
connecting to a following action;the tip-side gesture is con-
nected to a ’writing’ action, while the other one is connected 
to an ’erasing’ action. (b-2) The user can hold the tip of the 
pencil to write, or erase a stroke when holding the bottom 
of the pencil. 

4.2 Interactive virtual agents and robots 
Assistant agents and robots, such as robotic pets [84], and virtual 
assistant [57], largely enriches our daily life with their interactive 
behaviors. Recently, embodied gestures have been embraced as 
a popular modality for humans interacting with robots [97] and 
virtual avatars. Meanwhile, in-situ prototyping of such experience 
greatly accelerates the process of interaction design for these agents 
[76]. Figure 12a illustrates the process of prototyping a virtual 
mobile robot using GesturAR. The user frst scans a mock-up robot 
as the virtual model. Then, to better simulate the moving behavior 
of the robot, the user adds a planar joint to constrain the robot to the 
ground. Next, the user creates two animations of the robot, namely 
’move forward’ and ’rotate’, and maps them with the ’come’ gesture 
and ’moving hand’ gesture. This way, the user can either call the 
robot to come or let it dance by following the hand movement. 

In another scenario, the user plans to prototype a digital avatar. 
The user can frst scan one of his friends into the system. Next, 
by setting two spherical joints at the agent’s elbow and wrist, the 
agent’s arm can move realistically. As a result, the user creates a 
humanoid agent that can wave the hands after the user waves the 
hands, shake hands with the user, and pops up a sketched "Hi" after 
the user pats on the agent’s shoulder respectively (Figure 12b). 

Figure 12: (a) An interactive toy robot: (a-1) A planar joint 
is connected to the robot. A ’come’ dynamic gesture is 
connected to a ’moving’ animation action as a dynamic-
provoking interaction, while a ’pointing’ dynamic gesture is 
demonstrated referring to a ’rotation’ animation as a syn-
chronous interaction. (a-2) The toy robot can move towards 
the user after the user does a ’come’ gesture and rotates syn-
chronously with the user’s ’pointing’ hand command. (b) A 
humanoid agent: (b-1) Two spherical joints link the agent’s 
body, upper, and lower arm. A double-handed static gesture 
is created next to the agent’s hand and connected with a fol-
lowing action. A ’waving hand’ dynamic gesture is connected 
with a similar ’waving hand’ animation action of the agent. 
A sketched "Hi" is linked with a ’patting’ static gesture. (b-
2) The virtual agent can wave the hand, shake hands with 
the user, and pop up a "Hi" after the user pat on the agent’s 
shoulder. 

4.3 Room-level interactive AR game 
Besides focusing on the interactions with one single object, a 
broader application scenario is to make an augmented and inter-
active living space. For instance, the interactive AR gaming area 
witness a fourishing development in recent years [55, 72]. With 
GesturAR, the capability of in-situ authoring and object scanning 
allows end-users to create in-door AR games that exploit the blend 
of the physical and virtual contexts. Here, the user plans to create a 
treasure hunt game for the guests using some pirate-themed objects 
he has (Figure 13a). The user frst scans a treasure map into two 
parts together with a skull. He then places three locked treasure 
boxes with only one with treasure on the table and hides the key 
under the physical skull. Then, the user places the position triggers 
within a sketched frame and sketches an arrow physically point-
ing to the real skull as a visual hint for the keys hidden beneath 
the skull. Meanwhile, the user places the scanned skull above the 
correct treasure box and uses it as the object to attach an ’open’ 
gesture connected with a ’sparkle’ animation. Throughout the en-
tire authoring process, GesturAR empowers the user to seamlessly 
interweave the virtual and physical world to rapidly create an im-

mersive AR game. When the guests come, one would enter the Play 
Mode, and follow the visual hint scattered in the room to fnd the 
treasure (Figure 13a-2). 
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Figure 13: (a) AR treasure hunt game: (a-1) Two positional 
triggers of the scanned map pieces link to two appear ac-
tions of a virtual arrow and a scanned skull respectively. A 
’open’ static gesture is connected to a sparkle action. (a-2) 
The player frst restores the broken treasure map; then fnds 
the hidden key along the virtual arrow; he opens the correct 
treasure box, and a sparkle animation shows up. (b) In-situ 
AR presentation: (b-1) A hinge joint is connected between 
the sketched sun and the sketched earth. A manipulating 
interaction is implemented on the sun model. An appear ac-
tion is connected with a static gesture located next to the 
earth. A ’rotation’ animation action of the earth is linked 
with a ’pinch rotate’ dynamic gesture. (b-2) The presenter 
frst holds a sketched sun. Then, the earth appears next to 
the presenter’s right hand. Finally, the earth starts to rotate 
about the sun after the presenter symbolically rotates his 
hand. 

4.4 Embodied AR presentation 
Performing hand gestures during conversations is a common prac-
tice. Yet, plain hand gestures only convey limited information due 
to the lack of expressiveness. GesturAR is useful to improve the 
efciency in thought delivery by incorporating embodied hand 
gestures with in-situ visual representations of dynamic 3D contents 
and animations in AR. Further, the sketching function enables an 
immediate and seamless creation of the desired 3D contents for the 
conversation. Embodied AR presentation is one typical application 
of GesturAR. Here, a presenter authors an earth-sun animation to 
explain the Heliocentric theory (Figure 13b). The user frst sketches 
the simple models of the sun and the earth, then constrains the 
earth to rotate around the sun using a hinge joint. During the AR 
presentation, the presenter frst talks about the sun while holding 
it in front of the listener, then reveals the earth with a ’touching’ 
gesture. Finally, by performing a ’pinch rotation’ dynamic gesture, 
the earth model starts to rotate about the sun to illustrate the the-
ory vividly. From the listener’s perspective, the augmented hand 
gestures clearly explain the ambiguous concept with the help of 
the in-situ visual representations (Figure 13b-2). Similarly, Gestu-
rAR can also be implemented in scenarios such as investor pitches, 
educational lectures, storytelling, etc. 

4.5 Entertaining daily life with embodied hand 
gestures 

Our system supports the ubiquitous perception of users’ spatial 
and hand gesture information so that end-users can entertain the 
daily life with their imagination. Leveraging real-time hand gesture 
detection, users can perform various pre-defned gestures to trigger 
entertaining virtual elements or fancy visual efects. For instance, 
the user can break the room’s wall virtually anytime when he feels 
angry by performing a punching gesture towards the scanned wall. 
to trigger a pre-authored mesh deform action (Figure 14a). Mean-

time, the user can create a portable pet shark with a synchronous 
interaction with a ’grabbing’ gesture and a ’scaling’ animation. So, 
the user can open and close his hand to control the size of the 
shark. Further, the user authors a ’swim’ animation, so that the 
toy shark can be shown above the user’s hand and starts to swim 
(Figure 14b). Last but not least, the user author a light sword with 
an adjustable blade. Specifcally, the handle of the sword can be 
held by the user with manipulating interaction. Meanwhile, the 
user authors a synchronous interaction to the sketched blade to 
change the length using a double-handed gesture. Therefore, when 
the user holds the handle and starts to move the other hand away, 
the blade is elongated. Afterward, the user can withdraw the sword 
by performing the gesture reversely 14c). 

Figure 14: (a) Forceful punch: (a-1) A ’punch’ dynamic ges-
ture is connected to a mesh deform action of the scanned 
wall. (a-2) The scanned wall is deformed as the user punches. 
(b) Portable pet shark: (b-1) A ’supporting’ dynamic ges-
ture connects to a following action and a ’swimming’ anima-
tion action of the scanned shark. A ’grabbing’ dynamic ges-
ture is created from a ’scaling’ animation for a synchronous 
interaction. (b-2) A scanned shark swims above the user’s 
hand and can be shrunk to the palm. (c) Light sword: (c-1) 
A following action is connected to a ’holding’ static gesture. 
A double-handed ’drawing’ dynamic gesture is created to-
gether with the animation of the elongation of the blade. (c-
2) The user frst holds the handle of the sword with the left 
hand and draws the blade by moving the right hand away. 
Then, he can hold and strike the sword. After that, the user 
can withdraw the sword by performing the ’drawing’ gesture 
reversely. 

561



'Grab'gesture 
(manipulating} 

.. Thebridgefollowstheuser'shand 

0:~~o~u~lttd~:~~~ e .. An ani_mation of the toy car moving from 
P(positionaltriggerf thebridgetothefrontofthedoor 

The facing-door 
positionofthetoycar .. Meshexplosionofthedoor 

(positional trigger} 

Self-authored Other-authored 

Dynamic Gestures 

rt~ 
0 Self-authored Other-authored 

■rurePosltiVf! ■rureNegatlve Fa lse Positlve ■Fa lseNegatlve Q F,Score ■Triggered ■ NotTrlggered Q Accuracy 

GesturAR: An Authoring System for Creating Freehand Interactive Augmented Reality Applications UIST ’21, October 10–14, 2021, Virtual Event, USA 

5 IMPLEMENTATION 
We build our system on Hololens2 [31] using Unity3D (2019.4.16f1) 
[87]. The GesturAR user interface is implemented with the support 
of Microsoft Mixed Reality Toolkit (MRTK) [61], FinalIK [22] and 
mesh efect libraries 2 3 4

. The Siamese neural network for one-
shot hand gesture classifcation is trained on a local PC (Intel Core 
i7-9700K, 3.6GHz CPU, 32GB RAM, NVIDIA RTX2080 GPU) using 
PyTorch [78] and runs on Hololens2 through Unity Barracuda 5. 
Additionally, to enable users to make virtual contents through scan-
ning, we preload the mesh model of the surrounding environment, 
which is created with an iPad 3D scanner [1], onto the Hololens2. 
We expose the mesh triangles touched by the user’s pen tip to 
simulate the scanning experience. 

6 USER STUDY 
We conducted a three-session user study to evaluate the hand detec-
tion model accuracy, immersive hand-object interaction authoring 
feasibility, and the overall system usability. 12 users (9 males and 3 
females, aging from 21 to 30) were recruited. . 11 of the users had 
experienced AR/VR applications or games on cell phones, tablets 
or head mounted devices. The rest one had the basic understand-
ing of AR/VR concepts. We did not invite any AR/VR designers 
or programmers since GesturAR is designed for the customization 
experience of non-expert AR consumers. None of the users had 
experience with our system before the user study. Note that none of 
the users provided the hand gesture data for the training process in 
Section 3.4. To better verify the shareability of our system, each time 
we invited two users to do the study at the same time. The entire 
study took 2 hours, and each user was paid 20 dollars. The study was 
taken in a 5mx5m indoor area and was screen and video-recorded 
for post-analysis. We frst requested the users to experience the 
Hololens2 built-in tutorial to get familiar with the general freehand 
AR interaction. Then, for each session, both users frst completed 
the authoring process. Considering counterbalancing, while testing 
the authoring correctness, 6 users frst tested their own applications 
(self-authored), then their partners’ (other-authored). The other 6 
tested in a reversed order. After each session, the users completed a 
survey with Likert-type (scaled 1-5) questions regarding the usage 
experience of the system features. After all the sessions, each user 
took a conversation-type interview to provide subjective feedback 
and fnished a standard System Usability Scale (SUS) questionnaire. 

6.1 Session 1: Gesture Recognition Accuracy 
To assess the performance of the one-shot learning neural network 
for hand gesture detection, we selected 8 static gestures and 7 
dynamic gestures (Figure 15). First, each user authored the 8 static 
gestures using the procedure illustrated in Figure 5a. Then, while 
testing each gesture, the user was asked to perform 1) two gestures 
that were the same as the targeting gesture (one with right hand, and 
one with left hand), and 2) two gestures that were distinct, in his/her 
opinion. Note that each user tested both their own and partners’ 
gestures. We recorded the data with 2x2 confusion matrices (TP, FP, 

2
https://assetstore.unity.com/packages/vfx/particles/spells/mesh-efects-67803 

3
https://assetstore.unity.com/packages/tools/particles-efects/mesh-explosion-5471 

4
https://assetstore.unity.com/packages/tools/utilities/gm-mesh-deformer-136461 

5
https://docs.unity3d.com/Packages/com.unity.barracuda@0.3/manual/index.html 

Figure 15: User study session 1 setup: (a) eight static gestures, 
and (b) seven dynamic gestures: open-hand, shoot, fip hand, 
come, wave-hand, pinch-rotate, and punch. 

Figure 16: User study session 2 and 3 setup. Session 2: (a-1) 6 
manipulating interactions: hold the cup handle; support the 
cup; hold the bowling ball with both hands; hold the bowling 
ball by holes; hold the chest with both hands; open the chest 
lid, (a-2) 3 synchronous interactions: push/pull a toy car; scal-
ing a rock with both hands; open/close the laptop remotely 
with thumb and index fnger, and (b) Session 3: the table-top 
interactive AR application. 

T P 
TN, FN) for all gestures, and calculated the F1 = 

1 to
T P + 

2 (F P +FN )

measure the model performance 6. Process for the dynamic gestures 
was similar, except that the users only performed each gesture once. 
And we recorded whether the system successfully detected them. 

Figure 17: Results of user study session 1. 
6
https://en.wikipedia.org/wiki/F-score 
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Result and discussion. The evaluation result is illustrated in 
Figure 17. For static gestures, our system could successfully dis-
tinguish both the correct and wrong gestures performed by the 
users (F1 scores of the test of self-authored and other-authored 
cases were 95.93% (SD=0.04), and 96.29% (SD=0.036)). This result 
is comparable with the validation accuracy (Figure 8 (bottom-

right) ). Moreover, we conducted a one-way ANOVA test towards 
the F1 scores between the two conditions after the data passed 
the Kolmogorov–Smirnov normality test (D(12)=.255, p=.35>.05 
and D(12)=.225, p=.51>.05). No signifcant diference was revealed 
between the two conditions (F(1,22)=0.056, p=.82>.05), which indi-
cated that our hand detection model could achieve a high quality 
regardless of the user who performed the gesture. 

As for dynamic gestures, the system also received competent 
accuracy (91.67% (SD=0.10) for self-authored gestures, 84.52% 
(SD=0.11) for other-authored gestures). The decrease of the ac-
curacy when testing partners’ gestures were mainly attributed to 
the diferent preferences when performing similar gestures. For 
instance, when acting the "come" gesture, some users only bend 
their fngers while others also moved their lower arms. We will 
discuss the variation in the later section. Furthermore, the Kol-
mogorov–Smirnov normality test indicated the normality of the 
accuracy data (D(12)=.319, p=.138>.05 and D(12)=.22, p=.54>.05), 
and the one-way ANOVA test showed no signifcant diference be-
tween the two scenarios (F(1,22)=2.79, p=.11>.05), which disclosed 
that although the accuracy was slightly diferent, our system could 
still detect the dynamic gestures performed by diferent users. 

6.2 Session 2: Hand-object Interaction 
Evaluation 

In this session, we evaluated the performance of the GesturAR em-

bodied authoring interface for freehand interaction creation. Here, 
the users mainly experienced the manipulating and synchronous 
situations with 6 pre-created virtual models. Specifcally, the users 
authored 2 diferent manipulating interactions for each of the frst 
3 virtual models (Figure 16a-1), and 1 synchronous interaction for 
each of the remaining 3 (Figure 16a-2). We recorded whether the 
users successfully interacted with their own and partners’ author-
ing results on the frst try during the test. 

Result and discussion. All 12 users authored 108 valid tasks 
in total. The overall test success rate of both the user’s own and the 
partner’s applications was 94.44% (SD=0.08), indicating that most 
users could fuently manipulate virtual objects using the freehand 
interaction provided by our system. 

The freehand interaction-related Likert-type question ratings 
are shown in Figure 18 (top) . In general, the users agreed with the 
necessity of customizing hand gestures for freehand interactions 
(Q2: AVG=4.75, SD=0.59). "I really like that I can defne my own way 
to manipulate those virtual objects. The only pinch is way less enough 
for me (P3)". And the embodied demonstration approach was recep-
tive (Q1: AVG=4.67, SD=0.47). "I think I can only record a gesture 
correctly when I do it right next to that object" (P3). Meanwhile, most 
users were content with the capability of the hand-object inter-
actions in our system (Q3: AVG=4.58, SD=0.64). "[Static] gestures 
are defnitely necessary. And after I used your system, I realized [dy-
namic] gestures are also very important. I’m glad you bring this up 

(P7)". Additionally, the synchronous interaction was welcomed by 
the users (Q6: AVG=4.41, SD=0.64). "It’s great that your system has 
that synchronization of the animation. And I like the idea that I can 
do my gesture while following the animation (P4)". For using the 
application, most users were confdent that they could successfully 
interact with the virtual objects using the gestures they created (Q4: 
AVG=4.59, SD=0.49). "I was impressed when I could hold a virtual 
bowling ball like what I do with a real one (P5)". The survey result 
also showed positive feedback when trying out others’ applications 
(Q5: AVG=4.25, SD=0.64). "When I tried my partner’s app, the visible 
skeleton really helped me to fgure out what to do. And I was surprised 
that I could open the chest he created that fuently (P11)". 

6.3 Session 3: Overall System Usability 
Finally, the users were asked to create a table-top AR puzzle game 
from scratch with all features supported by our system (Figure 16b). 
After the user did a self-defned "go" gesture, a toy car moved from 
the starting point and stopped in front of a lifted bridge. Then, the 
player had to grab the bridge to pull it down so that the car could 
move forward. Finally, the door was broken into pieces after the 
car reached the fnishing point. Specifcally, the users had to scan a 
toy car, a bridge, sketch a door, and set the hinge joint of the bridge. 
The required triggers and actions are shown in Figure 16b-1 . We 
recorded whether the users successfully authored the game, and 
completed their own and partners’ games. 

Result and discussion. All 12 users successfully completed the 
authoring processes, tested their own applications, and tested their 
partners’ applications. The overall Likert-type results collected 
from this session are shown in Figure 18 (bottom) . Overall, the 
users acknowledged that the trigger-action metaphor was suitable 
for AR application creation (Q3, AVG=4.5, SD=0.67). “It was easy 
to follow when I frst defne a trigger, then an action (P10)”. Most 
users felt confdent in using the applications created by themselves 
or others (Q6, AVG=4.25, SD=0.96). "I felt super cool when I could 
successfully pull down the bridge he created and the car broke the door 
at the end (P12)". We also asked users about the authoring interface. 
The scanning and sketching features for virtual content creation 
received complimentary remarks (Q1: AVG=4.67, SD=0.49). "In my 
opinion, it’s very useful that I can scan something around me and add 
funny interactions to it" (P1). Meanwhile, the mechanical constraints 
feature was well-received by users (Q2: AVG=4.58, SD=0.66). "It’s 
awesome that I can fuently rotate the virtual bridge. It’s defnitely 
necessary to help me create more realistic object behaviors (P6)". Fur-
ther, the users complimented using lines to build logic connections 
between triggers and actions (Q5: AVG=4.58, SD=0.66) and were 
satisfed with the clarity of the UI design during the authoring 
process (Q4: AVG=4.75, SD=0.62). "I like the idea of using solid and 
hollow triangles for triggers and actions. It helps me easily fnd what 
to connect, of course, using lines is super straightforward (P9)". Finally, 
the standard SUS survey result for the entire study received 86 out 
of 100 with a standard deviation of 11.18, which indicated high 
usability of the entire system. 

7 LIMITATIONS AND FUTURE WORK 
Haptic feedback in freehand AR interactions. Through the 
user study, some users brought up that "I’d be more confdent to demo 
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It's intuitive to create a hand-object 
interaction pair by acting it out in AR. (Ql) 

I prefer to define my own hand gestures 
to interact with virtual objects. (Q2) 

The system supports most hand-object 
interactions I can come up with. (Q3) 

The virtual objects behave exactly as what I 
defined. (Q4) 

I can manipulate virtual objects using the 
gestures created by others. (QS) 

It's straightforward to create synchronous 
gestures by referring to demonstration. (Q6) 

It's beneficial to create virtual objects by 
scanning and sketching. (Ql) 

Mechanical joints help me accurately 
constrain the movement of virtual objects. 
(Q2) 

The trigger-action metaphor is intuitive for 
freehand interactions. (Q3) 

The UI are dear and easy to understand.(Q4) 

It's straightforward to build logic connections 
(joints, trigger-actions) using lines. (QS) 

I'm confident to use interactive AR 
applications created by myself or others. (Q6) 

01234567 8 9101112 

012 3 456789101112 

■ Strongly Disagree ■ Slightly Disagree Neutral ■ Slightly Agree ■ Strongly Agree 

GesturAR: An Authoring System for Creating Freehand Interactive Augmented Reality Applications UIST ’21, October 10–14, 2021, Virtual Event, USA 

Figure 18: Likert-type questionnaire results of session 2 (top) 
and session3 (bottom). 

accurate gestures and operate those [virtual] object if I could feel what 
I’m touching (P2)". The lack of haptic feedback has been identifed 
and discussed in prior freehand AR interactive systems [10, 30]. To 
improve the immersive experience, haptic gloves [12, 46] would 
be one solution but they usually are bulky and require external 
setups. Meanwhile, ultrasound-based devices have been exploited 
to provide unencumbered tactile sensation for freehand interactions 
[58, 86, 94], but limit users’ gesturing space. Therefore, it would 
be fruitful to explore the incorporation of haptic feedback in user-
defned freehand AR interactions as future work. 

Ambiguity and variation of user-defned hand gestures. 
With GesturAR, enabling end-users to customize hand-object inter-
actions improves the scalability of freehand interactive AR applica-
tions. Yet, some users raised that "When I use an object, I’d like to 
use it in a way I feel comfortable. But when I tried his objects, I was 
not clear what did he want me to do (P8)". As a shareable application, 
adapting to diferent users’ tendencies in object interactions and 
dealing with the ambiguity of hand gestures substantially afect 
the system usability. To address this issue, prior studies [75, 95] 
elicited intuitive hand gestures for AR interactions. Chen et al. [15] 
proposed multi-modal approaches to further elucidate users’ op-
erations. From our observation, the user’s hand size, handedness, 
and object size could be key factors. Thus, how to create freehand 
AR interactions that can be fuently used by others requires deeper 
research and analysis. 

Blend the physical and virtual space. GesturAR enables users 
to virtualize their surroundings with a scanning technique. Mechan-
ical constraints make the movement of the virtual contents more 
realistic. In the user study, some users suggested that "It would be 

more realistic if these virtual items had gravity (P4)". Also, "Why I 
can’t use real objects as triggers (P9)". Prior works have shown that in-
terweaving physical contexts and virtual interfaces largely expands 
the capability of AR applications [29, 91]. Similarly, when author-
ing freehand AR applications, it would be benefcial to empower 
users with the environmental context perception by leveraging 
state-of-the-art object tracking algorithms and physical engines. 

Overlapping of virtual contents. Interacting in the AR do-
main with bare hands requires a precise selection of the target 
virtual contents. In current implementation of Authoring Mode, 
each UI element has a cuboid bounding box as its interactive region. 
However, for diferent elements that occupy the same space, only 
one of them can be selected at one time. Thus, the clustering of UI 
elements and virtual objects frequently caused unnecessary dif-

culties. Usually, 3-4 Triggers/Action icons can congest the space 
around a virtual object and make the authoring process cumber-

some. "When I created more gestures onto one single object, those 
bounding boxes were annoying. I had to frst move them away. But it 
broke my authoring process (P11)". One solution could be the multi-

modal interface, which has been widely explored in freehand AR 
applications [47, 74, 93], and has shown benefts regarding virtual 
object selection and basic object manipulation. Therefore, one im-

provement of our system would be integrating additional input 
modalities for a more fuent authoring experience. 

Limited ways of mapping between triggers and actions. 
Currently, GesturAR only supports simple and direct mapping be-
tween triggers and actions. Namely, an action reacts immediately 
when a corresponding trigger is detected. Some complex mappings, 
such as condition (an action only reacts to a trigger given some 
preconditions, such as location, time or other triggers), delay (an 
action reacts after a trigger has been detected for a period of time) or 
chain (several actions react sequentially after a trigger is detected) 
are not supported. One possible solution can be introducing a more 
comprehensive spatial programming interface that is similar to the 
ones in CAPturAR [91], Ivy [21] and FlowMatic [105]. 

Hardware and software constraints. Although virtualizing 
surrounding objects through scanning was welcomed by the users, 
the current process is isolated from the main system workfow, 
which limits the scalability of the system. However, by embed-

ding the state-of-the-art 3D reconstruction and fusion algorithms 
[34, 77], we believe that our system could provide a seamless and 
fexible experience of virtual asset creation. Meanwhile, the quality 
of the Hololens2 hand recognition is signifcantly reduced as hand 
occlusion happens, which limits the tangible interactions where 
users interact with virtual objects while holding real objects. We en-
vision more robust hand-tracking algorithms that can improve the 
performance of GesturAR and expand the design space of freehand 
AR interactions in the future. 

Additional supports for professional designers. While Ges-
turAR aims at common AR consumers in their daily life, it can also 
be used as a prototyping tool for designers and programmers to 
rapidly validate their ideas. We envision the following improve-

ments of GesturAR to better assist the professional users in the 
early design stage: 1) integrating with multiple prototyping meth-

ods such as physical prototyping [28, 64, 65] and sketching [6]. 2) 
allowing for customized triggers (e.g. IoT sensors) and actions (e.g. 
animations and mesh efects) in addition to the provided ones and 
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3) using external devices (e.g. tablets or phones) to handle complex 
spatial programming [29] and record augmented videos [50]. 

8 CONCLUSION 
In this work, we present GesturAR, an all-in-one authoring tool 
that enables end-users to create AR applications with customized 
freehand inputs. GesturAR allows users to generate virtual contents 
in-situ and design their personalized hand gestures by embodied 
demonstration while using relevant context as spatial and temporal 
reference. We start from the taxonomy of hand gestures in AR and 
propose a hand interaction model that maps various types of hand 
inputs to the responsive behaviors of the virtual contents. Following 
the interaction model, we design our visual programming interface 
so that users can author multiple interaction modalities through 
simple trigger-action programming. Further, we develop a real-time 
gesture detection algorithm based on one-shot learning and time 
series analysis to support an instant experience of the authored AR 
applications. To explore the capability of GesturAR, we demonstrate 
fve groups of application scenarios: creating interactive objects, 
humanoid and robotic agents, augmenting in-door environment 
with tangible AR games, making immersive AR presentations, and 
interacting with entertaining virtual contents. Through a user study, 
we frst evaluate the accuracy of our hand detection network, then 
prove our system’s usability in interactive application authoring 
from the positive study results and user feedback. Therefore, we 
believe that GesturAR reveals a novel perspective involving hand 
gestures with AR interactive applications and inspires future bare-
hand immersive environment development. 
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