Introduction

- Travel: moving from current location to new target location or in the desired direction
- Wayfinding: cognitive process of determining and following a route between an origin and destination
- Techniques classified by metaphor:
 - Walking
 - Steering
 - Selection-based travel
 - Manipulation-based travel
3D Travel Tasks

- Exploration: browsing the environment with no explicit goal for movement
- Search: traveling to a specific goal or target location
 - Naïve search: the user does not know the position of the target or path in advance
 - Primed search: the user has visited the target before or has some knowledge of its position
- Maneuvering: small precise movements

Additional Travel Task Characteristics

- Distance to be traveled
- Amount of curvature or number of turns in the path
- Visibility of the target from the starting location
- Number of DOF required for the movement
- Required accuracy of the movement
- Other primary tasks that take place during travel
Classifications for 3D Travel

Technique Classifications
- Active versus passive
- Physical versus virtual
- Using task decomposition
- By metaphor

A Technique Classification – Component Decomposition

- **Travel**
 - **Direction/Target Selection**
 - gaze-directed
 - pointing
 - choose target from list
 - **Velocity/Acceleration Selection**
 - gesture
 - slow in, slow out
 - physical props
 - **Conditions of Input**
 - start/stop buttons
 - automatic start/stop
 - constant movement
Alternate Technique Classification – User Control Level

Travel
- Start to move
- Indicate position
- Indicate orientation
- Stop moving

Walking Metaphors
- Walking is the most natural travel technique
- But it’s not always practical or feasible
 - Technological limitations
 - Space limitations
- Categories based on human gait
 - Full gait: involve biomechanics of full gait cycle
 - Partial gait: mimic only some biomechanics
 - Gait negation: negate the user’s forward locomotion
Walking Metaphors

Full Gait Techniques
- Real walking
- Redirected walking
- Scaled walking

Partial Gait Techniques
- Walking in place
- Human joystick
Walking Metaphors

Gait Negation Techniques
- Treadmills
- Passive omnidirectional treadmills
- Active omnidirectional treadmills
- Low-friction surfaces
- Step-based devices

Physical Locomotion Devices
- Omni-Directional Treadmill
- GaitMaster II
- Large Scale Tracking
Steering Metaphors

- Most common virtual technique metaphor
- Steering refers to continuous control of the direction of motion by the user
- Travel direction is specified either
 - Through spatial interactions, or
 - With physical steering props

Spatial Steering Techniques

- Gaze-directed
- Hand-directed (Pointing)
- Torso-directed
- Lean-directed
Steering Metaphors

Physical Steering Props
- Cockpits
- Cycles

Selection-Based Travel Metaphors
- Depend on the user selecting either a target to travel to or a path to travel along
- Simplify travel by not requiring details
- Techniques take care of the actual movement
- Extremely easy to understand and use
Selection-Based Travel Metaphors

Target-Based Travel Techniques
- Representation-based
- Dual-target

Map-based Travel Implementation
- Must know
 - map scale relative to world: s
 - location of world origin in map CS: $o=(x_o, y_o, z_o)$
- On button press:
 - if stylus intersects user icon, then each frame:
 - get stylus position in map CS: (x, y, z)
 - move icon to $(x, 0, z)$ in map CS
Map-Based Travel Implementation (cont.)

- On button release:
 - Get stylus position in map CS: \((x, y, z)\)
 - Move icon to \((x, 0, z)\) in map CS
 - Desired viewpoint: \(\mathbf{p}_v = (x_v, y_v, z_v)\) where
 - \(x_v = (x - x_o)/s\)
 - \(z_v = (z - z_o)/s\)
 - \(y_v = \text{desired height at } (x_v, y_v)\)
 - Move vector: \(\mathbf{m} = (x_v - x_{curr}, y_v - y_{curr}, z_v - z_{curr}) \times (\text{velocity/distance})\)
 - Each frame for \((\text{distance/velocity})\) frames: translate viewpoint by \(\mathbf{m}\)

Selection-Based Travel Metaphors

Route-Planning Travel Techniques

- Drawing a path
- Marking points along a path
Manipulation-Based Travel Metaphors

- Manipulate either the viewpoint or world
- Should be used when both travel and object manipulation tasks are frequent
- Ideally the same metaphor can be used for both travel and object manipulation
Manipulation-Based Travel Metaphors

World Manipulation Techniques

- Single-point world manipulation
- Dual-point world manipulation

Grabbing The Air Implementation (one-handed)

- On pinch:
 - Obtain initial hand position in world CS: \((x_{iv}, y_{iv}, z_{iv})\)
- Each frame until release:
 - Obtain current hand position in world CS: \((x'_{iv}, y'_{iv}, z'_{iv})\)
 - Hand motion vector: \(m = ((x'_{iv}, y'_{iv}, z'_{iv}) - (x_{iv}, y_{iv}, z_{iv}))\)
 - Translate world by \(m\) (or viewpoint by \(-m\))
 - \((x_{iv}, y_{iv}, z_{iv}) = (x'_{iv}, y'_{iv}, z'_{iv})\)
- Cannot simply attach objects to hand – do not want to match hand rotations
Other Aspects of Travel Techniques

Viewpoint Orientation
- Head tracking
- Orbital viewing
- Nonisomorphric rotation
- Virtual sphere techniques

Velocity Specification
- Discrete changes
- Continuous control
- Direct input
- Automated velocity
Other Aspects of Travel Techniques

Vertical Travel
- Many techniques restrict travel to horizon
- Some techniques afford vertical travel
 - 3D steering
 - Virtual ladders
 - Virtual stairs

Semiautomated Travel
- The system provides general constraints
- The user moves within those constraints
Other Aspects of Travel Techniques

Scaling the World
- Active scaling
- Automated scaling

Travel Modes
- Most techniques use a single mode for travel
- Some techniques require additional modes to transition among different travel methods
- Modes should be:
 - Well integrated to allow easy transitions
 - Clearly distinguished to avoid unintentional travel
Other Aspects of Travel Techniques

Multiple Cameras
- Most techniques use a single camera for travel
- Some techniques incorporate different perspectives of multiple cameras
- Examples:
 - Through-the-lens
 - Transitioning to remote camera feeds
 - Snapshots of augmented scenes

Nonphysical Input
- Not all travel techniques require physical input
- Brain-computer interfaces (BCIs) allow for travel by thinking about moving
- These interfaces require a great deal of time to train
- Else generically trained algorithms can be unresponsive and induce false positives
Wayfinding in 3D Environments

- Cognitive aspect of navigation
- Effectiveness depends on the number and quality of the wayfinding cues or aids provided
- Two types of wayfinding aids:
 - User-centered: make use of human perception
 - Environment-centered: depend on virtual world

Wayfinding in 3DUIs

- Difficult problem
- Differences between wayfinding in real world and virtual world
 - unconstrained movement
 - absence of physical constraints
 - lack of realistic motion cues
- 3DUIs can provide a wealth of information
Wayfinding in 3D Environments

User-Centered Wayfinding Cues
- Field of view
- Motion cues
- Multisensory output
- Presence
- Search strategies

Environment-Centered Wayfinding Cues
- Environment legibility
- Landmarks
- Maps
- Compasses
- Signs
- Trails
- Reference objects
Maps

Compasses
Design Guidelines

- Match the travel technique to the application.
- Consider both natural and magic techniques.
- Use an appropriate combination of travel technique, display devices, and input devices.
- Choose travel techniques that can be easily integrated with other interaction techniques in the application.
Design Guidelines

- Provide multiple travel techniques to support different travel tasks in the same application.
- Make simple travel tasks easier by using target-based techniques for goal-oriented travel and steering techniques for exploration and search.
- Use a physical locomotion technique if user exertion or naturalism is required.

- The most common travel tasks should require a minimum amount of effort from the user.
- Use high-speed transitional motions, not instant teleportation, if overall environment context is important.
- Train users in sophisticated strategies to help them acquire survey knowledge.
- If a map is used, provide a you-are-here marker.
Case Studies

VR Gaming Case Study
- Rotating bookshelf allows the user to walk between rooms
- Virtual elevators allow for vertical travel
- Key concepts:
 - Natural physical movements for navigation can enhance the sense of presence.
 - Even with a limited tracking area, consider ways to allow and encourage the use of a physical walking metaphor.
 - If the application allows, use story elements to help users make sense of travel techniques.

Mobile AR Case Study
- Uses a multi-camera navigation system
- Interface shows camera viewpoints with regularly updated thumbnails of their video footage
- Variable perspective visualization blends first-person and remote viewpoints together
- Key concepts:
 - Creating a good mental map of the observed environment is crucial to adequately making use of the augmented information within.
 - The use of multi-camera systems can help by providing an overview and resolving occlusions.
Conclusion

- 3D travel is another foundational task
- Physical and virtual travel approach have various tradeoffs
- Wayfinding affects navigation in 3D UIs
- Design your virtual world to provide sufficient environment-based wayfinding cues

Next Class

- System Control
- Readings
 - 3DUI Book – Chapter 8