
GesturAR: An Authoring System for Creating Freehand
Interactive Augmented Reality Applications

Tianyi Wang
∗

Xun
∗ Qian

Fengming He
School of Mechanical Engineering, School of Mechanical Engineering, School of Electrical & Computer

Purdue University Purdue University Engineering, Purdue University
West Lafayette, Indiana, USA West Lafayette, Indiana, USA West Lafayette, Indiana, USA

wang3259@purdue.edu qian85@purdue.edu he418@purdue.edu

Xiyun Hu Yuanzhi Cao Karthik Ramani
School of Mechanical Engineering, School of Mechanical Engineering, School of Mechanical Engineering,

Purdue University Purdue University Purdue University
West Lafayette, Indiana, USA West Lafayette, Indiana, USA West Lafayette, Indiana, USA

hu690@purdue.edu cao158@purdue.edu ramani@purdue.edu

Figure 1: An overview of GesturAR system workfow. (a) A user demonstrates a grabbing gesture next to a virtual cup to defne a
trigger for a freehand AR application. (b) The user then selects the manipulating action and connects it with the hand gesture.
(c) During testing, the user grabs the virtual cup with the pre-defned gesture. (d) The four freehand interaction scenarios
supported by GesturAR: (d-1) A light bulb is lit after the user performs a static gesture. (d-2) The user opens the lid of a virtual
laptop through a static gesture. (d-3) A virtual soda can is broken after a clenching dynamic gesture. (d-4) The length of a toy
spring changes synchronously with the user’s dynamic gesture.

ABSTRACT
Freehand gesture is an essential input modality for modern Aug-
mented Reality (AR) user experiences. However, developing AR
applications with customized hand interactions remains a challenge
for end-users. Therefore, we propose GesturAR, an end-to-end au-
thoring tool that supports users to create in-situ freehand AR appli-
cations through embodied demonstration and visual programming.
During authoring, users can intuitively demonstrate the customized
gesture inputs while referring to the spatial and temporal context.
Based on the taxonomy of gestures in AR, we proposed a hand

∗
Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8635-7/21/10.
https://doi.org/10.1145/3472749.3474769

interaction model which maps the gesture inputs to the reactions of
the AR contents. Thus, users can author comprehensive freehand
applications using trigger-action visual programming and instantly
experience the results in AR. Further, we demonstrate multiple ap-
plication scenarios enabled by GesturAR, such as interactive virtual
objects, robots, and avatars, room-level interactive AR spaces, em-

bodied AR presentations, etc. Finally, we evaluate the performance
and usability of GesturAR through a user study.

KEYWORDS
Freehand interactions, immersive authoring, Augmented Reality,
embodied demonstration

ACM Reference Format:
Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Yuanzhi Cao, and Karthik
Ramani. 2021. GesturAR: An Authoring System for Creating Freehand
Interactive Augmented Reality Applications. In The 34th Annual ACM
Symposium on User Interface Software and Technology (UIST ’21), Octo-
ber 10–14, 2021, Virtual Event, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3472749.3474769

552

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3472749.3474769
https://doi.org/10.1145/3472749.3474769
mailto:ramani@purdue.edu
mailto:he418@purdue.edu
mailto:cao158@purdue.edu
mailto:qian85@purdue.edu
mailto:hu690@purdue.edu
mailto:wang3259@purdue.edu

UIST ’21, October 10–14, 2021, Virtual Event, USA Wang and Qian, et al.

1 INTRODUCTION
Augmented Reality (AR) technology has been broadly adopted in
a variety of areas including manufacturing [67, 69], design [71,
101], education [24, 89] and entertainment [55, 72]. Interacting
with virtual content plays an essential role in most of these AR
experiences. As a dominant approach for manipulating real-world
objects, hand gesture has been well-accepted to be an intuitive
method for interacting with virtual AR contents as well [12, 73],
especially while using hands-free AR head-mounted devices (AR-
HMD) [31, 104]. Leveraging the recent advances in hand tracking
techniques [18, 62, 86], researchers have facilitated natural gestures
such as touching [10, 79], grasping [23, 83, 85], and holding [30]
virtual objects without external tracking devices. Such freehand
interactions greatly improve the immersiveness of interactions
within the AR experiences.

Most of the prior works [12, 23, 31, 83, 85] focus on pre-defned
interactions for the virtual manipulation, which are unable to cover
the complexity and diversity of the hand-based interactions used
in our everyday life [75]. Interacting with diferent objects usually
requires specifc hand gestures. For example, VirtualGrasp [96] has
shown that diferent gesture preferences have been found when
grasping books, cups, and pens in a virtual environment. Further-
more, one object may have various reactions when encountered
with diferent gestures. For instance, a virtual soda can can be held
tightly with one or two hands, placed on the palm, or squeezed.
Consequently, it is difcult for an AR application to include all the
hand-object interactions in advance. On the other hand, end-users
have more in-depth knowledge about their activities and gesture
preferences [19]. As a result, we are highly motivated to empower
end-users to author personalized hand-related interactions.

Freehand AR application typically detects hand gesture inputs
in real-time to invoke the corresponding responses of the virtual
contents. However, building algorithms to recognize a certain ges-
ture requires professional expertise. On the other hand, embodied
demonstration provides an intuitive way to create gesture-enabled
virtual contents [38]. Via the demonstration of a few examples, users
can build customized gesture detection applications [8, 27, 53, 54]
without looking into the low-level details. This way, even non-
expert AR consumers can design the freehand interactions accord-
ing to their personal preference and specifc surrounding contexts.

Popular programming-based authoring tools (Unity3D [87], Un-
real [88], ARCore [4], ARKit [5], etc.) have a steep learning curve
and are therefore cumbersome for non-professional users to create
AR applications [66]. In contrast, the immersive experience sup-
ported by AR-HMD fosters the evolution of authoring workfows
in an in-situ and ad-hoc fashion [41, 92]. The WYSIWYG (what you
see is what you get) metaphor enables users to directly build 3D
models [33] and create animations [7, 98] by manipulating virtual
objects. Further, users are able to create interactive contents with in-
situ visual programming interfaces [29, 45, 105]. Thus, we propose
to embrace the embodied demonstration of hand gestures into an
immersive AR authoring environment. To this end, users can view,
manipulate and edit the demonstrated gestures as elements of the
visual programming interface and link them with virtual content
behaviors to create customized gesture-enabled AR experiences.

We propose GesturAR, an end-to-end authoring system that
supports the real-time creation of AR applications with freehand
inputs. We build our authoring environment on a pair of optical
see-through AR glasses with a built-in hand tracking module [31].
GesturAR allows intuitive authoring of customized freehand inputs
through embodied demonstration while using the surrounding en-
vironment as contextual reference (Figure 1a). Users then complete
the freehand interactions by matching the hand gestures with re-
actions of virtual contents using a visual programming interface
(Figure 1b), which is designed based on previous elicitation studies
[75, 95]. Thus, users can create freehand interactions through sim-

ple trigger-action programming logic (Figure 1d). Further, with the
support of a real-time hand gesture detection algorithm, users can
instantly explore the authored AR experience (Figure 1c).

Following is a list of our contributions:

• A comprehensive in-situ authoring workfow for end-users
to create and perform customized freehand interactions
through embodied demonstration.

• A freehand interaction model that spatially and temporally
maps the hand inputs to responding behaviors of the vir-
tual contents based on a real-time hand gesture detection
algorithm.

• An AR interface for generating virtual assets, demonstrat-

ing hand gestures, and creating freehand AR applications
through visual programming.

• A wide range of example applications demonstrating the
potentials of the proposed authoring system. And the user
studies for evaluating the system usability.

2 RELATED WORKS

2.1 Freehand interactions in AR
Freehand interactions (or barehand interactions) [90] have long
been proposed in the area of HCI as a natural interaction method
that relieves users from external tracking devices. Some works used
freehand interactions to remotely "pan and zoom" 2D contents on
big screens or wall displays [11, 25, 63, 80]. Meanwhile, a similar
metaphor was applied to 3D contents in VR/AR environments. Fin-
gARtips [12] allows users to pinch and move virtual contents by
detecting fducial markers attached to fngertips. With the devel-
opment of RGB-D and stereo cameras, 3D geometry of the hands
was retrieved for hand-virtual object collision detection [10, 30].
Researchers have also explored manipulating virtual contents by
detecting key points on bare hands. Simple gestures such as pinch-
ing [32, 59, 69], pointing [48], palming [40] and grabbing [99] can
be recognized and mapped to the selection, translation, rotation
or scaling of virtual contents. Furthermore, using portable devices,
i.e. Leapmotion [86], researchers can achieve full-hand skeleton
and perform object manipulation with higher accuracy [79, 85].
However, most previous works map specifed hand gestures to
limited operations, i.e. selection, translation, or rotation. In other
words, hand gesture detection was only used as a mouse click and
drag-and-drop metaphor to manipulate 3D contents, while the fex-
ibility and dexterity of hands werenot fully exploited. In contrast,

553

GesturAR: An Authoring System for Creating Freehand Interactive Augmented Reality Applications UIST ’21, October 10–14, 2021, Virtual Event, USA

GesturAR endeavors to explore an interface that can cover a ma-

jority of the hand gestures and enrich the usage beyond simple
operations.

Meanwhile, instead of using predefned gestures, researchers
encourage end-users to select preferred freehand interactions for
multiple immersive applications [75]. VirtualGrasp [96] let users
demonstrate how they grasp objects and utilize the object-gesture
pairs to retrieve corresponding virtual objects. Similarly, Force Push
[100] learned a force mapping model from users for remote object
manipulation. Recently, MagicalHands [7] selected gestures for
authoring particle animation from users’ demonstrations. By intro-
ducing end-users into the design process, the freehand interaction
space is greatly expanded and the resulting AR freehand interac-
tions correspond with the end-user’s life experience. Yet, the prior
arts above employed an ofine process where users could only try
out the immersive applications after the researchers had collected,
processed, and learned from the user-performed examples. On the
other hand, GesturAR proposes a real-time authoring process where
users not only design freehand interactions but also try them out
immediately in the same AR context.

2.2 Gesture authoring through embodied
demonstration

The metaphor of programming by demonstration [52] greatly en-
hances end-user development by overcoming low-level program-

ming details. Specifcally, embodied demonstration refers to the
actions performed by the human’s body. The body or hand poses
can be used as references for creating 3D models [16, 38, 43] and
dynamic contents [7, 13, 98]. Meantime, they can become examples
to train classifers for gesture detection. Gesture Coder [53] and
Gesture studio [54] enable 2D multi-touch gesture creation through
a demonstration and declaration process. Meanwhile, researchers al-
low users to record sensor outputs of demonstrated mid-air gestures,
then use them as examples to train detection algorithms [8, 27, 102]
such as Dynamic Time Warping or Hidden Markov Chain. However,
these works need a desktop interface to visualize and edit the sensor
outputs and may need iterative demonstration to improve accuracy.
Thus these workfows are not compatible with immersive AR/VR
environments. Recently, GhostAR [14] and CAPturAR [91] inte-
grate a human action editing interface so that users can visualize,
manipulate and edit body gestures in AR. However, the detection
algorithms presented in the works above [8, 14, 27, 53, 91, 102]
mainly focus on raw sensor output or full-body actions and cannot
be directly applied to gesture-centered interactions.

To this end, GesturAR is designed to follow the metaphor of
embodied demonstration while fully considering the characteristics
of freehand interactions in AR. The elicitation studies in previ-
ous works [7, 75, 96] reveal that a typical gesture in AR contains
two kinds of properties, (1) local properties, which refer to the
poses of hands, i.e. relative positions of joints, and (2) global prop-
erties, which refer to the positions, directions and movement of
the palms. Inspired by these fndings, GesturAR analyzes the key
properties of users’ gesture demonstration and embeds a real-time
hand gesture recognition technique for a smooth gesture authoring
experience.

2.3 Immersive authoring tools for AR
applications

AR applications enable users to interact with a mixed virtual-
physical environment. Authoring an AR application usually in-
volves two steps: 1) creating virtual contents as well as their be-
haviors and 2) defning the interactions between users and virtual
contents [44]. While popular AR application authoring platforms
such as Unity [87] and Unreal [88] are powerful but obscure for
non-professional users [66], alternative tools and workfows are
proposed for designers and end-users to create AR applications [9].
Some works focus on rapid prototyping of AR experience through
Wizard-of-Oz (WOz) [2, 64] or video prototyping [49, 50] rather
than functional AR applications. Meanwhile, in-situ authoring was
proposed [45, 92, 103] to blend the authoring process within the AR
interaction space and allow for intuitive 3D manipulation instead
of 2D programming. Window Shaping [33] and SceneCtrl [101]
empowered the creation of static 3D models and virtual scenes
by leveraging the spatial perception of AR devices. Furthermore,
animations of virtual contents can be created using direct in-situ
manipulation [7, 13, 14, 98]. Moreover, the visual programming
capability [21, 29, 91, 105] is integrated into immersive interfaces to
pair user interactions with virtual contents behaviors. For instance,
iaTAR[45] connected user inputs with object properties to build
tangible virtual models, and let users test the interaction immedi-

ately after the connection. Besides, Ng et al. [68] created situated
games using trigger-action links. However, most previous tools ac-
cept limited user input modality such as spatial location [26, 68], or
fducial markers [36, 45, 70, 81]. While some works encourage users
to use their hands during the authoring process [82, 92], the system
that enables end-users to create AR applications with customized
freehand input remains unexplored.

To fll in this critical gap, GesturAR combines embodied demon-

stration of hand gesture and real-time gesture detection with an
in-situ authoring interface. In addition, to enable a fuent authoring
experience, GesturAR interface integrates well studied interaction
techniques that are presented in previous works such as scanning
[33] and sketching [50] for virtual content creation, animation
creation through direct manipulation [98], as well as visual pro-
gramming using icons and connections [29, 105]. With GesturAR,
users can create an interactive AR application from scratch, test it
in real-time, and share it with other users.

3 GESTURAR SYSTEM DESIGN

3.1 AR freehand interaction model
The input-output model has been widely adopted by previous in-
teraction prototyping systems including Examplar [27], Trigger-
Action-Circuits[3], Astral [42] and Kitty [35]. In such model, an
interaction involves two components, an input that is initiated by
a subject, and an output that is generated by an object in response
to the input. An AR freehand interaction adopts the similar pattern
where the input is a hand gesture and the output is the behavior of
relevant virtual content.

Previous elicitation studies on AR hand interactions [75, 95]
categorized the AR gestures in to six dimensions: Nature, Symmetry,
Binding, Locale, Form, and Flow. Among these dimensions, Form,

554

I I

UIST ’21, October 10–14, 2021, Virtual Event, USA Wang and Qian, et al.

which describes the status of the hands, and Flow, which describes
the response of the virtual contents, corresponding to the input and
output respectively. Following the categories of Form and Flow, we
derive two types of input and two types of output:

• Static input, which is a specifc status of the hands, including
hand pose, position, direction and handedness,

• Dynamic input, which is a time series of hand status,
• Discrete output, which responses right after the gesture com-

pletion,
• Continuous output, which responses during the gesture.

Therefore, we would like to explore the resulting AR freehand
interactions created by combining diferent types of inputs and
outputs and fll in the 2 by 2 table presented in table 1 to complete
the interaction model in GesturAR.

Table 1: AR freehand interaction model

input
output

Discrete Continuous

Static static-provoking manipulating
Dynamic dynamic-provoking synchronous

Static + Discrete: This category represents the interactions in
which virtual contents respond right after a static gesture is detected.
Thus, we name it static-provoking type. Touching a surface or
pressing a button are static-provoking interactions. We show an ex-
ample in Figure 1d-1, where a light bulb glows after a user performs
a two-handed holding gesture beneath it.

Static + Continuous: This category represents the interactions
in which virtual contents keep reacting to the user’s static gesture.
The most common scenario, in this case, is manipulating, where
an object follows the transform of the user’s hands. Figure 1c shows
a virtual cup is manipulated by a user while another example is
shown in Figure 1d-2 where the virtual laptop lid follows the user’s
hand while being constrained and rotating along a hinge.

Dynamic + Discrete: This category represents the interactions
in which virtual contents respond right after a dynamic gesture is
detected. Similar to static-provoking type, we name it dynamic-
provoking type. Waving hands, clapping hands and punching
are dynamic-provoking interactions in daily life. An example of
dynamic-provoking interaction in AR can be found in Figure 1d-3.
A user breaks the soda can by clenching the fst.

Dynamic + Continuous: This category represents the inter-
actions in which a virtual content responds synchronously to the
movement of the hands during a dynamic gesture, like resizing an
object with the distance between the hands. Therefore, we name it
synchronous interaction. Figure 1d-4 shows a synchronous inter-
action where a user can stretch a spring using a pinching gesture.

3.2 Programming AR freehand interactions
through trigger-action connections

To enable an intuitive authoring experience and a minimized learn-
ing curve, we adopt a trigger-action programming model in Gestu-
rAR refecting the inputs and outputs of the freehand interactions.
We provide users with two conceptual primitives, namely trigger

(represented as a solid triangle) and action (represented as a hollow
triangle) (Figure 1b). This way, users can create the four types of AR
freehand interactions by connecting diferent triggers and actions.

While running an AR application in GesturAR, a trigger monitors
the user’s behavior and sends information to an action through the
connection between them. Typically, there are two kinds of infor-
mation, i.e. signal (for discrete interaction) and value (for continuous
interaction). In GesturAR authoring interface, users can use the
following kinds of triggers:

• static gesture that can emit both signals (when a static gesture
is detected) and a value (the transform of the hands).

• dynamic gesture that can emit both signals (when a dynamic
gesture is completed) and a value (the progress of the dy-
namic gesture).

and actions:

• following action (the behavior to follow another object) that
can receive a value (i.e. the transform of the other object).

• animation action that can receive either a signal to start
playing the animation, or a value that controls the progress
of the animation.

• multiple predefned actions, such as appear/disappear, mesh
deformation, mesh explosion, etc. that can receive signals
from triggers (Figure 6).

A freehand interaction is valid once the trigger and action can
send and receive the same type of information and the type of the
freehand interaction is decided by the combination. for instance,

• static gesture trigger + following action leads to a manipulat-
ing interaction.

• static gesture trigger + animation action or predefned actions
leads to a static-provoking interaction.

• dynamic gesture trigger + predefned actions leads to a
dynamic-provoking interaction.

• dynamic gesture trigger + animation action can result in
either a dynamic-provoking interaction or a synchronous in-
teraction. GesturAR generates a synchronous interaction if
the dynamic gesture trigger is created after the animation
action, or a dynamic-provoking interaction otherwise.

Besides, users can connect multiple actions to one trigger to activate
them together or connect multiple triggers to one action so that
every trigger can activate the same action. Users are encouraged
to use multiple trigger-action connections to build interesting AR
applications. To ensure valid authoring, GesturAR rejects the con-
nection between the mismatching triggers and actions. In addition,
to enlarge the interaction space of the AR applications, GesturAR
also provides extra event triggers (Figure 6) that are beyond the
scope of freehand interactions, such as gaze event (user looks an ob-
ject), approaching event (user approaches an object), position event
(a virtual object arrives at a location) and collision event (two objects
collide with each other), etc. These triggers can emit signals and
make discrete interactions when connected to animation action or
other predefned actions.

3.3 GesturAR Authoring Interface
In this section, we introduce the interface of GesturAR, an authoring
system for creating freehand interactive AR applications. Basically,

555

Brush Color

Brush Width

GesturAR: An Authoring System for Creating Freehand Interactive Augmented Reality Applications UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 2: GesturAR system walk-through. (a) The user frst creates a virtual cookie monster by scanning around the real object
in Creation Mode. (b) In the Authoring Mode, the user demonstrates a static double-handed holding gesture (b-1) and a dynamic
patting gesture (b-2) spatially referring to the virtual object. (c) The user demonstrates a scale change of the virtual object by
dragging the scale handle. (d) The user connects a manipulating with the holding gesture, and the scale change with the
patting gesture through visual programming. (e) In Play Mode, the user can perform the same holding gesture to manipulate
the cookie monster (e-1), or squashes it by the patting gesture (e-2).

GesturAR interface is separated into three modes, a Creation Mode
for users to create virtual assets, an Authoring Mode for users
to design and edit freehand interactions, and a Play Mode for
users to try out the authored AR application. Users can choose the
modes using a menu foating next to the left hand (Figure 3a). To
better understand the GesturAR workfow, we take a look at a user
who wants to create an interactive virtual cookie monster using
GesturAR (Figure 2). Specifcally, the user prefers to hold the cookie
monster using two hands (Figure 2e-1) or squash it by patting
its head (Figure 2e-2). First, the user needs to create the virtual
asset of the cookie monster in Creation Mode (Figure 2a). Then the
user demonstrates the gestures of holding it and patting its head
in Authoring Mode (Figure 2b-1,2). After that, the user edits the
behaviors of the virtual model. The user selects a following action,
and demonstrates an animation action that "the cookie monster is
squashed" (Figure 2c). After fnishing authoring the hand gestures
and the object behaviors, the user connects them through visual
programming (Figure 2d). Now the user authors two freehand
interactions: a manipulating interaction and a dynamic-provoking
interaction. Finally, the user enters the Play Mode to play with the
interactive cookie monster (Figure 2e-1,2). In the rest of this section,
we will describe the operations of each step in detail.

3.3.1 Create virtual objects. As an all-in-one AR authoring inter-
face, GesturAR incorporates a Creation Mode for users to create
virtual assets in-situ. Users can make a virtual object by importing
3D models, mid-air sketching or 3D scanning. To import a 3D model,
a user can turn on a menu with models of everyday objects using
the right-hand menu. While doing mid-air sketching, a brush tip
is foating in front of his/her right hand index fnger. The user can
change the color and width of the brush (Figure 3b), or leave a trace
while moving the right-hand (Figure 3c). To perform a 3D scanning,
the user touches the surrounding surface with a spherical scanning
tip (Figure 2a). The mesh pieces of the touched surface then appear.
Note that the current implementation of GesturAR is not able to
perform 3D scanning using the native hardware on Hololens2. The
scanning experience is simulated with a pre-scanned mesh of the
surrounding surfaces.

Besides simple rigid 3D models, GesturAR enables users to build
complex assemblies using mechanical constraints (Figure 4a).
Figure 4b shows a user who builds a virtual chest using a hinge joint.

Figure 3: (a) Left-hand menu. The left column is the main
menu for the three modes. The icon of the chosen mode
will be highlighted. The right two rows are the sub-menus
corresponding to the Creation and Authoring Mode. The
sub-menu that does not belong to the current mode will
be hidden. (b) Right-hand menu to switch between "Add"
and "Delete", and change brush color and width for mid-air
sketching. Users can do all regular operations by choosing
"Add". While choosing "Delete", any virtual content that is
touched by users’ hands becomes red and will be deleted
when the user performs a ’pinch’ gesture. (c) A user is cre-
ating 3D sketches with the brush tip.

Users can also bind virtual objects to the environment to constrain
the movements. A user can create a door movement using a hinge
joint or a virtual drawer using a sliding joint.

Figure 4: (a) Mechanical constraints supported by GesturAR.
(b) Procedure: The user frst connects the parent and child
objects of a hinge joint with lines, then arranges the spatial
relationship among the three elements. The movement of
the chest lid is constrained with the base.

3.3.2 Demonstrate hand gestures. GesturAR enables users to defne
a desired freehand interaction by directly performing it while using

556

Static Dynamic Gesture Position Gaze Approach Collision Gesture

1 r T I ··.· .·· ~•• , •._ •• • I • \ t : & . ~.:..,,. r<.j ··w
Animation Following Appear Mesh

Disappear Deformation

y 7 J 7 y
@REC •o •

UIST ’21, October 10–14, 2021, Virtual Event, USA Wang and Qian, et al.

real objects or virtual contents as spatial and temporal reference.
As shown in Figure 2b-1,2, the user performs gestures against the
scanned model. Figure 5 shows the detailed process of demonstrat-

ing a hand gesture. Once the button for creating a gesture is pressed,
the user has fve seconds to prepare. After the preparation, Gestu-
rAR starts to record the user’s hand gestures. For static gestures
(Figure 5a), the user holds the hand still for 2 seconds to allow for
multiple sampling of the gesture. For dynamic gestures (Figure 5b),
the user moves hands to perform the gesture, then holds hands
still after fnishing the gesture. When GesturAR detects that the
user has held the same gesture for 2 seconds, it stops recording the
gesture and removes the last 2 seconds from the dynamic gesture.
On completion of the demonstration, a skeleton model of the hand
gesture is displayed as the trigger object of the gesture. The skele-
ton model also represents the position and detection range of the
gesture. The user can move it or resize its bounding box to modify
the gesturing space (Figure 5d). The gesture will only be detected
when the hand enters the bounding box to prevent false positive
detection. Besides, users can set the bounding box to be bound to a
relevant object, stick to world coordinate, or follow the user.

Figure 5: (a) Static, (b) dynamic-provoking, and (c) synchro-
nous gestures authoring procedure. (d) Change volume and
position of the gesturing space by manipulating the bound-
ing box. Users can further bind the gesturing space to an ob-
ject or the world coordinate.

Furthermore, users create synchronous interactions by creating
dynamic gestures after the animation has been recorded (Figure 5c).
The user frst creates a scaling animation of a rock (Figure 5c-1).
Then he/she performs a dynamic gesture by aligning the hands
with the size of the rock (Figure 5c-2). Thus, GesturAR pairs the
key value of the gesture, which is the distance between the hands,
to the progress of the rock scaling animation, and enables the user
to synchronously control the size of the rock with both hands.

3.3.3 Edit virtual object behaviors. For each virtual object, Gestu-
rAR displays all its possible behaviors (following, animation, etc.)
in a nearby menu. A user can create corresponding actions objects
by selecting from the menu. Especially, for the animation behavior,
GesturAR lets users create an animation by directly move, rotate or
scale the object with default hand manipulation. In Figure 2c, the
user creates a squashing animation by scaling along the y axis of

the virtual object. Additionally, the pre-mentioned event triggers
(gaze event, approaching event, position event, collision event, etc.)
are also listed in the same menu. Triggers and actions supported by
GesturAR are listed in Figure 6.

Figure 6: Triggers (top) and Actions (bottom) supported by
GesturAR.

3.3.4 Program freehand interactions. The last step of the author-
ing process is to connect the triggers and actions, which can be
done simply through a drag-and-drop manner. To make the con-
nection, the user frst pinches the solid triangle icon of a trigger
and picks up a line from it. Then he/she approaches the hollow
triangle icon of an action and releases the fngers to drop the line on
the hollow triangle. Once the user fnishes connecting, GesturAR
color-codes the connection to better visualize the logic. Figure 2d
shows two trigger-action connections: 1) a green one, which con-
nects a dynamic gesture and an animation, refers to the "squashing
the cookie monster by patting its head" interaction, and 2) a purple
one, which connects a static gesture and a following action , refers
to the manipulation interaction using a two-hand holding gesture.

3.3.5 Test the AR applications. Play Mode supports users to try out
the interactive contents on-the-fy. In this mode, the system keeps
tracking all the triggers authored by the user. An action is activated
when any connected trigger is activated (Figure 2e-1,2). Specifcally,
the detection of the gesture triggers will be elaborated in the next
section. Moreover, in Play Mode, all the trigger and action icons are
hidden, while the skeleton hand models are left as visual hints.

3.4 Hand Gesture Detection
We describe how GesturAR detects a user’s hand gesture for static
gesture trigger and dynamic gesture trigger, as well as extracts key
values from dynamic gestures in synchronous interactions in Play
Mode. Essentially, we rely on the hand joints data provided by
Hololens2 hand tracking API 1.

3.4.1 Static hand gesture recognition. GesturAR detects a static ges-
ture based on the position and pose of the hand. For instance, a user
can only grab a cup when the hand approaches the handle and per-
forms the grabbing pose (Figure 1c). While the hand position is easy
to track, the hand pose is fexible and versatile. Therefore, rather
than a classifcation algorithm that can only detect limited hand
poses, we adopt the method of one-shot learning [39]. Basically, we

1
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-

unity/features/input/hand-tracking

557

https://1https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk

(c) In-class Between-class
shujjle shuffle

First Sample ~ ~ ~ ~

Second Sample ~ ~ ~ ~

Ground-truth true true false false true true false false

GesturAR: An Authoring System for Creating Freehand Interactive Augmented Reality Applications UIST ’21, October 10–14, 2021, Virtual Event, USA

train a Siamese neural network (Figure 7b) that indicates if the two
input hand data belong to the same gesture or not. Thus, we are
able to detect hand gestures using only one demonstration example
by comparing the real-time hand data with it. Since the hand poses
are commonly performed by bending diferent fngers, we directly
use the bending angles of the 10 hand fnger joints (Figure 7a) as
the input to the Siamese network. Due to the symmetry of hands,
the Siamese neural network can be applied to either hand. As for
the two hand gestures, the left- and right-hand poses are processed
separately. And a two-hand gesture is detected only when both
hand poses are matched. To reduce the computational cost, we
design a small neural network with fully connected layers (Figure
7b). With this model, Hololens2 is able to process the hand pose
data at 60 frames per second.

Figure 7: Hand pose detection algorithm used by GesturAR.
(a) We focus on the 10 hand joint angles for hand pose detec-
tion. (b) Structure of the Siamese neural network. The top
and bottom branches of the network share same structure
and parameters. This network returns a true or false label
that indicates whether the two inputs belong to the same
gesture. (c) Our data augmentation method for training the
Siamese network. ai (i = 1 ∼ 4) and bi (i = 1 ∼ 4) repre-
sent hand poses that belong to the two diferent classes. In
each epoch, we perform a in-class shufle on half of the data
to produce true pairs (blue) and a cross-class shufle on the
other half to produce false pairs (red).

We collected a customized hand pose dataset with 18 classes of
the hand poses (Figure 8 (top-left)) referring to previous studies
[75, 96]. We invited 12 volunteers (7 males, 5 females) to collect
approximately 2000 samples for each class. We randomly select 2
volunteers whose samples are used as the validation dataset, and
the rest samples are used as training dataset. To train the Siamese
neural network, each time we randomly select a pair of samples
from the training dataset as inputs. We set the ground truth label
as true if the two samples belong to the same class, and vice versa.
To make sure the training data is balanced, i.e. the numbers of true
pairs and false pairs in each training epoch are same, we perform
an in-class shufe and a cross class shufe on the dataset as shown
in Figure 7(c). We achieved an accuracy of 98.56% on the validation
dataset, as shown in the confusion matrix in Figure 8.

Figure 8: The 18 gestures included in our customized dataset.
Roughly, the frst 9 gestures involve palm and whole hand,
while the rest gestures focus on fnger-based manipulation
(top-left). The confusion matrix achieved on the validation
dataset (bottom-right). The color represents the percentage
of true labels among all predicted labels. The overall accu-
racy is 98.56%.

3.4.2 Dynamic gesture recognition. Traditional ways to handle the
temporal and spatial information contained in a dynamic gesture
are dynamic time warping (DTW) [14, 51], hidden markov model
(HMM) [20, 60] or neural networks [17, 56], Yet these methods
need a large amount of training data and massive computational
power. Instead, we propose a changing-state method for a fuent
run on Hololens2. We record a dynamic gesture as a time series
of hand status data [f1, f2, · · · , fN]. Each frame fi contains hand
information including joint positions, palm position, moving speed,
etc. It is time-consuming to directly analyze the entire time series.
To distill key features from the time series, we apply a state to
describe the status of a hand at each frame. A state contains three
attributes, namely the hand pose (Pose), moving direction (mDir)
and palm rotation(pRot). The latter two attributes are evaluated
with respect to the user’s local coordinate systems. As shown in
Figure 9a-1,2, we use verbal labels rather than numerical values to
note the moving direction and palm rotation. Further, we implement
the Siamese neural network described in the previous section to
tell whether the hand poses in two diferent frames are in the same
class. This way, we can combine the adjacent frames with same state
and encode the dynamic gesture into a shortlist of states (Figure 9b).
We present the detailed algorithm (Algorithm 1) below. Typically,
a dynamic gesture can be transferred into a list with two to six
states. In Play Mode, we apply a similar state encoding algorithm to
the real-time hand tracking data (just change the fi in the for loop
to the real-time data) and save the states in a queue. To detect a
dynamic gesture, we compare the latest elements of the queue with
its state list. If all the states are sequentially matched, we assume the
user is performing that gesture. For the gestures that involve both
hands, we handle the left and right hand tracking data separately.
Such gestures are detected when the state lists of both hands are
matched. Additionally, to avoid false-positive detection, we only

558

1•1

UIST ’21, October 10–14, 2021, Virtual Event, USA

detect a gesture when the user’s hands enter the gesturing space of
the authored gesture (Figure 5d).

Algorithm 1 Calculate state series from a dynamic gesture

1: procedure CalculateStates([f1, f2, · · · , fN])
2: States ← array[]
3: get state s1 from f1
4: add s1 to States
5: for i ← 2, N do
6: get state si from fi
7: sd ← the last element of States
8: if SiameseNetwork(si .Pose, sd .Pose) is true then
9: if si .mDir , sd .mDir or si .pRot , sd .pRot then
10: snew ← (sd .Pose, si .mDir , si .pRot)
11: add snew to States
12: else
13: add si to States
14: return States

I I
Hand Pose ,- first gesture ---~ ----....--- second gesture -----t

Moving Direction :----- left :- still - :

Palm Rotation :- facing opposite ~ facing down :

States I state 1 1 state 2 state 3 1

Figure 9: (a) The labels used to describe the hand movement
and palm rotation. (a-1) The hand movement is character-
ized by 6 moving directions (Up, Down, Lef, Right, Forward
and Backward) or Still(not moving). (a-2) Three labels are
used to describe the rotation of the palm. Respectively, Fac-
ing Up: the palm faces toward the user’s head; Facing Down:
the back of the hand faces toward the user’s head; Facing
Opposite: the palm faces the other side of the body. (b) The
process of converting a dynamic gesture into a list of states.
The hand changes to a new state when any of the three at-
tributes changes.

3.4.3 Temporal and spatial mapping in synchronous interaction. To
achieve the synchronization between a dynamic gesture and a vir-
tual content animation in a synchronous interaction, GesturAR frst
extracts a numeric key value, like the distance between hands or
angle between fngers, from the dynamic gesture (Figure 10). Then

Wang and Qian, et al.

GesturAR maps the key value to the progress of the animation to
achieve temporal and spatial correlation between the hands and
the virtual contents. Considering the type of hand gestures, we
achieve the numeric key value in diferent ways. For instance, the
pinching and clamping gestures are mapped to fngertip distances
(Figure 10a,b); the holding and grasping gesture are mapped to a
circle formed by the hand (Figure 10c); some gestures that involve
fnger bending are mapped to the bending angles (Figure 10d,e); the
gestures that involve hand movement are mapped to the moving
distance (Figure 10f); further, the two hand gestures are mapped
to the distance or angle between the hands (Figure 10g,h). In Au-
thoring mode, after the user has demonstrated a dynamic gesture in
a synchronous interaction, the gesture is classifed into one of the
types mentioned above using the changing-state method, and the
corresponding key value is extracted.

Figure 10: The mapping between hand gestures and the nu-
meric key values in synchronous interactions.

4 APPLICATION SCENARIOS

4.1 Realistic object manipulation with
multiple ways

Many objects in real-life respond diferently when hands interact
with them in diferent ways. For instance, a basketball can be held
with two hands, spin on one fnger or bounce when the user pat on it.
Programming such various types of behaviors need vast efort [37].
With GesturAR, users can simply demonstrate the hand gestures
and connect them to diferent behaviors respectively. As shown in
Figure 11a-1, a user connects the two-hand ’holding’ gesture with
a manipulating action of a virtual basketball, a pointing gesture
with a ’spinning’ animation and a ’patting’ dynamic gesture with a
’bouncing’ animation. Then, the user can interact with the virtual
basketball in a similar way as real basketballs (Figure 11a-2).

Furthermore, the purpose of a gesture can be inferred through its
spatial property. For example, holding the head of a pencil implies
’writing’ while holding the tail implies ’erasing’. Benefted from the
in-situ visualization and spatial awareness of GesturAR, the user
can demonstrate two ’holding’ gestures at the head and the tail of
the pencil and connect them to the ’writing’ and ’erasing’ actions
respectively (Figure 11b-1). The users also connect both gestures
to a following action to let the pencil follow the movement of the
hand. Now, the user can either write or erase by grabbing diferent
parts of the virtual pencil (Figure 11b-2).

559

GesturAR: An Authoring System for Creating Freehand Interactive Augmented Reality Applications UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 11: Virtual basketball: (a-1) A ’holding’ static gesture
and a ’pointing’ static gesture are connected to a following
action; the ’pointing’ gesture is also connected to a ’spin’
animation; a ’pat’ dynamic gesture is connected to a drib-
ble animation. (a-2) The user can hold the basketball using
both hands, spin the basketball on the index fnger, and drib-
ble the basketball. Virtual pencil: (b-1) Two ’holding’ static
gestures are placed at the tip and the bottom of the pencil,
connecting to a following action;the tip-side gesture is con-
nected to a ’writing’ action, while the other one is connected
to an ’erasing’ action. (b-2) The user can hold the tip of the
pencil to write, or erase a stroke when holding the bottom
of the pencil.

4.2 Interactive virtual agents and robots
Assistant agents and robots, such as robotic pets [84], and virtual
assistant [57], largely enriches our daily life with their interactive
behaviors. Recently, embodied gestures have been embraced as
a popular modality for humans interacting with robots [97] and
virtual avatars. Meanwhile, in-situ prototyping of such experience
greatly accelerates the process of interaction design for these agents
[76]. Figure 12a illustrates the process of prototyping a virtual
mobile robot using GesturAR. The user frst scans a mock-up robot
as the virtual model. Then, to better simulate the moving behavior
of the robot, the user adds a planar joint to constrain the robot to the
ground. Next, the user creates two animations of the robot, namely
’move forward’ and ’rotate’, and maps them with the ’come’ gesture
and ’moving hand’ gesture. This way, the user can either call the
robot to come or let it dance by following the hand movement.

In another scenario, the user plans to prototype a digital avatar.
The user can frst scan one of his friends into the system. Next,
by setting two spherical joints at the agent’s elbow and wrist, the
agent’s arm can move realistically. As a result, the user creates a
humanoid agent that can wave the hands after the user waves the
hands, shake hands with the user, and pops up a sketched "Hi" after
the user pats on the agent’s shoulder respectively (Figure 12b).

Figure 12: (a) An interactive toy robot: (a-1) A planar joint
is connected to the robot. A ’come’ dynamic gesture is
connected to a ’moving’ animation action as a dynamic-
provoking interaction, while a ’pointing’ dynamic gesture is
demonstrated referring to a ’rotation’ animation as a syn-
chronous interaction. (a-2) The toy robot can move towards
the user after the user does a ’come’ gesture and rotates syn-
chronously with the user’s ’pointing’ hand command. (b) A
humanoid agent: (b-1) Two spherical joints link the agent’s
body, upper, and lower arm. A double-handed static gesture
is created next to the agent’s hand and connected with a fol-
lowing action. A ’waving hand’ dynamic gesture is connected
with a similar ’waving hand’ animation action of the agent.
A sketched "Hi" is linked with a ’patting’ static gesture. (b-
2) The virtual agent can wave the hand, shake hands with
the user, and pop up a "Hi" after the user pat on the agent’s
shoulder.

4.3 Room-level interactive AR game
Besides focusing on the interactions with one single object, a
broader application scenario is to make an augmented and inter-
active living space. For instance, the interactive AR gaming area
witness a fourishing development in recent years [55, 72]. With
GesturAR, the capability of in-situ authoring and object scanning
allows end-users to create in-door AR games that exploit the blend
of the physical and virtual contexts. Here, the user plans to create a
treasure hunt game for the guests using some pirate-themed objects
he has (Figure 13a). The user frst scans a treasure map into two
parts together with a skull. He then places three locked treasure
boxes with only one with treasure on the table and hides the key
under the physical skull. Then, the user places the position triggers
within a sketched frame and sketches an arrow physically point-
ing to the real skull as a visual hint for the keys hidden beneath
the skull. Meanwhile, the user places the scanned skull above the
correct treasure box and uses it as the object to attach an ’open’
gesture connected with a ’sparkle’ animation. Throughout the en-
tire authoring process, GesturAR empowers the user to seamlessly
interweave the virtual and physical world to rapidly create an im-

mersive AR game. When the guests come, one would enter the Play
Mode, and follow the visual hint scattered in the room to fnd the
treasure (Figure 13a-2).

560

UIST ’21, October 10–14, 2021, Virtual Event, USA Wang and Qian, et al.

Figure 13: (a) AR treasure hunt game: (a-1) Two positional
triggers of the scanned map pieces link to two appear ac-
tions of a virtual arrow and a scanned skull respectively. A
’open’ static gesture is connected to a sparkle action. (a-2)
The player frst restores the broken treasure map; then fnds
the hidden key along the virtual arrow; he opens the correct
treasure box, and a sparkle animation shows up. (b) In-situ
AR presentation: (b-1) A hinge joint is connected between
the sketched sun and the sketched earth. A manipulating
interaction is implemented on the sun model. An appear ac-
tion is connected with a static gesture located next to the
earth. A ’rotation’ animation action of the earth is linked
with a ’pinch rotate’ dynamic gesture. (b-2) The presenter
frst holds a sketched sun. Then, the earth appears next to
the presenter’s right hand. Finally, the earth starts to rotate
about the sun after the presenter symbolically rotates his
hand.

4.4 Embodied AR presentation
Performing hand gestures during conversations is a common prac-
tice. Yet, plain hand gestures only convey limited information due
to the lack of expressiveness. GesturAR is useful to improve the
efciency in thought delivery by incorporating embodied hand
gestures with in-situ visual representations of dynamic 3D contents
and animations in AR. Further, the sketching function enables an
immediate and seamless creation of the desired 3D contents for the
conversation. Embodied AR presentation is one typical application
of GesturAR. Here, a presenter authors an earth-sun animation to
explain the Heliocentric theory (Figure 13b). The user frst sketches
the simple models of the sun and the earth, then constrains the
earth to rotate around the sun using a hinge joint. During the AR
presentation, the presenter frst talks about the sun while holding
it in front of the listener, then reveals the earth with a ’touching’
gesture. Finally, by performing a ’pinch rotation’ dynamic gesture,
the earth model starts to rotate about the sun to illustrate the the-
ory vividly. From the listener’s perspective, the augmented hand
gestures clearly explain the ambiguous concept with the help of
the in-situ visual representations (Figure 13b-2). Similarly, Gestu-
rAR can also be implemented in scenarios such as investor pitches,
educational lectures, storytelling, etc.

4.5 Entertaining daily life with embodied hand
gestures

Our system supports the ubiquitous perception of users’ spatial
and hand gesture information so that end-users can entertain the
daily life with their imagination. Leveraging real-time hand gesture
detection, users can perform various pre-defned gestures to trigger
entertaining virtual elements or fancy visual efects. For instance,
the user can break the room’s wall virtually anytime when he feels
angry by performing a punching gesture towards the scanned wall.
to trigger a pre-authored mesh deform action (Figure 14a). Mean-

time, the user can create a portable pet shark with a synchronous
interaction with a ’grabbing’ gesture and a ’scaling’ animation. So,
the user can open and close his hand to control the size of the
shark. Further, the user authors a ’swim’ animation, so that the
toy shark can be shown above the user’s hand and starts to swim
(Figure 14b). Last but not least, the user author a light sword with
an adjustable blade. Specifcally, the handle of the sword can be
held by the user with manipulating interaction. Meanwhile, the
user authors a synchronous interaction to the sketched blade to
change the length using a double-handed gesture. Therefore, when
the user holds the handle and starts to move the other hand away,
the blade is elongated. Afterward, the user can withdraw the sword
by performing the gesture reversely 14c).

Figure 14: (a) Forceful punch: (a-1) A ’punch’ dynamic ges-
ture is connected to a mesh deform action of the scanned
wall. (a-2) The scanned wall is deformed as the user punches.
(b) Portable pet shark: (b-1) A ’supporting’ dynamic ges-
ture connects to a following action and a ’swimming’ anima-
tion action of the scanned shark. A ’grabbing’ dynamic ges-
ture is created from a ’scaling’ animation for a synchronous
interaction. (b-2) A scanned shark swims above the user’s
hand and can be shrunk to the palm. (c) Light sword: (c-1)
A following action is connected to a ’holding’ static gesture.
A double-handed ’drawing’ dynamic gesture is created to-
gether with the animation of the elongation of the blade. (c-
2) The user frst holds the handle of the sword with the left
hand and draws the blade by moving the right hand away.
Then, he can hold and strike the sword. After that, the user
can withdraw the sword by performing the ’drawing’ gesture
reversely.

561

'Grab'gesture
(manipulating}

.. Thebridgefollowstheuser'shand

0:~~o~u~lttd~:~~~ e .. An ani_mation of the toy car moving from
P(positionaltriggerf thebridgetothefrontofthedoor

The facing-door
positionofthetoycar .. Meshexplosionofthedoor

(positional trigger}

Self-authored Other-authored

Dynamic Gestures

rt~
0 Self-authored Other-authored

■rurePosltiVf! ■rureNegatlve Fa lse Positlve ■Fa lseNegatlve Q F,Score ■Triggered ■ NotTrlggered Q Accuracy

GesturAR: An Authoring System for Creating Freehand Interactive Augmented Reality Applications UIST ’21, October 10–14, 2021, Virtual Event, USA

5 IMPLEMENTATION
We build our system on Hololens2 [31] using Unity3D (2019.4.16f1)
[87]. The GesturAR user interface is implemented with the support
of Microsoft Mixed Reality Toolkit (MRTK) [61], FinalIK [22] and
mesh efect libraries 2 3 4

. The Siamese neural network for one-
shot hand gesture classifcation is trained on a local PC (Intel Core
i7-9700K, 3.6GHz CPU, 32GB RAM, NVIDIA RTX2080 GPU) using
PyTorch [78] and runs on Hololens2 through Unity Barracuda 5.
Additionally, to enable users to make virtual contents through scan-
ning, we preload the mesh model of the surrounding environment,
which is created with an iPad 3D scanner [1], onto the Hololens2.
We expose the mesh triangles touched by the user’s pen tip to
simulate the scanning experience.

6 USER STUDY
We conducted a three-session user study to evaluate the hand detec-
tion model accuracy, immersive hand-object interaction authoring
feasibility, and the overall system usability. 12 users (9 males and 3
females, aging from 21 to 30) were recruited. . 11 of the users had
experienced AR/VR applications or games on cell phones, tablets
or head mounted devices. The rest one had the basic understand-
ing of AR/VR concepts. We did not invite any AR/VR designers
or programmers since GesturAR is designed for the customization
experience of non-expert AR consumers. None of the users had
experience with our system before the user study. Note that none of
the users provided the hand gesture data for the training process in
Section 3.4. To better verify the shareability of our system, each time
we invited two users to do the study at the same time. The entire
study took 2 hours, and each user was paid 20 dollars. The study was
taken in a 5mx5m indoor area and was screen and video-recorded
for post-analysis. We frst requested the users to experience the
Hololens2 built-in tutorial to get familiar with the general freehand
AR interaction. Then, for each session, both users frst completed
the authoring process. Considering counterbalancing, while testing
the authoring correctness, 6 users frst tested their own applications
(self-authored), then their partners’ (other-authored). The other 6
tested in a reversed order. After each session, the users completed a
survey with Likert-type (scaled 1-5) questions regarding the usage
experience of the system features. After all the sessions, each user
took a conversation-type interview to provide subjective feedback
and fnished a standard System Usability Scale (SUS) questionnaire.

6.1 Session 1: Gesture Recognition Accuracy
To assess the performance of the one-shot learning neural network
for hand gesture detection, we selected 8 static gestures and 7
dynamic gestures (Figure 15). First, each user authored the 8 static
gestures using the procedure illustrated in Figure 5a. Then, while
testing each gesture, the user was asked to perform 1) two gestures
that were the same as the targeting gesture (one with right hand, and
one with left hand), and 2) two gestures that were distinct, in his/her
opinion. Note that each user tested both their own and partners’
gestures. We recorded the data with 2x2 confusion matrices (TP, FP,

2
https://assetstore.unity.com/packages/vfx/particles/spells/mesh-efects-67803

3
https://assetstore.unity.com/packages/tools/particles-efects/mesh-explosion-5471

4
https://assetstore.unity.com/packages/tools/utilities/gm-mesh-deformer-136461

5
https://docs.unity3d.com/Packages/com.unity.barracuda@0.3/manual/index.html

Figure 15: User study session 1 setup: (a) eight static gestures,
and (b) seven dynamic gestures: open-hand, shoot, fip hand,
come, wave-hand, pinch-rotate, and punch.

Figure 16: User study session 2 and 3 setup. Session 2: (a-1) 6
manipulating interactions: hold the cup handle; support the
cup; hold the bowling ball with both hands; hold the bowling
ball by holes; hold the chest with both hands; open the chest
lid, (a-2) 3 synchronous interactions: push/pull a toy car; scal-
ing a rock with both hands; open/close the laptop remotely
with thumb and index fnger, and (b) Session 3: the table-top
interactive AR application.

T P
TN, FN) for all gestures, and calculated the F1 =

1 to
T P +

2 (F P +FN)

measure the model performance 6. Process for the dynamic gestures
was similar, except that the users only performed each gesture once.
And we recorded whether the system successfully detected them.

Figure 17: Results of user study session 1.
6
https://en.wikipedia.org/wiki/F-score

562

https://6https://en.wikipedia.org/wiki/F-score
mailto:5https://docs.unity3d.com/Packages/com.unity.barracuda@0.3/manual/index.html
https://4https://assetstore.unity.com/packages/tools/utilities/gm-mesh-deformer-136461
https://3https://assetstore.unity.com/packages/tools/particles-effects/mesh-explosion-5471
https://2https://assetstore.unity.com/packages/vfx/particles/spells/mesh-effects-67803

UIST ’21, October 10–14, 2021, Virtual Event, USA Wang and Qian, et al.

Result and discussion. The evaluation result is illustrated in
Figure 17. For static gestures, our system could successfully dis-
tinguish both the correct and wrong gestures performed by the
users (F1 scores of the test of self-authored and other-authored
cases were 95.93% (SD=0.04), and 96.29% (SD=0.036)). This result
is comparable with the validation accuracy (Figure 8 (bottom-

right)). Moreover, we conducted a one-way ANOVA test towards
the F1 scores between the two conditions after the data passed
the Kolmogorov–Smirnov normality test (D(12)=.255, p=.35>.05
and D(12)=.225, p=.51>.05). No signifcant diference was revealed
between the two conditions (F(1,22)=0.056, p=.82>.05), which indi-
cated that our hand detection model could achieve a high quality
regardless of the user who performed the gesture.

As for dynamic gestures, the system also received competent
accuracy (91.67% (SD=0.10) for self-authored gestures, 84.52%
(SD=0.11) for other-authored gestures). The decrease of the ac-
curacy when testing partners’ gestures were mainly attributed to
the diferent preferences when performing similar gestures. For
instance, when acting the "come" gesture, some users only bend
their fngers while others also moved their lower arms. We will
discuss the variation in the later section. Furthermore, the Kol-
mogorov–Smirnov normality test indicated the normality of the
accuracy data (D(12)=.319, p=.138>.05 and D(12)=.22, p=.54>.05),
and the one-way ANOVA test showed no signifcant diference be-
tween the two scenarios (F(1,22)=2.79, p=.11>.05), which disclosed
that although the accuracy was slightly diferent, our system could
still detect the dynamic gestures performed by diferent users.

6.2 Session 2: Hand-object Interaction
Evaluation

In this session, we evaluated the performance of the GesturAR em-

bodied authoring interface for freehand interaction creation. Here,
the users mainly experienced the manipulating and synchronous
situations with 6 pre-created virtual models. Specifcally, the users
authored 2 diferent manipulating interactions for each of the frst
3 virtual models (Figure 16a-1), and 1 synchronous interaction for
each of the remaining 3 (Figure 16a-2). We recorded whether the
users successfully interacted with their own and partners’ author-
ing results on the frst try during the test.

Result and discussion. All 12 users authored 108 valid tasks
in total. The overall test success rate of both the user’s own and the
partner’s applications was 94.44% (SD=0.08), indicating that most
users could fuently manipulate virtual objects using the freehand
interaction provided by our system.

The freehand interaction-related Likert-type question ratings
are shown in Figure 18 (top) . In general, the users agreed with the
necessity of customizing hand gestures for freehand interactions
(Q2: AVG=4.75, SD=0.59). "I really like that I can defne my own way
to manipulate those virtual objects. The only pinch is way less enough
for me (P3)". And the embodied demonstration approach was recep-
tive (Q1: AVG=4.67, SD=0.47). "I think I can only record a gesture
correctly when I do it right next to that object" (P3). Meanwhile, most
users were content with the capability of the hand-object inter-
actions in our system (Q3: AVG=4.58, SD=0.64). "[Static] gestures
are defnitely necessary. And after I used your system, I realized [dy-
namic] gestures are also very important. I’m glad you bring this up

(P7)". Additionally, the synchronous interaction was welcomed by
the users (Q6: AVG=4.41, SD=0.64). "It’s great that your system has
that synchronization of the animation. And I like the idea that I can
do my gesture while following the animation (P4)". For using the
application, most users were confdent that they could successfully
interact with the virtual objects using the gestures they created (Q4:
AVG=4.59, SD=0.49). "I was impressed when I could hold a virtual
bowling ball like what I do with a real one (P5)". The survey result
also showed positive feedback when trying out others’ applications
(Q5: AVG=4.25, SD=0.64). "When I tried my partner’s app, the visible
skeleton really helped me to fgure out what to do. And I was surprised
that I could open the chest he created that fuently (P11)".

6.3 Session 3: Overall System Usability
Finally, the users were asked to create a table-top AR puzzle game
from scratch with all features supported by our system (Figure 16b).
After the user did a self-defned "go" gesture, a toy car moved from
the starting point and stopped in front of a lifted bridge. Then, the
player had to grab the bridge to pull it down so that the car could
move forward. Finally, the door was broken into pieces after the
car reached the fnishing point. Specifcally, the users had to scan a
toy car, a bridge, sketch a door, and set the hinge joint of the bridge.
The required triggers and actions are shown in Figure 16b-1 . We
recorded whether the users successfully authored the game, and
completed their own and partners’ games.

Result and discussion. All 12 users successfully completed the
authoring processes, tested their own applications, and tested their
partners’ applications. The overall Likert-type results collected
from this session are shown in Figure 18 (bottom) . Overall, the
users acknowledged that the trigger-action metaphor was suitable
for AR application creation (Q3, AVG=4.5, SD=0.67). “It was easy
to follow when I frst defne a trigger, then an action (P10)”. Most
users felt confdent in using the applications created by themselves
or others (Q6, AVG=4.25, SD=0.96). "I felt super cool when I could
successfully pull down the bridge he created and the car broke the door
at the end (P12)". We also asked users about the authoring interface.
The scanning and sketching features for virtual content creation
received complimentary remarks (Q1: AVG=4.67, SD=0.49). "In my
opinion, it’s very useful that I can scan something around me and add
funny interactions to it" (P1). Meanwhile, the mechanical constraints
feature was well-received by users (Q2: AVG=4.58, SD=0.66). "It’s
awesome that I can fuently rotate the virtual bridge. It’s defnitely
necessary to help me create more realistic object behaviors (P6)". Fur-
ther, the users complimented using lines to build logic connections
between triggers and actions (Q5: AVG=4.58, SD=0.66) and were
satisfed with the clarity of the UI design during the authoring
process (Q4: AVG=4.75, SD=0.62). "I like the idea of using solid and
hollow triangles for triggers and actions. It helps me easily fnd what
to connect, of course, using lines is super straightforward (P9)". Finally,
the standard SUS survey result for the entire study received 86 out
of 100 with a standard deviation of 11.18, which indicated high
usability of the entire system.

7 LIMITATIONS AND FUTURE WORK
Haptic feedback in freehand AR interactions. Through the
user study, some users brought up that "I’d be more confdent to demo

563

https://AVG=4.75
https://AVG=4.58
https://AVG=4.58
https://AVG=4.67
https://AVG=4.25
https://AVG=4.25
https://AVG=4.59
https://AVG=4.41
https://AVG=4.58
https://AVG=4.67
https://AVG=4.75
https://p=.11>.05
https://F(1,22)=2.79
https://p=.54>.05
https://D(12)=.22
https://p=.138>.05
https://p=.82>.05
https://p=.51>.05
https://p=.35>.05

It's intuitive to create a hand-object
interaction pair by acting it out in AR. (Ql)

I prefer to define my own hand gestures
to interact with virtual objects. (Q2)

The system supports most hand-object
interactions I can come up with. (Q3)

The virtual objects behave exactly as what I
defined. (Q4)

I can manipulate virtual objects using the
gestures created by others. (QS)

It's straightforward to create synchronous
gestures by referring to demonstration. (Q6)

It's beneficial to create virtual objects by
scanning and sketching. (Ql)

Mechanical joints help me accurately
constrain the movement of virtual objects.
(Q2)

The trigger-action metaphor is intuitive for
freehand interactions. (Q3)

The UI are dear and easy to understand.(Q4)

It's straightforward to build logic connections
(joints, trigger-actions) using lines. (QS)

I'm confident to use interactive AR
applications created by myself or others. (Q6)

01234567 8 9101112

012 3 456789101112

■ Strongly Disagree ■ Slightly Disagree Neutral ■ Slightly Agree ■ Strongly Agree

GesturAR: An Authoring System for Creating Freehand Interactive Augmented Reality Applications UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 18: Likert-type questionnaire results of session 2 (top)
and session3 (bottom).

accurate gestures and operate those [virtual] object if I could feel what
I’m touching (P2)". The lack of haptic feedback has been identifed
and discussed in prior freehand AR interactive systems [10, 30]. To
improve the immersive experience, haptic gloves [12, 46] would
be one solution but they usually are bulky and require external
setups. Meanwhile, ultrasound-based devices have been exploited
to provide unencumbered tactile sensation for freehand interactions
[58, 86, 94], but limit users’ gesturing space. Therefore, it would
be fruitful to explore the incorporation of haptic feedback in user-
defned freehand AR interactions as future work.

Ambiguity and variation of user-defned hand gestures.
With GesturAR, enabling end-users to customize hand-object inter-
actions improves the scalability of freehand interactive AR applica-
tions. Yet, some users raised that "When I use an object, I’d like to
use it in a way I feel comfortable. But when I tried his objects, I was
not clear what did he want me to do (P8)". As a shareable application,
adapting to diferent users’ tendencies in object interactions and
dealing with the ambiguity of hand gestures substantially afect
the system usability. To address this issue, prior studies [75, 95]
elicited intuitive hand gestures for AR interactions. Chen et al. [15]
proposed multi-modal approaches to further elucidate users’ op-
erations. From our observation, the user’s hand size, handedness,
and object size could be key factors. Thus, how to create freehand
AR interactions that can be fuently used by others requires deeper
research and analysis.

Blend the physical and virtual space. GesturAR enables users
to virtualize their surroundings with a scanning technique. Mechan-
ical constraints make the movement of the virtual contents more
realistic. In the user study, some users suggested that "It would be

more realistic if these virtual items had gravity (P4)". Also, "Why I
can’t use real objects as triggers (P9)". Prior works have shown that in-
terweaving physical contexts and virtual interfaces largely expands
the capability of AR applications [29, 91]. Similarly, when author-
ing freehand AR applications, it would be benefcial to empower
users with the environmental context perception by leveraging
state-of-the-art object tracking algorithms and physical engines.

Overlapping of virtual contents. Interacting in the AR do-
main with bare hands requires a precise selection of the target
virtual contents. In current implementation of Authoring Mode,
each UI element has a cuboid bounding box as its interactive region.
However, for diferent elements that occupy the same space, only
one of them can be selected at one time. Thus, the clustering of UI
elements and virtual objects frequently caused unnecessary dif-

culties. Usually, 3-4 Triggers/Action icons can congest the space
around a virtual object and make the authoring process cumber-

some. "When I created more gestures onto one single object, those
bounding boxes were annoying. I had to frst move them away. But it
broke my authoring process (P11)". One solution could be the multi-

modal interface, which has been widely explored in freehand AR
applications [47, 74, 93], and has shown benefts regarding virtual
object selection and basic object manipulation. Therefore, one im-

provement of our system would be integrating additional input
modalities for a more fuent authoring experience.

Limited ways of mapping between triggers and actions.
Currently, GesturAR only supports simple and direct mapping be-
tween triggers and actions. Namely, an action reacts immediately
when a corresponding trigger is detected. Some complex mappings,
such as condition (an action only reacts to a trigger given some
preconditions, such as location, time or other triggers), delay (an
action reacts after a trigger has been detected for a period of time) or
chain (several actions react sequentially after a trigger is detected)
are not supported. One possible solution can be introducing a more
comprehensive spatial programming interface that is similar to the
ones in CAPturAR [91], Ivy [21] and FlowMatic [105].

Hardware and software constraints. Although virtualizing
surrounding objects through scanning was welcomed by the users,
the current process is isolated from the main system workfow,
which limits the scalability of the system. However, by embed-

ding the state-of-the-art 3D reconstruction and fusion algorithms
[34, 77], we believe that our system could provide a seamless and
fexible experience of virtual asset creation. Meanwhile, the quality
of the Hololens2 hand recognition is signifcantly reduced as hand
occlusion happens, which limits the tangible interactions where
users interact with virtual objects while holding real objects. We en-
vision more robust hand-tracking algorithms that can improve the
performance of GesturAR and expand the design space of freehand
AR interactions in the future.

Additional supports for professional designers. While Ges-
turAR aims at common AR consumers in their daily life, it can also
be used as a prototyping tool for designers and programmers to
rapidly validate their ideas. We envision the following improve-

ments of GesturAR to better assist the professional users in the
early design stage: 1) integrating with multiple prototyping meth-

ods such as physical prototyping [28, 64, 65] and sketching [6]. 2)
allowing for customized triggers (e.g. IoT sensors) and actions (e.g.
animations and mesh efects) in addition to the provided ones and

564

UIST ’21, October 10–14, 2021, Virtual Event, USA Wang and Qian, et al.

3) using external devices (e.g. tablets or phones) to handle complex
spatial programming [29] and record augmented videos [50].

8 CONCLUSION
In this work, we present GesturAR, an all-in-one authoring tool
that enables end-users to create AR applications with customized
freehand inputs. GesturAR allows users to generate virtual contents
in-situ and design their personalized hand gestures by embodied
demonstration while using relevant context as spatial and temporal
reference. We start from the taxonomy of hand gestures in AR and
propose a hand interaction model that maps various types of hand
inputs to the responsive behaviors of the virtual contents. Following
the interaction model, we design our visual programming interface
so that users can author multiple interaction modalities through
simple trigger-action programming. Further, we develop a real-time
gesture detection algorithm based on one-shot learning and time
series analysis to support an instant experience of the authored AR
applications. To explore the capability of GesturAR, we demonstrate
fve groups of application scenarios: creating interactive objects,
humanoid and robotic agents, augmenting in-door environment
with tangible AR games, making immersive AR presentations, and
interacting with entertaining virtual contents. Through a user study,
we frst evaluate the accuracy of our hand detection network, then
prove our system’s usability in interactive application authoring
from the positive study results and user feedback. Therefore, we
believe that GesturAR reveals a novel perspective involving hand
gestures with AR interactive applications and inspires future bare-
hand immersive environment development.

ACKNOWLEDGMENTS
We wish to give a special thanks to the reviewers for their invalu-
able feedback. This work is partially supported by the NSF under
grants Future of Work at the Human Technology Frontier (FW-HTF)
1839971. We also acknowledge the Feddersen Chair Funds. Any
opinions, fndings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
refect the views of the funding agency.

REFERENCES
[1] 3D Scanner App 2021. 3D Scanner App: Capture Anything in 3D.

https://www.3dscannerapp.com/.
[2] Günter Alce, Mattias Wallergård, and Klas Hermodsson. 2015. WozARd: a

wizard of Oz method for wearable augmented reality interaction—a pilot study.
Advances in human-computer interaction 2015 (2015).

[3] Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2017. Trigger-action-
circuits: Leveraging generative design to enable novices to design and build
circuitry. In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology. 331–342.

[4] ARCore [n.d.]. ARCore. https://developers.google.com/ar.
[5] ARKit [n.d.]. ARKit Overview. https://developer.apple.com/augmented-

reality/arkit/.
[6] Rahul Arora, Rubaiat Habib Kazi, Tovi Grossman, George Fitzmaurice, and

Karan Singh. 2018. Symbiosissketch: Combining 2d & 3d sketching for designing
detailed 3d objects in situ. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1–15.

[7] Rahul Arora, Rubaiat Habib Kazi, Danny M Kaufman, Wilmot Li, and Karan
Singh. 2019. Magicalhands: Mid-air hand gestures for animating in vr. In Pro-
ceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology. 463–477.

[8] Daniel Ashbrook and Thad Starner. 2010. MAGIC: a motion gesture design tool.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
2159–2168.

[9] Narges Ashtari, Andrea Bunt, Joanna McGrenere, Michael Nebeling, and Par-
mit K Chilana. 2020. Creating augmented and virtual reality applications:
Current practices, challenges, and opportunities. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems. 1–13.

[10] Hrvoje Benko, Ricardo Jota, and Andrew Wilson. 2012. Miragetable: freehand
interaction on a projected augmented reality tabletop. In Proceedings of the
SIGCHI conference on human factors in computing systems. 199–208.

[11] Fabio Bettio, Andrea Giachetti, Enrico Gobbetti, Fabio Marton, and Giovanni
Pintore. 2007. A Practical Vision Based Approach to Unencumbered Direct Spa-
tial Manipulation in Virtual Worlds.. In Eurographics Italian Chapter Conference.
145–150.

[12] Volkert Buchmann, Stephen Violich, Mark Billinghurst, and Andy Cockburn.
2004. FingARtips: gesture based direct manipulation in Augmented Reality.
In Proceedings of the 2nd international conference on Computer graphics and
interactive techniques in Australasia and South East Asia. 212–221.

[13] Yuanzhi Cao, Xun Qian, Tianyi Wang, Rachel Lee, Ke Huo, and Karthik Ra-
mani. 2020. An Exploratory Study of Augmented Reality Presence for Tutoring
Machine Tasks. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. 1–13.

[14] Yuanzhi Cao, Tianyi Wang, Xun Qian, Pawan S Rao, Manav Wadhawan, Ke
Huo, and Karthik Ramani. 2019. GhostAR: A Time-space Editor for Embodied
Authoring of Human-Robot Collaborative Task with Augmented Reality. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology. 521–534.

[15] Di Laura Chen, Ravin Balakrishnan, and Tovi Grossman. 2020. Disambiguation
techniques for freehand object manipulations in virtual reality. In 2020 IEEE
conference on virtual reality and 3D user interfaces (VR). IEEE, 285–292.

[16] Jiawen Chen, Shahram Izadi, and Andrew Fitzgibbon. 2012. KinÊtre: animat-

ing the world with the human body. In Proceedings of the 25th annual ACM
symposium on User interface software and technology. 435–444.

[17] Xinghao Chen, Hengkai Guo, Guijin Wang, and Li Zhang. 2017. Motion feature
augmented recurrent neural network for skeleton-based dynamic hand gesture
recognition. In 2017 IEEE International Conference on Image Processing (ICIP).
IEEE, 2881–2885.

[18] Chiho Choi, Sang Ho Yoon, Chin-Ning Chen, and Karthik Ramani. 2017. Ro-
bust hand pose estimation during the interaction with an unknown object. In
Proceedings of the IEEE International Conference on Computer Vision. 3123–3132.

[19] Anind K Dey, Rafay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. 2004. a
CAPpella: programming by demonstration of context-aware applications. In
Proceedings of the SIGCHI conference on Human factors in computing systems.
33–40.

[20] Mahmoud Elmezain, Ayoub Al-Hamadi, Jorg Appenrodt, and Bernd Michaelis.
2008. A hidden markov model-based continuous gesture recognition system
for hand motion trajectory. In 2008 19th International Conference on Pattern
Recognition. IEEE, 1–4.

[21] Barrett Ens, Fraser Anderson, Tovi Grossman, Michelle Annett, Pourang Irani,
and George Fitzmaurice. 2017. Ivy: Exploring spatially situated visual program-

ming for authoring and understanding intelligent environments. In Proceedings
of the 43rd Graphics Interface Conference. 156–162.

[22] FinalIK 2021. FinalIK: Final IK - RootMotion. http://www.root-motion.com/fnal-

ik.html.
[23] Markus Funk, Mareike Kritzler, and Florian Michahelles. 2017. HoloLens is more

than air Tap: natural and intuitive interaction with holograms. In Proceedings of
the seventh international conference on the internet of things. 1–2.

[24] Terrell Glenn, Ananya Ipsita, Caleb Carithers, Kylie Peppler, and Karthik Ramani.
2020. StoryMakAR: Bringing Stories to Life With An Augmented Reality &
Physical Prototyping Toolkit for Youth. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. 1–14.

[25] Celeste Groenewald, Craig Anslow, Junayed Islam, Chris Rooney, Peter J Pass-
more, and BL Wong. 2016. Understanding 3D mid-air hand gestures with
interactive surfaces and displays: a systematic literature review. (2016).

[26] Sinem Güven and Steven Feiner. 2003. Authoring 3D hypermedia for wearable
augmented and virtual reality. In Proceedings of IEEE International Symposium
on Wearable Computers (ISWC’03). 21–23.

[27] Björn Hartmann, Leith Abdulla, Manas Mittal, and Scott R Klemmer. 2007.
Authoring sensor-based interactions by demonstration with direct manipulation
and pattern recognition. In Proceedings of the SIGCHI conference on Human factors
in computing systems. 145–154.

[28] Robert Held, Ankit Gupta, Brian Curless, and Maneesh Agrawala. 2012. 3D
puppetry: a kinect-based interface for 3D animation.. In UIST, Vol. 12. Citeseer,
423–434.

[29] Valentin Heun, James Hobin, and Pattie Maes. 2013. Reality editor: programming
smarter objects. In Proceedings of the 2013 ACM conference on Pervasive and
ubiquitous computing adjunct publication. 307–310.

[30] Otmar Hilliges, David Kim, Shahram Izadi, Malte Weiss, and Andrew Wilson.
2012. HoloDesk: direct 3d interactions with a situated see-through display. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

565

http://www.root-motion.com/final
https://developer.apple.com/augmented
https://developers.google.com/ar
https://www.3dscannerapp.com

GesturAR: An Authoring System for Creating Freehand Interactive Augmented Reality Applications UIST ’21, October 10–14, 2021, Virtual Event, USA

2421–2430.
[31] Hololens 2 2021. Hololens 2: Mixed Reality Technology for Business.

https://www.microsoft.com/en-us/hololens.
[32] Zhanpeng Huang, Weikai Li, and Pan Hui. 2015. Ubii: Towards seamless in-

teraction between digital and physical worlds. In Proceedings of the 23rd ACM
international conference on Multimedia. 341–350.

[33] Ke Huo and Karthik Ramani. 2016. Window-Shaping: 3D Design Ideation in
Mixed Reality. In Proceedings of the 2016 Symposium on Spatial User Interaction.
189–189.

[34] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard New-
combe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew
Davison, et al. 2011. KinectFusion: real-time 3D reconstruction and interaction
using a moving depth camera. In Proceedings of the 24th annual ACM symposium
on User interface software and technology. 559–568.

[35] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, and George Fitzmaurice.
2014. Kitty: sketching dynamic and interactive illustrations. In Proceedings of the
27th annual ACM symposium on User interface software and technology. 395–405.

[36] Annie Kelly, R Benjamin Shapiro, Jonathan de Halleux, and Thomas Ball. 2018.
ARcadia: A rapid prototyping platform for real-time tangible interfaces. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–8.

[37] Jun-Sik Kim, MyungHwan Jeon, and Jung-Min Park. 2019. Multi-Hand Direct
Manipulation of Complex Constrained Virtual Objects. In 2019 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE, 3235–3240.

[38] Yongkwan Kim and Seok-Hyung Bae. 2016. SketchingWithHands: 3D sketching
handheld products with frst-person hand posture. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology. 797–808.

[39] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural
networks for one-shot image recognition. In ICML deep learning workshop, Vol. 2.
Lille.

[40] Sinisa Kolaric, Alberto Raposo, and Marcelo Gattass. 2008. Direct 3D manipula-

tion using vision-based recognition of uninstrumented hands. In X Symposium
on Virtual and Augmented Reality. Citeseer, 212–220.

[41] Tobias Langlotz, Stefan Mooslechner, Stefanie Zollmann, Claus Degendorfer,
Gerhard Reitmayr, and Dieter Schmalstieg. 2012. Sketching up the world: in
situ authoring for mobile augmented reality. Personal and ubiquitous computing
16, 6 (2012), 623–630.

[42] David Ledo, Jo Vermeulen, Sheelagh Carpendale, Saul Greenberg, Lora Oehlberg,
and Sebastian Boring. 2019. Astral: Prototyping Mobile and Smart Object
Interactive Behaviours Using Familiar Applications. In Proceedings of the 2019
on Designing Interactive Systems Conference. 711–724.

[43] Bokyung Lee, Minjoo Cho, Joonhee Min, and Daniel Saakes. 2016. Posing and
acting as input for personalizing furniture. In Proceedings of the 9th Nordic
Conference on Human-Computer Interaction. 1–10.

[44] Gun A Lee, Gerard J Kim, and Mark Billinghurst. 2005. Immersive authoring:
What you experience is what you get (wyxiwyg). Commun. ACM 48, 7 (2005),
76–81.

[45] Gun A Lee, Claudia Nelles, Mark Billinghurst, and Gerard Jounghyun Kim.
2004. Immersive authoring of tangible augmented reality applications. In Third
IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE,
172–181.

[46] Jae Yeol Lee, Gue Won Rhee, and Dong Woo Seo. 2010. Hand gesture-based
tangible interactions for manipulating virtual objects in a mixed reality envi-
ronment. The International Journal of Advanced Manufacturing Technology 51,
9-12 (2010), 1069–1082.

[47] Minkyung Lee, Mark Billinghurst, Woonhyuk Baek, Richard Green, and Woon-

tack Woo. 2013. A usability study of multimodal input in an augmented reality
environment. Virtual Reality 17, 4 (2013), 293–305.

[48] Minkyung Lee, Richard Green, and Mark Billinghurst. 2008. 3D natural hand
interaction for AR applications. In 2008 23rd International Conference Image and
Vision Computing New Zealand. IEEE, 1–6.

[49] Germán Leiva and Michel Beaudouin-Lafon. 2018. Montage: a video prototyping
system to reduce re-shooting and increase re-usability. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology. 675–682.

[50] Germán Leiva, Cuong Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2020.
Pronto: Rapid Augmented Reality Video Prototyping Using Sketches and Enac-
tion. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–13.

[51] Yingjiang Li, Jianhong Sun, and Rui Li. 2016. Human Action Recognition Based
on Dynamic Time Warping and Movement Trajectory. International Journal of
Simulation–Systems, Science & Technology 17, 46 (2016).

[52] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-
user development: An emerging paradigm. In End user development. Springer,
1–8.

[53] Hao Lü and Yang Li. 2012. Gesture coder: a tool for programming multi-touch
gestures by demonstration. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2875–2884.

[54] Hao Lü and Yang Li. 2013. Gesture studio: Authoring multi-touch interactions
through demonstration and declaration. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 257–266.

[55] Zhihan Lv, Alaa Halawani, Shengzhong Feng, Shafq Ur Réhman, and Haibo Li.
2015. Touch-less interactive augmented reality game on vision-based wearable
device. Personal and Ubiquitous Computing 19, 3 (2015), 551–567.

[56] Chunyong Ma, Shengsheng Zhang, Anni Wang, Yongyang Qi, and Ge Chen.
2020. Skeleton-based dynamic hand gesture recognition using an enhanced
network with one-shot learning. Applied Sciences 10, 11 (2020), 3680.

[57] MagicLeapMica 2021. Magic Leap: I am mica. https://www.magicleap.com/en-

us/news/op-ed/i-am-mica.
[58] Atsushi Matsubayashi, Yasutoshi Makino, and Hiroyuki Shinoda. 2019. Direct

fnger manipulation of 3d object image with ultrasound haptic feedback. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1–11.

[59] Daniel Mendes, Fernando Fonseca, Bruno Araujo, Alfredo Ferreira, and Joaquim
Jorge. 2014. Mid-air interactions above stereoscopic interactive tables. In 2014
IEEE Symposium on 3D User Interfaces (3DUI). IEEE, 3–10.

[60] Byung-Woo Min, Ho-Sub Yoon, Jung Soh, Yun-Mo Yang, and Toshiaki Ejima.
1997. Hand gesture recognition using hidden Markov models. In 1997 IEEE Inter-
national Conference on Systems, Man, and Cybernetics. Computational Cybernetics
and Simulation, Vol. 5. IEEE, 4232–4235.

[61] MRTK 2021. MRTK: MRTK-Unity Developer Documentation.
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/.

[62] Franziska Mueller, Dushyant Mehta, Oleksandr Sotnychenko, Srinath Sridhar,
Dan Casas, and Christian Theobalt. 2017. Real-time hand tracking under occlu-
sion from an egocentric rgb-d sensor. In Proceedings of the IEEE International
Conference on Computer Vision. 1154–1163.

[63] Mathieu Nancel, Julie Wagner, Emmanuel Pietriga, Olivier Chapuis, and Wendy
Mackay. 2011. Mid-air pan-and-zoom on wall-sized displays. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. 177–186.

[64] Michael Nebeling and Katy Madier. 2019. 360proto: Making interactive virtual
reality & augmented reality prototypes from paper. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–13.

[65] Michael Nebeling, Janet Nebeling, Ao Yu, and Rob Rumble. 2018. Protoar:
Rapid physical-digital prototyping of mobile augmented reality applications. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–12.

[66] Michael Nebeling and Maximilian Speicher. 2018. The trouble with augmented
reality/virtual reality authoring tools. In 2018 IEEE International Symposium on
Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE, 333–337.

[67] Andrew YC Nee, SK Ong, George Chryssolouris, and Dimitris Mourtzis. 2012.
Augmented reality applications in design and manufacturing. CIRP annals 61, 2
(2012), 657–679.

[68] Gary Ng, Joon Gi Shin, Alexander Plopski, Christian Sandor, and Daniel Saakes.
2018. Situated game level editing in augmented reality. In Proceedings of the
Twelfth International Conference on Tangible, Embedded, and Embodied Interac-
tion. 409–418.

[69] SK Ong and ZB Wang. 2011. Augmented assembly technologies based on 3D
bare-hand interaction. CIRP annals 60, 1 (2011), 1–4.

[70] Jong-Seung Park. 2011. AR-Room: a rapid prototyping framework for augmented
reality applications. Multimedia tools and applications 55, 3 (2011), 725–746.

[71] Viet Toan Phan and Seung Yeon Choo. 2010. Interior design in augmented
reality environment. International Journal of Computer Applications 5, 5 (2010),
16–21.

[72] Wayne Piekarski and Bruce Thomas. 2002. ARQuake: the outdoor augmented
reality gaming system. Commun. ACM 45, 1 (2002), 36–38.

[73] Wayne Piekarski and Bruce H Thomas. 2002. Using ARToolKit for 3D hand
position tracking in mobile outdoor environments. In The First IEEE International
Workshop Agumented Reality Toolkit,. IEEE, 2–pp.

[74] Thammathip Piumsomboon, David Altimira, Hyungon Kim, Adrian Clark, Gun
Lee, and Mark Billinghurst. 2014. Grasp-Shell vs gesture-speech: A comparison
of direct and indirect natural interaction techniques in augmented reality. In
2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).
IEEE, 73–82.

[75] Thammathip Piumsomboon, Adrian Clark, Mark Billinghurst, and Andy Cock-
burn. 2013. User-defned gestures for augmented reality. In IFIP Conference on
Human-Computer Interaction. Springer, 282–299.

[76] David Porfrio, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2018. Au-
thoring and verifying human-robot interactions. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology. 75–86.

[77] Victor Adrian Prisacariu, Olaf Kähler, Stuart Golodetz, Michael Sapienza, Tom-

maso Cavallari, Philip HS Torr, and David W Murray. 2017. Infnitam v3: A
framework for large-scale 3d reconstruction with loop closure. arXiv preprint
arXiv:1708.00783 (2017).

[78] PyTorch 2021. PyTorch. https://pytorch.org/.

566

https://pytorch.org
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity
https://www.magicleap.com/en
https://www.microsoft.com/en-us/hololens

UIST ’21, October 10–14, 2021, Virtual Event, USA

[79] Jing Qian, Jiaju Ma, Xiangyu Li, Benjamin Attal, Haoming Lai, James Tompkin,
John F Hughes, and Jef Huang. 2019. Portal-ble: Intuitive free-hand manipu-

lation in unbounded smartphone-based augmented reality. In Proceedings of
the 32nd Annual ACM Symposium on User Interface Software and Technology.
133–145.

[80] Matthias Schwaller, Simon Brunner, and Denis Lalanne. 2013. Two handed
mid-air gestural hci: Point+ command. In International Conference on Human-
Computer Interaction. Springer, 388–397.

[81] Hartmut Seichter, Julian Looser, and Mark Billinghurst. 2008. ComposAR: An
intuitive tool for authoring AR applications. In 2008 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality. IEEE, 177–178.

[82] Jinwook Shim, Yoonsik Yang, Nahyung Kang, Jonghoon Seo, and Tack-Don Han.
2016. Gesture-based interactive augmented reality content authoring system
using HMD. Virtual Reality 20, 1 (2016), 57–69.

[83] Deepanjal Shrestha, Hyungwoo Lee, and Junchul Chun. 2018. Computer-vision-

based bare-hand augmented reality interface for controlling an AR object. In-
ternational Journal of Computer Aided Engineering and Technology 10, 3 (2018),
257–265.

[84] SonyAibo 2021. Sony: aibo. https://us.aibo.com/.
[85] Nur SyafqahSafee and Ajune Wanis Ismail. 2018. Ar home deco: virtual object

manipulation technique using hand gesture in augmented reality. Innovations
in Computing Technology and Applications 3 (2018).

[86] ultraleap 2021. Tracking: Leaping Motion Controller.
https://www.ultraleap.com/product/leap-motion-controller/.

[87] Unity 2021. Unity: Real-Time Development Platform. https://www.unity.com.
[88] UnrealEngine 2021. UnrealEngine: The most powerful real-time 3D creation

platform. https://www.unrealengine.com/en-US/.
[89] Ana Villanueva, Zhengzhe Zhu, Ziyi Liu, Kylie Peppler, Thomas Redick, and

Karthik Ramani. 2020. Meta-AR-app: an authoring platform for collaborative
augmented reality in STEM classrooms. In Proceedings of the 2020 CHI conference
on human factors in computing systems. 1–14.

[90] Christian Von Hardenberg and François Bérard. 2001. Bare-hand human-

computer interaction. In Proceedings of the 2001 workshop on Perceptive user
interfaces. 1–8.

[91] Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Ke Huo, Yuanzhi Cao, and
Karthik Ramani. 2020. CAPturAR: An Augmented Reality Tool for Authoring
Human-Involved Context-Aware Applications. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 328–341.

[92] Matt Whitlock, Jake Mitchell, Nick Pfeufer, Brad Arnot, Ryan Craig, Bryce Wil-

son, Brian Chung, and Danielle Albers Szafr. 2020. MRCAT: In Situ Prototyping
of Interactive AR Environments. In International Conference on Human-Computer
Interaction. Springer, 235–255.

[93] Adam S Williams, Jason Garcia, and Francisco Ortega. 2020. Understanding
Multimodal User Gesture and Speech Behavior for Object Manipulation in
Augmented Reality Using Elicitation. IEEE Transactions on Visualization and
Computer Graphics 26, 12 (2020), 3479–3489.

[94] Graham Wilson, Thomas Carter, Sriram Subramanian, and Stephen A Brewster.
2014. Perception of ultrasonic haptic feedback on the hand: localisation and
apparent motion. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 1133–1142.

[95] Jacob O Wobbrock, Meredith Ringel Morris, and Andrew D Wilson. 2009. User-
defned gestures for surface computing. In Proceedings of the SIGCHI conference
on human factors in computing systems. 1083–1092.

[96] Yukang Yan, Chun Yu, Xiaojuan Ma, Xin Yi, Ke Sun, and Yuanchun Shi. 2018.
Virtualgrasp: Leveraging experience of interacting with physical objects to
facilitate digital object retrieval. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 1–13.

[97] Geng Yang, Honghao Lv, Feiyu Chen, Zhibo Pang, Jin Wang, Huayong Yang,
and Junhui Zhang. 2018. A novel gesture recognition system for intelligent
interaction with a nursing-care assistant robot. Applied Sciences 8, 12 (2018),
2349.

[98] Hui Ye, Kin Chung Kwan, Wanchao Su, and Hongbo Fu. 2020. ARAnimator:
in-situ character animation in mobile AR with user-defned motion gestures.
ACM Transactions on Graphics (TOG) 39, 4 (2020), 83–1.

[99] Shahrouz Yousef, Mhretab Kidane, Yeray Delgado, Julio Chana, and Nico Reski.
2016. 3D gesture-based interaction for immersive experience in mobile VR. In
2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2121–
2126.

[100] Run Yu and Doug A Bowman. 2018. Force push: Exploring expressive gesture-
to-force mappings for remote object manipulation in virtual reality. Frontiers in
ICT 5 (2018), 25.

[101] Ya-Ting Yue, Yong-Liang Yang, Gang Ren, and Wenping Wang. 2017. SceneCtrl:
Mixed reality enhancement via efcient scene editing. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology. 427–436.

[102] Bruno Zamborlin, Frederic Bevilacqua, Marco Gillies, and Mark D’inverno. 2014.
Fluid gesture interaction design: Applications of continuous recognition for the
design of modern gestural interfaces. ACM Transactions on Interactive Intelligent
Systems (TiiS) 3, 4 (2014), 1–30.

Wang and Qian, et al.

[103] Jürgen Zauner, Michael Haller, Alexander Brandl, and Werner Hartman. 2003.
Authoring of a mixed reality assembly instructor for hierarchical structures. In
The Second IEEE and ACM International Symposium on Mixed and Augmented
Reality, 2003. Proceedings. IEEE, 237–246.

[104] ZED Mini 2021. ZED Mini: Mixed Reality Camera. https://www.unity.com.
[105] Lei Zhang and Steve Oney. 2020. FlowMatic: An Immersive Authoring Tool for

Creating Interactive Scenes in Virtual Reality. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 342–353.

567

https://www.unity.com
https://www.unrealengine.com/en-US
https://www.unity.com
https://www.ultraleap.com/product/leap-motion-controller
https://us.aibo.com

	Abstract
	1 Introduction
	2 Related Works
	2.1 Freehand interactions in AR
	2.2 Gesture authoring through embodied demonstration
	2.3 Immersive authoring tools for AR applications

	3 GESTURAR SYSTEM DESIGN
	3.1 AR freehand interaction model
	3.2 Programming AR freehand interactions through trigger-action connections
	3.3 GesturAR Authoring Interface
	3.4 Hand Gesture Detection

	4 Application Scenarios
	4.1 Realistic object manipulation with multiple ways
	4.2 Interactive virtual agents and robots
	4.3 Room-level interactive AR game
	4.4 Embodied AR presentation
	4.5 Entertaining daily life with embodied hand gestures

	5 Implementation
	6 User Study
	6.1 Session 1: Gesture Recognition Accuracy
	6.2 Session 2: Hand-object Interaction Evaluation
	6.3 Session 3: Overall System Usability

	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References

