Introduction

- Human factors (perceptual, cognitive, ergonomic capabilities) vs. HCI (how humans use those capabilities to interact with systems)
- HCI seeks to:
 - understand the relationship between human users and digital technological artifacts (science)
 - design new, effective ways for humans to use technologies (engineering, art)
- “Computer” in HCI has a very broad definition
- “Effectiveness” in HCI can also mean many things
- UX design as a series of tradeoffs
Overview

- Understanding the user experience (models and theories of HCI)
- Design principles and guidelines
- Engineering the user experience (UX engineering process)

Understanding UX

Human Processor Models
- Model human processor
- Keystroke-level model
- GOMS
- Touch-level model
Understanding UX

User Action Models

- Seven stages of action
- Gulfs of execution and evaluation
- User action framework

Understanding UX

User Action Models

- User-system loop
Understanding UX

Conceptual Models and Affordances

- Designer’s model
 - Correct, complete, systematic
- User’s model
 - Incomplete mental model formed through ad hoc interaction
- Affordances
 - Cognitive
 - Physical
 - Functional
 - Sensory

Activity Theory

- Framework considering interaction within complex real-world contexts
- Principles:
 - Object-orientedness
 - Activities are hierarchical
 - Internalization and externalization
 - Mediation and development
 - Activity system model
Understanding UX

Embodied Interaction
- Interaction with computer systems that occupy our physical and social world and that exploit this fact in how they interact with us
- Tangible computing
- Social computing, CSCW

Design Principles and Guidelines

Goal-Oriented Design Rules
- Simplicity
 - Reduce clutter
 - Provide customizability
- Structure
 - Break complex tasks into simpler subtasks
 - Sequence actions logically
 - Group related or comparable functions
- Visibility
 - Make controls perceivable
 - Employ familiar visual icons and symbols
Design Principles and Guidelines

Execution-Oriented Design Rules
- Affordance
 - Leverage familiarity
 - Provide direct manipulation
 - Be consistent
- Ergonomics
 - Clearance
 - Reach
 - Posture
 - Strength

Error prevention
- Valid actions
- Confirm irreversible actions
- Offer to complete common outcomes

Outcome-Oriented Design Rules
- Automation
 - Avoid requiring tedious input
 - Complete common action sequences automatically
 - Allow completion of similar actions all at once
- Control
 - Avoid too much automation
 - Facilitate both novice and expert use
 - Avoid missing or incorrect functionality
Design Principles and Guidelines

Evaluation-Oriented Design Rules

- Feedback
 - Respond immediately to every user action
 - Provide informative feedback
- Error recovery
 - Provide easy-to-reverse actions
 - Provide undo and redo

General Design Rules

- **Accessibility**: make the UI usable by all intended users
- **Vocabulary**: use the terminology used by the intended users
- **Recognition**: Provide the knowledge required to interact instead of requiring users to recall it
 - Place needed information in the context of use
 - Let users know what their options are
 - Use visual representations when possible
System Goals and Concepts

- Goals:
 - Improving usability
 - Striving for usefulness
 - Emotionally impacting the user

- System concept: concise summary of the goals of an envisioned system or product (i.e., mission statement)
Requirements Analysis

- Contextual inquiry
 - In the field
 - Interviews/observations
- Contextual analysis
 - Model stakeholders
 - Model work activities/tasks
 - Model work environment
 - Represent findings with problem scenarios, personas, and claims
- Requirements extraction
 - Functional requirements
 - Performance requirements
 - Interface requirements

The Design Process

- Design tools
 - Ideation and sketching
 - Critiquing
- Design perspectives
 - Interaction perspective
 - Ecological perspective
 - Emotional perspective
Engineering the User Experience

The Design Process
- Design approaches
 - Activity design
 - Information/interaction design
 - Participatory design
- Design representations
 - Metaphors
 - Design scenarios
 - Storyboards
 - Physical mockups

Prototyping the Design
- Breadth vs. depth
- Prototype fidelity
- Prototype interactivity
 - Animated
 - Scripted
 - Fully programmed
 - Wizard of Oz
Engineering the User Experience

Evaluating Prototypes

- Formative vs. summative
- Rapid vs. rigorous
- Analytic vs. empirical
- See chapter 11 for much more on evaluation

Conclusion

- HCI is a mature and rich interdisciplinary field, offering:
 - Models and theories
 - Design principles and guidelines
 - Systematic design and development processes
- 3D UI design should be built on HCI foundations
Next Class

- Visual Displays
- Readings
 - LaViola – Chapter 4