
ARAnimator : In-situ Character Animation in Mobile AR with
User-defined Motion Gestures

HUI YE∗, KIN CHUNG KWAN∗, WANCHAO SU, and HONGBO FU†, City University of Hong Kong

Fig. 1. Our ARAnimator allows users to move an AR-enabled mobile device to directly control and animate a virtual character situated in a real-world
environment. Please refer to the accompanying video for the animation results.

Creating animated virtual AR characters closely interacting with real en-
vironments is interesting but difficult. Existing systems adopt video see-
through approaches to indirectly control a virtual character in mobile AR,
making close interaction with real environments not intuitive. In this work
we use an AR-enabled mobile device to directly control the position and
motion of a virtual character situated in a real environment. We conduct
two guessability studies to elicit user-defined motions of a virtual character
interacting with real environments, and a set of user-defined motion gestures
describing specific character motions. We found that an SVM-based learning
approach achieves reasonably high accuracy for gesture classification from
the motion data of a mobile device. We present ARAnimator , which allows
novice and casual animation users to directly represent a virtual character
by an AR-enabled mobile phone and control its animation in AR scenes
using motion gestures of the device, followed by animation preview and
interactive editing through a video see-through interface. Our experimental

∗Both authors contributed equally to the paper.
†Corresponding author.

Authors’ address: Hui Ye, huiye4-c@my.cityu.edu.hk; Kin Chung Kwan, kckwan@ieee.
org; Wanchao Su, wanchaosu2-c@my.cityu.edu.hk; Hongbo Fu, hongbofu@cityu.edu.
hk, City University of Hong Kong, School of Creative Media, 18 Tat Hong Avenue
Kowloon Tong, Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/7-ART83 $15.00
https://doi.org/10.1145/3386569.3392404

results show that with ARAnimator , users are able to easily create in-situ
character animations closely interacting with different real environments.

CCS Concepts: • Human-centered computing → Gestural input; Mixed /
augmented reality;Mobile devices.

Additional Key Words and Phrases: Mobile Augmented Reality, Interactive
System, Character Animation, User Defined Gestures, Gesture Classification

ACM Reference Format:
Hui Ye, Kin Chung Kwan, Wanchao Su, and Hongbo Fu. 2020. ARAni-
mator: In-situ Character Animation in Mobile AR with User-defined Mo-
tion Gestures. ACM Trans. Graph. 39, 4, Article 83 (July 2020), 12 pages.
https://doi.org/10.1145/3386569.3392404

1 INTRODUCTION
Augmented Reality (AR) aims to augment a real world with vir-
tual content, often with proper alignment. With AR technologies,
augmenting virtual static objects into our real world is relatively
easy. However, even with powerful mobile AR platforms recently
developed by Apple (i.e., ARKit) and Google (i.e., ARCore), creating
animated contents closely interacting with real environments is
still challenging. Since virtual objects need to be aligned with real
environments at different moments, making the reuse of existing
animations difficult. In-situ creation of animation thus becomes
more important.

Several tools such as Motion Doodles [Thorne et al. 2004], Spatial
Motion Doodles [Garcia et al. 2019] and PuppetPhone [Anderegg
et al. 2018] have been designed to allow novice users to create charac-
ter animations on top of a virtual or real scene. They can be directly
applied or extended for in-situ creation of AR animation. However,

ACM Trans. Graph., Vol. 39, No. 4, Article 83. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392404
https://doi.org/10.1145/3386569.3392404

83:2 • Hui Ye, Kin Chung Kwan, Wanchao Su, and Hongbo Fu

these approaches either require precise scene understanding to de-
tect 3D geometry surfaces for character interaction, or highly rely
on room-based motion capture (MoCap) hardware with complicated
setup (e.g., VR). Thus, it is challenging to use these tools for creat-
ing in-situ character animation closely interacting with complex
physical environments, such as an outdoor environment with trees.
In this work, we aim to design and develop an intuitive tool for

creating in-situ character animation in complex real-environments
without the requirement of precise scene understanding or addi-
tional MoCap hardware. Our target users are causal animation users,
who want to quickly create in-situ character animations without lots
of training or hardware setup. Thus, instead of elaborating anima-
tion effects, our system design focuses more on the cost, accessibility,
portability, and ease-to-learn.

To this end, we explore the use of an AR-enabled mobile phone as
a direct controller for in-situ performance-based character anima-
tion in mobile AR (Figure 1). Our key idea is to mimic the process of
make-believe plays using dolls for storytelling (Figure 2(a)): users
control a mobile phone (Figure 2(b)) to move the character on and
around real objects, and perform motion gestures simultaneously to
retrieve existing animations from a character animation repository.
This is an intuitive process even for casual users, since most of us
have similar experience of such plays in our childhood.

However, there is a huge gap between character animations with
a high degree of freedom (DoF), and the possible gestures on a
mobile phone, which is a rigid object, with a low DoF. To address
this issue, we first need to obtain a proper list of motion gestures
that are expressive and intuitive. This motivates us to conduct two
elicitation studies (Section 3). In the first study, users are asked to
come up various possible character motions that closely interact
with various physical environments. The second study allows users
to define motion gestures that describe specific character motions,
summarized from the first study. Observing the results of the two
studies, we find that 6-DoF motion gestures are commonly used
for most of the motion types. We thus design and develop a proto-
type, ARAnimator , which allows casual users to directly represent
a virtual character by an AR-enabled mobile phone and control its
animation in AR scenes using 6-DoF motion gestures of the device,
followed by animation preview and interactive editing through a
video see-through interface (Figure 6). We show that an SVM (Sup-
port Vector Machine) based learning approach achieves reasonably
high accuracy for motion gesture classification. Our quantitative
and qualitative evaluation show that ARAnimator provides users
with an intuitive, easy-to-use and effective way to create in-situ
character animations.

2 RELATED WORK

2.1 In-situ Character Animation in AR/VR
The state-of-the-art AR technologies allow users to place animated
virtual characters or scenes in real environments. However, most of
existing works are highly dependent either on pre-defined physical
objects with markers for animation [Bai et al. 2015; Barakonyi and
Schmalstieg 2004, 2006] or as interaction environments [Cimen et al.
2018], or on complex setups and devices for creating animation
effects [Kim et al. 2014; Osato and Koizumi 2018]. Such requirements

(a) “Doll drama” (b) Our method
Fig. 2. We can intuitively control a mobile phone similar to the way we play
with a doll, to tell animated stories.

restrict the flexibility of those techniques for their use in different
scenarios. Besides, they support only static effects or limited pre-
defined animation effects in specific locations.
Motion Doodles (MD) [Thorne et al. 2004] is a pioneering ani-

mation system for novice users, and mainly uses 2D curves with
2-DoF gestures to define virtual character animations. To extend it
to 3D, 3D geometry proxies are needed for projecting 2D curves to
3D trajectories. Lockwood and Singh (LS) [2016] present the first
work utilizing 3-DoF motion sensor data of a mobile device to con-
trol a character on a virtual plane surface (detected flat surfaces for
extending to AR). PuppetPhone (PP) [Anderegg et al. 2018] follows
a similar idea and is tailored for in-situ character animation with
mobile AR. PP places a virtual character on a detected physical plane
in front of the camera with a certain distance (i.e., MotionStick), and
controls a character using 3-DoF device motions.
These three methods require accurate scene understanding or

even manual creation of 3D planes in an AR world for in-situ cre-
ation of AR animations. However, such problems are very challeng-
ing on their own for complex real environments. Besides, they all
utilize indirect approaches which rely on video see-through inter-
faces to control a character. Such indirect approaches thus require
the camera to be always facing to a character’s current position dur-
ing animation authoring. It thus restricts the phone orientation and
results in a lower DoF (i.e., 2 or 3). Their low-DoF design cannot pro-
vide free-form character orientation control requiring the character
to always be vertical and heading along the trajectory, and they are
less expressive to provide various character motions. In contrast,
our direct interaction based on 6-DoF motion gestures represents a
virtual character and its character motions using a mobile device
and its device motions. Section 3.3 gives more detailed discussions
on the expressiveness of 6-DoF gestures.

Very recently, Garcia et al. [2019] present Spatial Motion Doodle
(SMD), which is a 3D extension of Motion Doodles for exploring
3D character animations in VR scenes. They utilize an outside-in
VR MoCap system to track a VR controller and map its 3D move-
ment to a virtual character to create a 3D trajectory with free-form
3D orientation control. However, due to the complicated setup of
VR hardware, it is inconvenient to apply their system for in-situ
animation creation in various environments. More importantly, its
limited 3-DoF gestures defined by their authors for animation imply
that they are less expressive compared to our 6-DoF user-defined
gestures.

These fourworks are very closely related to ours.We list themajor
differences in Table 1. In summary, ARAnimator has the following

ACM Trans. Graph., Vol. 39, No. 4, Article 83. Publication date: July 2020.

ARAnimator : In-situ Character Animation in Mobile AR with User-defined Motion Gestures • 83:3

Table 1. The differences between our technique and existing tools that
can be potentially extended for in-situ character animations in AR. MD
(3D): Motion Doodles with 3D extension [Thorne et al. 2004], SMD: Spatial
Motion Doodles [Garcia et al. 2019], LS: Lockwood and Singh [2016], PP:
PuppetPhone [Anderegg et al. 2018]. “Y” and “N” represent yes and no,
respectively.

Name MD (3D) SMD LS PP Ours
Designed for VR/AR VR VR VR AR AR

Control type indirect direct indirect indirect direct
Orientation control N Y N N Y
Work without planes N Y N N Y

Gestures 2-DoF 3-DoF 3-DoF 3-DoF 6-DoF
Gesture design authors authors authors authors users
Classification Regexp Regexp Manual FSM SVM

Devices PC HTC Vive Mobile Mobile Mobile

advantages: 1) It does not require any detected plane or surface
to work well in complex real environments. 2) Our 6-DoF system
design allows free-form character orientation controls and more
expressive creation. 3) The intuitive user-defined 6-DoF gestures
make our system easy to use for casual users.

2.2 Computer Puppetry and Character Animation
Like performing a puppet play, hardware-based computer puppetry
provides users with a specific tangible and/or articulated puppet
hardware to manipulate for 3D virtual character animation cre-
ation [Glauser et al. 2016; Gupta et al. 2014; Hiroki et al. 2012; Lam-
berti et al. 2017; Oore et al. 2002; Shiratori et al. 2013; Wang et al.
2018; Yoshizaki et al. 2011]. However, these techniques require spe-
cialized devices and hardware (e.g., robot, blocks), or built-in sensors
(e.g., electronic and magnetic sensors) and peripheral cameras, thus
limiting their accessibility for casual users.
Another kind of puppetry is based on performance-based inter-

faces, which attempt to map human fingers [Lockwood and Singh
2012], hands [LEite and Orvalho 2017; Liang et al. 2017; Luo et al.
2010], hand shadow [Tsuji et al. 2018], or full body [Dontcheva
et al. 2003; Sakashita et al. 2017; Seol et al. 2013] information from
motion sensors to the parameters of a virtual character. With these
interfaces, users can edit inherent motions of a character, while in-
teractive control of a character’s global moving trajectory is not well
supported. In contrast, our work uses an AR-enabled mobile device
as a puppet for intuitive creation of character animation along a
user-defined trajectory and with close interaction with real-world
environments.
3D animation tools [Choi et al. 2016; Ciccone et al. 2017, 2019;

Eom et al. 2019; Fender et al. 2015; Koyama and Goto 2018] provide
interfaces for users to manipulate 3D character animation by widget
controls and/or sketch inputs. Similar to performance-based inter-
faces, these tools do not support direct control of global moving
trajectories. Thus, they are not suitable for in-situ animation.

2.3 User-defined Motion Gestures
User-defined motion gestures for mobile interaction were first ex-
plored by Ruiz et al. [2011]. Later researchers have conducted guess-
ability studies to elicit user-defined motion gestures for various
tasks, such as text processing [Zhu et al. 2017], navigation [Dim
and Ren 2014; Shimon et al. 2015], and 3D manipulation [Liang

et al. 2012]. However, none of them considers the mapping between
6-DoF user-defined motion gestures and articulated character ani-
mations. Our work focuses on eliciting user-defined motion gestures
for abundant character motions, and using such gestures together
with a moving trajectory to create 3D character animations situated
in real environments.

3 USER-DEFINED CHARACTER MOTIONS & GESTURES
Our core idea is to mimic the make-believe doll-play for in-situ AR
animation creation. Creating animated scenes with virtual char-
acters usually requires the support of various character motions.
However, due to its rigid nature, a doll or mobile device (i.e., a mo-
bile phone in our case) itself is not flexible enough to represent
complex and detailed motions (e.g., motion details of dancing). For
make-believe, users often perform 6-DoF motion of a doll to de-
pict its complicated character motions. Thus, before designing our
system, it is essential to study: 1) “What character motions are com-
monly wanted by novice and casual users to create animated AR
scenes?” and 2) “How to perform motion gestures corresponding
to these character motions with a mobile phone?” To answer these
two questions, we conduct two elicitation studies.

3.1 Study I: User-defined Character Motions
In the first study, we aimed to know what character motions are
often wanted by novice and casual users for in-situ character ani-
mation creation. Since our goal was to explore the possible motions
of virtual characters in a human-liked shape, to avoid any bias from
the shape of a doll/phone, we selected a human-liked rigid doll to do
this study instead of a mobile device (i.e., a cuboid). 5 participants
(aged 25-27, 2 females) were invited to do the study. One participant
had a little experience in creating 3D animations, while others did
not. We first showed them 6 different real scenes of great variety,
involving indoor/outdoor, complex/clean, with flat/curvy surface,
and tall/short structures. Then each participant was asked to think
of any possible character motions interacting with the real-world
objects in the given scenes. To come up with as many motions as
possible, each participant was given about one day to think. Then
the participants came back and performed their designed motions
or even stories by holding and moving a given doll (Figure 2(a)) in
the respective scenes with a think-aloud strategy. This strategy was
important for us to understand the intentions and the designs of
the motions from the participants.
In this study we observed in total 43 types of character motions

from all the participants. However, the motions observed in this
study do not necessarily mean that they are commonly wanted, as
some motions might come from the inspiration of single individ-
ual users. Thus we filtered out 14 unusual motions (i.e., appeared
only once during the study). Figure 5 lists the remaining 29 mo-
tions. Among all of them, the most frequently used motions are
“jumping” (frequency: 36), “climbing” (frequency: 17), and “walking”
(frequency: 15) among 172 motions (including those with the same
types) in total. Most participants claimed that with these three mo-
tions, they could design many interesting short animations around
various real-world objects.

ACM Trans. Graph., Vol. 39, No. 4, Article 83. Publication date: July 2020.

83:4 • Hui Ye, Kin Chung Kwan, Wanchao Su, and Hongbo Fu

(a) Walk (b) Jump (c) Lie down (d) Slide

(e) Climb (f) Climb over (g) Pop head (h) Turn a circle
Fig. 3. Examples of the motion gestures collected from Study II, and their corresponding motions.

3.2 Study II: User-defined Motion Gestures
Since we want to explore an AR-enabled mobile device as a di-
rect controller, it is essential to figure out the mapping between
articulated character motions and a mobile device. The mapping
can be achieved by a motion-gesture based solution. However, it is
challenging, since the required number of motion gestures is not
small and manually designing a moderately large set of intuitive
gestures is not an easy task. To get a set of both expressive and
intuitive gestures, we adopt a gesture elicitation approach for user-
defined gestures, instead of defining them by ourselves, as done in
the existing works [Garcia et al. 2019; Lockwood and Singh 2016;
Thorne et al. 2004]. Thus, in the second study, we explore how users
define motion gestures of the mobile device (mobile phone in our
case) corresponding to the 29 character motions from Study I. We
invited 12 participants (aged 24-28, 6 females). All of them were
daily smartphone users and right-handed. Two participants had rel-
evant experience of creating 3D character animation. We asked each
participant to design a motion gesture that can best represent each
of the character motions. They used a mobile phone to imitate an
animated character. Each participant was given an iPhone 6S, with
the screen turned off so that no button or touchscreen input was
allowed. The participants were required to perform each designed
gesture in 5 seconds, and repeated 3 times for consistency for each
character motion.
To help each participant design unique gestures (i.e., different

motion gestures for different character motions), we asked them to
go through the list of motions involved and think about different ges-
tures for different motions before performing. We also categorized
the 29 motions into 5 groups (locomotion motion, object-dependent
motion, in-place motion, mid-air motion, and rotational motion)
according to their similarities. This categorization helped each par-
ticipant memorize and distinguish their designed gestures in a short
period, thus avoid designing similar gestures in the same group.
The grouped motion list is in the supplemental materials. Before
starting each group, each participant first watched the animated
models corresponding to all the motions in this group, and then
designed all the motion gestures for the corresponding character

motions in the same group. The participants were allowed to revisit
the animated models and refine their designed gestures any time.
Once they were satisfied with their design, they could proceed to the
next group of character motions. The whole designing process was
video-taped for further observation and analysis. After finishing all
the tasks, the participants were asked to rate their own gestures
in term of goodness, ease-of-planning, and ease-of-performing on
seven-point Likert scales (i.e., 1 = strongly disagree to 7 = strongly
agree).
We collected a total number of 1,044 motion gestures. We man-

ually observed their performances (through the recorded videos)
and categorized gestures for each motion using open coding. The
gesture type with the largest number for each motion was chosen as
the representative gesture for each motion (See Figure 3 for exam-
ples). Please refer to our accompanying video for the final gestures
of 29 motions.
We found that no participant designed similar gestures for mo-

tions from different groups. Some participants designed similar
gestures for motions in the same groups (e.g., walk and run, lie
down and sit down), since such gestures might differ only on mo-
tion parameters (e.g., speed, bending angle). To evaluate the degree
of consensus among user-defined gestures, we calculated the agree-
ment score A using the equation of Wobbrock et al. [2005]:

At =
∑
Pi

(
|Pi |
|Pt |

)2
, (1)

where t is one of the character motions being studied, Pt is the
set of all the collected gestures for t , and Pi is a subset of identical
gestures from Pt . The range for A is [0,1].

Figure 5 illustrates the agreement rate of gestures designed by the
participants for all the character motions. For 16 motions (e.g., walk,
climb over) in our list, all the participants designed and performed
identical gestures for the samemotions. Most of themotions (79.31%)
had very high agreement scores (over 70%). We got the results of
rating on goodness (M: 5.20, SD: 0.71), ease-of-planning (M: 5.63, SD:
0.51), and ease-of-performing (M: 5.55, SD: 0.60). The high scores
evidence that mapping motion gestures with character motions
was easy, natural, and intuitive. Please refer to our supplementary
materials for the detailed rating of each gesture.

ACM Trans. Graph., Vol. 39, No. 4, Article 83. Publication date: July 2020.

ARAnimator : In-situ Character Animation in Mobile AR with User-defined Motion Gestures • 83:5

(a) (b) (c)
Fig. 4. (a) Percentages of motions in each taxonomy category. (b) Percentages of motion gestures in each taxonomy category. (c) Illustration of mapping
between a mobile phone and a virtual character.

Fig. 5. Agreement rates of user-defined motion gestures for character mo-
tions in Study II. The numbers in the bracket next to the motion names are
their frequency values.
This was confirmed by the feedback of the participants. All the

participants said that it was very easy to think about a correspond-
ing motion gesture for most motions. They agreed that a virtual
character could be mapped to a mobile phone well. They believed
the goal of our project was nice and promising. Next we will discuss
some findings from two studies.

3.3 Discussions on the Findings
Taxonomy of Motions. We categorize the collected character mo-

tions along three separate dimensions: time, movement, and inter-
action, as summarized in Table 2. The time dimension describes the
temporal features of motions. The movement dimension character-
izes the global movement of a character in the world space. Finally
the interaction dimension captures how a character interacts with a
physical environment. It differs in none, single, andmultiple in terms
of the number of interacting surfaces (typically planar surfaces). We
consider two interacting surfaces are different surfaces if they are
disconnected (e.g., jump from one to another) or there are obvious
changes between the normal of the surfaces (e.g., climb up from
floor to wall).

Figure 4(a) illustrates the breakdown of all the motions using the
above taxonomy. For in-situ animation, we observed that:

• Motions involving translation (62.1%) were commonly needed
for virtual characters to travel in the world.

• Most (65.5%) of the motions interacted with a single sur-
face. However, motions that interacted with multiple surfaces
(27.6%) were still needed for characters to move between
different surfaces. Thus, systems [Anderegg et al. 2018; Lock-
wood and Singh 2016] that work only on a single detected
floor are insufficient for in-situ animations.

Table 2. Taxonomy of character motions for in-situ animation.

Time Continuous Loop continuously by period without time interrup-
tion between periods.

Discrete Occur only once for each time, and wait in time in-
terval for the next occurrence.

Movement

Static Stay in the position.
Translation With translation only.
Rotation With rotation only.
Both Motion with both translation and rotation.

Interaction

None Do not interact with any surface.
Single Interact with a single surface.
Multiple Interact with more than one surface.

Table 3. Taxonomy of motion gestures for character animation.

Time Continuous Repeat in a time interval.
Discrete Perform only once.

Movement
Translation Change the 3D position of a device.
Rotation Change the 3D orientation of a device.
Both Translate and rotate a device (6-DoF).

Abstraction

Shape Follow the shape of a desired moving trajectory.
Action-line Imitate the orientation of a character’s action line.

Local Imitate the movement of individual local parts of a
character.

Combined Involve two or more of the above types.

Hand Unimanual Use one hand to perform.
Bimanual Use two hands to perform.

Taxonomy of Motion Gestures. As summarized in Table 3, we cat-
egorize the collected motion gestures according to four dimensions:
time, movement, abstraction, and hand. Time classifies motions
gestures according to the temporal information by continuous and
discrete. Movement describes how the translation and rotation of
the phone contribute to the gestures. Abstraction describes how
users abstract the motions into the corresponding gestures. More
specifically, shape refers to the gestures that are performed simply
following the shape of a desired moving trajectory (e.g., jump). This
is similar to the 2-DoF gestures used in Motion Doodles [Thorne
et al. 2004]. Action-line refers to the gestures following the rough
orientation change of the action line of a character (e.g., pop head).
Local refers to the gestures imitating the local movement of indi-
vidual parts of a character with different parts of the device (e.g.,
walk). Combined refers to the gestures that use a combination of
abstraction types to represent the corresponding motions. Finally,
we have unimanual and bimanual motion gestures for the hand
category.

ACM Trans. Graph., Vol. 39, No. 4, Article 83. Publication date: July 2020.

83:6 • Hui Ye, Kin Chung Kwan, Wanchao Su, and Hongbo Fu

Figure 4(b) illustrates the breakdown of all the motion gestures
using above taxonomy of motion gestures. We observed that:

• A continuous motion was often represented by a continuous
gesture, and vice versa.

• All of the static motions were represented by rotational ges-
tures, and 68.9% of the motions required rotational informa-
tion.

• It was not very common (10%) to purely abstract the shape
of a moving trajectory into a gesture. 41.3% of the gestures
required a combination of abstraction types.

• The participants tended to use a roughly consistent mapping
between local parts of a virtual character and parts of a mobile
phone, as illustrated in Figure 4(c). For example, feet were
often represented by the bottom corners and edge of the
mobile phone.

• Most (79.31%) of the gestures were performed by using one
hand. Bimanual gestures were found with a lower mean score
(5.21) of ease-of-performing than unimanual gestures (5.64).

Expressiveness of 6-DoF Gestures. Through Study II, we found that
if only 3-DoF gestures were allowed to use, they could only represent
around 37.9% of the motion gestures designed by the users. For
example, using the shape of a moving trajectory alone to represent a
motion gesture would not distinguish between “jump” (Figure 3(b))
and “climb over” (Figure 3(f)) or between “lie down” (Figure 3(c))
and “pop head” (Figure 3(g)). This verifies the importance of using
6-DoF gestures for our problem. Compared with the 2-DoF or 3-
DoF gestures used in other VR/AR animation systems (Table 1),
our gesture set contains not only 3-DoF gestures but also 6-DoF
gestures, allowing us to design an intuitive and expressive system
more easily.

4 ARANIMATOR SYSTEM
Based on the collected motions and corresponding motion gestures,
we have designed and developed a prototype of in-situ animation
creation, named ARAnimator , using mobile AR. For demonstration
purposes, our current implementation only supports 15 out of 29
motions in our list due to the limited set of corresponding animation
clips we can find online1.
Our ARAnimator allows users to take a single mobile phone as

a 6-DoF controller and use it to represent a single virtual charac-
ter, which will be animated in-situ using motion gestures in real
environments. To accomplish this, we employ a modern mobile AR
platform, Apple ARKit in our implementation. The simple idea is to
map the 3D pose of a motion-tracked mobile phone directly to the
pose of the virtual character. This allows users to animate the virtual
character in situ by simply moving the mobile phone along a desired
3D path, and to perform continuous motion gestures simultaneously
(similar to puppetry). Our system then automatically analyzes the
gestures and classifies the motion of each segment on the trajectory.
The animation results are displayed on the mobile phone screen,
allowing users to quickly preview the animation in situ.

However, when the mobile phone interacts with physical environ-
ments closely, ARKit sometimes loses tracking due to camera occlu-
sion and/or textureless surfaces in the view, leading to a problematic
1www.mixamo.com

(a) Preview mode (b) Editing mode
Fig. 6. The user interface of our ARAnimator.

path of the animated character. In addition, due to the inconsistency
of user performance, ARAnimator sometimes fails to provide cor-
rect motion gesture recognition results. In order to resolve incorrect
gesture recognition results, we provide an editing mode for users to
interactively refine the animation results. Figure 6 shows the main
user interface of our ARAnimator prototype.

4.1 Authoring
To create 3D character animation, a user first presses the “Record”
button (Figure 6(a)) to start. Then, the user can start to move the
mobile device and meanwhile performs specific motion gestures
representing desired motions. To reduce the chance of occlusion
of camera, we recommend the user to hold the mobile device with
the back camera facing backward (with respect to the moving direc-
tion) (Figure 2(b)). To stop recording, the user simply presses the
“Record” button again. The collected pose data will then be sent to a
gesture classifier for motion gesture classification. Afterwards, a pre-
defined virtual character and its moving trajectory are displayed on
the screen for preview and editing. The playback of the synthesized
animation is controlled by the “Play” button. In our prototype, we
allow users to repeat the above process to create multiple animated
characters to generate various animated AR scenes.

4.2 Editing
After an animated character is authored, the user can edit it by
taping on its trajectory for selection, and press the “Edit” button
to enter the editing mode (Figure 6(b)). It then shows the timeline
with motion bars for the selected character. The animated scene
and the timeline are synchronized. Unlike traditional animation
software for supporting multi-track timelines, our system uses a
single-track timeline each time for a selected character, due to the
limited mobile screen space. The user can perform the traditional
pan and pinch gestures to control the translation and zoom level of
the timeline, respectively. Motion bars with different colors are dis-
played in the timeline. Each motion bar, with an associated motion
type (represented by the color of the bars) and duration (represented
by the length of the bars), corresponds to one animation segment
at a certain time. The user is able to edit the selected motion bar
(i.e., pointing by red arrow) by using 4 different core functions (see
below), as illustrated in Figure 7. These functions include:

Motion switch. Choose a new desired motion type to replace
the one in current motion bars using picker.

ACM Trans. Graph., Vol. 39, No. 4, Article 83. Publication date: July 2020.

ARAnimator : In-situ Character Animation in Mobile AR with User-defined Motion Gestures • 83:7

(a) Switch

(b) Split

(c) Merge

(d) Extend

(e) Shorten

(f) Add

(g) Delete

Fig. 7. Illustration for various operations supported in the editing mode.
Here different colors represent different motion types.

Merge & split. To merge two animation segments into one, or
split the currently selected segment into two.

Extend & Shorten. To change the duration of a selected ani-
mation segment.

Add & Delete. To add a new or delete the current motion type
in between the animation segments. It is useful for adding
character motion without gesture supported.

Beside the motion bars, our system also provides a simple in-
terface to refine the trajectory. Users can move the endpoint of a
selected animation segment along the three Cartesian coordinate
axes by six buttons (two directions for each axis), or rotate it along
the Y-axis (gravity direction) with a slider. The whole AR world
coordinate system can also be moved or rotated if no character is
selected. The axis and the center of the AR world are displayed in
our interface.

4.3 Motion Synthesis
The animated virtual character(s) will be displayed on the mobile
screen in the AR world directly. For each motion type supported by
our system, we have prepared a pre-defined 3D character animation.
When the user plays the recorded animation, our system directly
plays the corresponding animation clips with respect to the current
motion types using the native rendering API provided by iOS, and
then translates and/or rotates each animated character along its
trajectory. To make the animation fit the trajectory well, we loop
the clips for continuous motions, and normalize the time for discrete
motions. To get a smooth animation effect, we blend two different
animation clips by explicitly setting the fade in/out duration, pro-
vided by the rendering API, to 0.3 seconds for all animations. Since
the trajectory can be affected by the movement of performed mo-
tion gestures, we perform a mean filter on the trajectory’s positions,
orientation, and timestamp to reduce the local displacements caused
by the performed motion gestures.
Besides simple playback of character motions, our system also

supports automatic control of their motion parameters (e.g., speed
of walk, height of jump). This enables our system to automatically
choose proper animation variations (Figure 8) according to the
motion information associated with the trajectory. For instance, if a
user performs the “walk” gesture but moves the device quickly, our
system automatically plays the “run” animation instead of “walk”.
Finally, thanks to the portability of mobile AR, users can freely

move the device to preview the created animations from different

(a) Walk/Run (b) Slide

Fig. 8. Our system automatically chooses different animation variations for
the same motions according to the motion parameters (e.g., speed) of the
trajectories.

viewpoints. It enables users to easily create “movie-like” camera
movement and record interesting animated scenes (Figure 11).

5 GESTURE CLASSIFICATION
The core contribution of our system is to utilize 6-DoF user-defined
motion gestures as our direct input method. To this end, we em-
ploy an SVM (Support Vector Machine) based learning approach to
recognize the supported gestures in our system.

5.1 Data Collection
We use the IMU data provided by ARKit API associated with motion
gestures. In particular, the API provides the position data pt = (x ,
y, z) and the orientation data in a quaternion form qt = (x , y, z,
w) at any time t . A gesture data is a continuous motion sequence
consisting of both the position and orientation data (i.e., [pt0 , ..., pt1]
and [qt0 , ..., qt1], where t0 and t1 represent the starting and ending
moments of the gesture respectively).
To train a general SVM model for predicting motion gestures

of all the users, we recruited five participants who were different
from the users participated in our final usability study, collecting
their data for training. We asked each participant to perform each
type of motion gestures for five times, and manually select the parts
corresponding to the gestures as the training data.

5.2 SVM-based Gesture Classification
To input the collected data into SVM for training, we first need to
extract valid and reasonable features, which is challenging. Fortu-
nately, the findings in Section 3.3 provide very useful hints.
The first important hint is from the movement taxonomy. It is

observed that motion gestures involve the changes of position or
orientation, or both position and orientation. It motivated us to use
the position change and the global orientation change as our features.
We sample at the starting points, middle points, and ending points
of the gesture data. Then we calculate the displacement along the
vertical and horizontal axes of these points, and the global angular
change of device heading. The next hint is from the abstraction
taxonomy. Users tend to imitate the orientation of action-line or
local movement using a rotational gesture. Thus, we incorporate the
device’s orientation into our feature to distinguish those gestures.
In particular, we decompose a unit vector along Y-axis (i.e., the roll
axis) of the local device space into three global axes, e.g., formed
by the direction of the gravity G, the device’s horizontal heading

ACM Trans. Graph., Vol. 39, No. 4, Article 83. Publication date: July 2020.

83:8 • Hui Ye, Kin Chung Kwan, Wanchao Su, and Hongbo Fu

Table 4. The 24-dimensional features used for training our SVM.

Dim. Features
2 Vertical displacement in the first half and second half of a trajectory.
1 Horizontal displacement.
3 Decomposed y-direction along G at the first, middle, last point.
3 Decomposed y-direction along H at the first, middle, last point.
3 Decomposed y-direction along H ′ at the first, middle, last point.
2 Global roll change during the first half and second half of trajectory.
2 Global pitch change during the first half and second half of trajectory.
2 Global yaw change during the first half and second half of trajectory.
3 Sine wave amplitude of the angular movement along X/Y/Z-axis.
3 Sine wave offset of the angular movement along X/Y/Z-axis.

Fig. 9. The normalized confusion matrix of prediction results (X-axis) and
the ground truth labels (Y-axis). The values of each row sum up to 1.0. “Jump
(SF)” and “Turn” refer to “Jump with switching feet” and “Turn a circle”,
respectively.

direction H , and the other horizontal axis H ′ that is perpendicular
to both G and H . The coefficients of the decomposed vector along
these axes formed three features.

Finally, to explicitly handle continuous gestures, we individually
fit sine waves to the global angular movement of the local X-, Y-, and
Z-axis of the device. The amplitude and the offset values of the sine
waves are used as our additional features. The same gestures might
be performed differently each time, for robustness, the frequency
and the period of the fitted sine waves are ignored. Using the above
features, we form a 24-dimensional feature vector and train an SVM
using these features. For easy reference we give a complete list of
the features in Table 4.

5.3 Prediction
For prediction, we apply the same data processing procedure to the
recorded raw data, except for manual segmentation of individual
parts for different gestures. For an interactive system, we prefer to
have a fully automatic method for gesture classification. To this end,
we automatically trim a continuous motion sequence by using a
method similar to Spatial Motion Doodles [Garcia et al. 2019]: we
segment the sequence depending on whether the sum of Euclidean
velocity and angular velocity (i.e., changes in quaternion space) is

Fig. 10. ARAnimator was used in various scenes for in-situ animation cre-
ation.

below a certain threshold (3cm/s in our current implementation).
We use this way to automatically segment the motion sequence
into parts for further prediction. It works well when there is a suffi-
cient delay between the performance of different motions gestures.
However, this segmentation method might also return false positive
results. For instance, the velocity at the highest point of a jump
(cyan curve in Figure 3(b)) could be close to zero, possibly leading to
a cut at this point. To address this issue, before training, we search
for any possible false positive cases, and generate a new gesture for
each possible segment (e.g., decompose a jump action to jump_up
and jump_down). The detected partial motions are combined as the
original motions in a post-processing step after prediction.

6 RESULTS
We have implemented our ARAnimator prototype as a mobile app
based on Apple ARKit. For the results below, we use iPhone devices.
The gesture classification is implemented with Python on a server
for easy implementation. A wireless network with HTTP request is
used to connect our mobile app with the server.

6.1 Quantitative Evaluation on Gesture Classification
We conducted a pilot study to evaluate the accuracy of our SVM-
based gesture classifier. We performed leave-one-out cross valida-
tion to evaluate our classifier. In particular, we selected the data
from one user for testing, and used the data from four remaining
users for training our SVM. Then, we performed the same testing
for every user and calculated all the accuracy. The total classifica-
tion accuracy of the trained SVM ranged from 89.33% to 96.00% (M:
94.13%, SD: 2.76%) among different users.
In Figure 9 we visualize the normalized confusion matrix. From

the diagonal values of the confusion matrix we can see that most
of the gestures were correctly classified. For the cases of confusing
gestures, “Swing” is the one of the most erroneous cases as reflected
in Figure 9: our SVM tended to classify it as “Idle” (20%).

6.2 Usability Study
To evaluate the usability and effectiveness of ARAnimator , we ran a
small-scale usability study by inviting four university students to
create free-form in-situ 3D character animations using our system.
All of them were non-professional animation creators (i.e., belong
to our target user group), but had interests in creating animations
using simple approaches. At the beginning of the study, each of them
was given an iPhone XS and a 10-minute tutorial on our system,
including how to perform individual gestures. They designed short

ACM Trans. Graph., Vol. 39, No. 4, Article 83. Publication date: July 2020.

ARAnimator : In-situ Character Animation in Mobile AR with User-defined Motion Gestures • 83:9

Fig. 11. A gallery of in-situ 3D character animation results produced by the four test users of our system. Each row (from left to right) presents a sequence of
images from each animation. The statistics of the results can be found in the right table, where “jump sf” refers to “jump with switching feet”, and “time”
refers to the total time to create an animation including the authoring and editing time. Please refer to the accompanying video for the animation effects.

stories of a single ormultiple characters containingmultiple motions
interacting with physical objects in various indoor and outdoor
scenes (Figure 10). Then they utilized ARAnimator to create desired
animated AR scenes. To reduce the tracking errors of AR in some
scenes, papers with rich features were inserted into some of the
surrounding environments. Figure 11 shows sample frames of the
created representative animation results. At the end of the study,
each participant was asked to fill in a questionnaire of five-point
System Usability Scale (SUS, 1 = strongly disagree to 5 = strongly
agree) and NASA Task Load Index (NASA-TLX, 1 = very low to 5
= very high) to evaluate the usability and perceived workload of
ARAnimator , respectively.
The preliminary analysis on the process of animation creation

demonstrates ARAnimator is a very useful, efficient and expressive
tool. Four participants created in total 13 animations, each of which
contains 2-8 motion types and 1-6 characters. These animations

cover animated characters interacting with various objects (e.g.,
desks, doors, stairs, trees) in both indoor and outdoor scenarios. The
mean classification accuracy over all the animations is 81.77% (SD:
21.20%), meaning that users could get correct results after perform-
ing motion gestures in most cases without further motion editing.
The average creation time is 69.21s including 33.57s for authoring
and 35.64s for previewing and editing (4.93s for trajectory editing
and 30.71s for motion editing). On average 0.85 motion switching,
0.36 motion splitting and 0.07 trajectory editing operations were
used per animation. It shows that users could quickly create and
edit the animations with a few operations to get desired results.
In general, all the participants appreciated ARAnimator . P1 said

that “the system allows for creating fascinating animations easily”. P4
found that “it’s really cool to animate characters in this way”. The
motion gesture based interaction in ARAnimator was also appre-
ciated by all the participants. In fact, during the tutorial session,

ACM Trans. Graph., Vol. 39, No. 4, Article 83. Publication date: July 2020.

83:10 • Hui Ye, Kin Chung Kwan, Wanchao Su, and Hongbo Fu

(a) SUS (b) NASA-TLX

Fig. 12. Mean scores of SUS and NASA-TLX in a 5-point scale. Please refer to
the appendix for the detailed SUS questions. For the questions with the odd
numbers, the higher the SUS scores, the better; for the rest of the questions,
the lower the SUS scores, the better.

we showed each motion gesture to the participants only once, and
found that they could understand and memorize the gestures easily
and quickly. P2 mentioned that “it does not need to remember the
gestures intentionally. Once I hold the phone I can naturally perform
it without thinking too much”. P3 also said “it is very intuitive, just
like playing with a doll”.

The participants also reported that the editing function was user
friendly. P1 commented that “although initial (motion classification)
results are sometimes wrong, I can fix them quickly via the provided
editing interface”. The participants were overall satisfied with their
results and appreciated the usefulness of our system. P1 mentioned
that “the animation results are nice. It is simple but interesting”. P1
and P4 both thought “the character fits the objects well”. With some
experience in animation creation before, P3 said that “it may be very
useful to do quick prototyping for animation designers”.

For the subjective measurements, we found the overall SUS score
for all 10 questions was 80 on average (SD: 9.13), out of a scale of
100, indicating the good usability of our system. In Figure 12(a), we
show the mean scores for all the individual SUS questions. From the
feedbacks of the participants for Q2, Q3, Q4, Q7, Q8 and Q10, we can
conclude our system was easy to use and intuitive, at least for this
group of participants. From Q5 and Q6, the well-designed functions
and interface of our system were also recognized by the participants.
From the NASA-TLX results shown in Figure 12(b), we found that
the mental demand and effort required by our system were moder-
ate. It implies that our system does not require users to pay a lot
of concentration and efforts when using our system. For temporal
demand, the participants also believed the pace of our animation
creation task was appropriate, since our system provided them with
freeform time controlling. The participants were also satisfied with
their animation results reflected by the high performance score,
especially when they watched the real-time results from different
views. Meanwhile, the physical load and frustration scores were not
very low, possibly due to the requirement of body movement dur-
ing animation creation, and occasional drifting caused by unstable
tracking of ARKit.

7 CONCLUSION AND DISCUSSION
In this paper, we have presented a set of character motions and a
corresponding set of motion gestures derived from two guessability
studies. Based on the findings, we developed a prototype of ARAn-
imator with mobile AR to easily create 3D character animations
closely interacting with real environments. The usability of our
system has been demonstrated by our pilot study. Below we will
discuss the limitations and other issues of ARAnimator .

7.1 Limitations
First, unlike the indirect animation tools [Anderegg et al. 2018;
Thorne et al. 2004], our direct approach is more intuitive but ap-
plicable to small-size environments only (i.e., reachable by arms).
In the future, it will be interesting to integrate our direct interface
together with indirect interfaces (e.g., relative drawing [Kwan and
Fu 2019]) for a more complete system applicable to both small-size
and large-scale scenarios.
Second, our ARAnimator highly depends on the quality of mo-

tion tracking of ARKit, which is scene dependent. To suppress the
tracking errors, we recommend to perform in-situ animation in the
environments with rich visual features, or insert objects with rich
features to surrounding environments (see the inserted paper in
Figure 8(b)).
Third, in our system, users need to move a mobile device and

perform motion gestures simultaneously. This leads to some degree
of distortion on the desired trajectories of a character. Although
we applied the mean filter to suppress it, the distortion cannot be
removed completely and the remaining distortion might affect the
visual quality of animated scenes. In the future, we will investigate
more advanced curve smoothing methods to address this issue.
Fourth, our current usability test is limited to a small group of

participants (i.e., 4 subjects).We are interested in conducting a larger-
scale user study to more thoroughly evaluate our system. Besides,
we noticed that the participant with some previous experience in
animation creation proposed our system for quick prototyping,
which is a valuable and potential insight. However, whether our
proposed tool is beneficial to professional animators needs more
investigation in the future.
Finally, character animation in mobile AR has been largely un-

explored. There are still many challenging issues to be resolved.
One important direction might be to improve the matching between
characters and environments to address artifacts exhibited in our an-
imation results like foot sliding. Using advanced rendering engines
or techniques (e.g., prepare additional transition clips, searching
for the optimal transition points) can be a possible solution for ad-
dressing unrealistic transitions between animation clips. We could
also enhance our system by adding interactions to real objects (e.g.,
move or destroy them by the animated character), though this is
challenging due to the requirement for real-time object extraction
and manipulation in 3D AR space.

7.2 Discussion
GUI vs. Motion Gestures. It is possible to make the editing inter-

face in Section 4.2 play a more important role and at the same time

ACM Trans. Graph., Vol. 39, No. 4, Article 83. Publication date: July 2020.

ARAnimator : In-situ Character Animation in Mobile AR with User-defined Motion Gestures • 83:11

reduce the role of our interface based on motion gestures. This po-
tentially results in a two-stage approach: first sketch a 3D moving
trajectory for a character using mobile AR (but without any motion
gesture) and then purely employ a GUI-based interface similar to
our editing interface for manually selecting the animations of the
character. However, we would argue that this alternative solution
and ours have their own pros and cons. GUIs are easier to use for
first-time users, while gestures are quicker to perform at the cost
of a steep learning curve and additional requirement for gesture
recognition. In an ideal case with 100% gesture classification accu-
racy, our solution leads to a largely one-stage approach, making the
editing step optional. Given the unique advantages of the two types
of interfaces, we tend to believe they can and should co-exist in a
unified system.

Scalability. Our system currently only supports a subset of the
collected motions from the elicitation study (Section 3). Since the
mapping from gestures to commonly used motions is intuitive, as
reflected by the high agreement rates of our user-definedmotion ges-
tures, we believe that end users may introduce their own customized
gestures to extend our system. However, newly added gesturesmight
cause ambiguities in recognition. It thus may cause difficulties for
incorporating a very large set of gestures in our system.

Classification. Although our ARAnimator currently only supports
15 motions, our preliminary test still found around 80% classifica-
tion accuracy with all the 29 motions collected from the elicitation
study. Even so, it is possible to improve the accuracy by exploring
either new features for SVM or advanced deep learning based ap-
proaches. Unlike traditional gesture recognition works for invoking
commands [Yoon et al. 2001; Zhou et al. 2009], which have rather
fixed performing speeds and durations, our recognition task needs
to handle gestures with varying speeds and durations depending
on animation contents. This poses a special gesture recognition
problem. Currently, we solve this challenge by simple segmenta-
tion before classification. Jointly addressing these two tasks might
produce better classification results.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive comments
and the user study participants for their time. This work was sup-
ported by a gift from Adobe and grants from the Research Grants
Council of the HKSAR, China (No. CityU 11212119, 11204120), City
University of Hong Kong (No. SRG 7005176), the Centre for Applied
Computing and Interactive Media (ACIM) of School of Creative
Media, the Open Project Program of State Key Laboratory of Virtual
Reality Technology and Systems, Beihang University (Project No.
VRLAB2018C11), and CityU Shenzhen Research Institute.

REFERENCES
Raphael Anderegg, Loïc Ciccone, and Robert W Sumner. 2018. PuppetPhone: pup-

peteering virtual characters using a smartphone. In Proceedings of the 11th Annual
International Conference on Motion, Interaction, and Games. ACM, 1–6.

Zhen Bai, Alan F Blackwell, and George Coulouris. 2015. Exploring expressive aug-
mented reality: The FingAR puppet system for social pretend play. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM,
1035–1044.

István Barakonyi and Dieter Schmalstieg. 2004. AR Puppet: Animated Agents in
Augmented Reality. (2004), 35–42.

Istvan Barakonyi and Dieter Schmalstieg. 2006. Ubiquitous animated agents for aug-
mented reality. In The Fifth IEEE and ACM International Symposium on Mixed and
Augmented Reality. 145–154.

Byungkuk Choi, Roger Blanco i Ribera, J. P. Lewis, Yeongho Seol, Seokpyo Hong,
Haegwang Eom, Sunjin Jung, and Junyong Noh. 2016. SketchiMo: Sketch-Based
Motion Editing for Articulated Characters. In ACM Transactions on Graphics (TOG),
Vol. 35. ACM, Article 146, 12 pages.

Loïc Ciccone, Martin Guay, Maurizio Nitti, and Robert W. Sumner. 2017. Authoring
Motion Cycles. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on
Computer Animation. Association for Computing Machinery, New York, NY, USA,
Article 8, 9 pages.

Loïc Ciccone, Cengiz Öztireli, and RobertW. Sumner. 2019. Tangent-Space Optimization
for Interactive Animation Control. In ACM Transactions on Graphics (TOG), Vol. 38.
ACM, New York, NY, USA, Article 101, 10 pages.

Gokcen Cimen, Ye Yuan, Robert W Sumner, Stelian Coros, and Martin Guay. 2018.
Interacting with Intelligent Characters in AR. International SERIES on Information
Systems and Management in Creative eMedia (CreMedia) 2017/2 (2018), 24–29.

Nem Khan Dim and Xiangshi Ren. 2014. Designing motion gesture interfaces in mobile
phones for blind people. Journal of Computer Science and technology 29, 5 (2014),
812–824.

Mira Dontcheva, Gary Yngve, and Zoran Popović. 2003. Layered acting for character
animation. In ACM Transactions on Graphics (TOG), Vol. 22. 409–416.

Haegwang Eom, Byungkuk Choi, Kyungmin Cho, Sunjin Jung, Seokpyo Hong, and
Junyong Noh. 2019. Synthesizing Character Animation with Smoothly Decomposed
Motion Layers. Computer Graphics Forum 39, 1 (2019), 595–606.

Andreas Fender, Jörg Müller, and David Lindlbauer. 2015. Creature teacher: A
performance-based animation system for creating cyclic movements. In Proceedings
of the 3rd ACM Symposium on Spatial User Interaction. ACM, 113–122.

Maxime Garcia, Rémi Ronfard, and Marie-Paule Cani. 2019. Spatial Motion Doodles:
Sketching Animation in VR Using Hand Gestures and Laban Motion Analysis. In
Motion, Interaction and Games. ACM, Article 10, 10 pages.

Oliver Glauser, Wan-Chun Ma, Daniele Panozzo, Alec Jacobson, Otmar Hilliges, and
Olga Sorkine-Hornung. 2016. Rig animation with a tangible and modular input
device. In ACM Transactions on Graphics (TOG), Vol. 35. ACM, Article 144, 11 pages.

Saikat Gupta, Sujin Jang, and Karthik Ramani. 2014. Puppetx: A framework for gestural
interactions with user constructed playthings. In Proceedings of the 2014 International
Working Conference on Advanced Visual Interfaces. ACM, 73–80.

Narukawa Hiroki, Natapon Pantuwong, and Masanori Sugimoto. 2012. A puppet inter-
face for the development of an intuitive computer animation system. In Proceedings
of the 21st International Conference on Pattern Recognition. IEEE, 3136–3139.

Hanyuool Kim, Issei Takahashi, Hiroki Yamamoto, Satoshi Maekawa, and Takeshi
Naemura. 2014. Mario: Mid-air augmented reality interaction with objects. Enter-
tainment Computing 5, 4 (2014), 233–241.

Yuki Koyama and Masataka Goto. 2018. OptiMo: Optimization-Guided Motion Editing
for Keyframe Character Animation. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, Article 161, 12 pages.

Kin Chung Kwan and Hongbo Fu. 2019. Mobi3DSketch: 3D Sketching in Mobile AR.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
ACM, Article 176, 11 pages.

Fabrizio Lamberti, Gianluca Paravati, Valentina Gatteschi, Alberto Cannavo, and Paolo
Montuschi. 2017. Virtual character animation based on affordable motion cap-
ture and reconfigurable tangible interfaces. IEEE transactions on visualization and
computer graphics 24, 5 (2017), 1742–1755.

Luis LEite and Veronica Orvalho. 2017. Mani-Pull-Action: Hand-based Digital Puppetry.
In Proceedings of the ACM on Human-Computer Interaction, Vol. 1. ACM, Article 2,
16 pages.

Hui Liang, Jian Chang, Ismail K Kazmi, Jian J Zhang, and Peifeng Jiao. 2017. Hand
gesture-based interactive puppetry system to assist storytelling for children. The
Visual Computer 33, 4 (2017), 517–531.

Hai-Ning Liang, Cary Williams, Myron Semegen, Wolfgang Stuerzlinger, and Pourang
Irani. 2012. User-defined surface+ motion gestures for 3d manipulation of objects at
a distance through a mobile device. In Proceedings of the 10th Asia Pacific Conference
on Computer human interaction. ACM, 299–308.

Noah Lockwood and Karan Singh. 2012. Finger walking: Motion editing with contact-
based hand performance. In Proceedings of the ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation. Eurographics Association, 43–52.

Noah Lockwood and Karan Singh. 2016. Gestural Motion Editing Using Mobile Devices.
In Proceedings of the 9th International Conference on Motion in Games. ACM, 25–30.

Zhiqiang Luo, I-Ming Chen, Song Huat Yeo, Chih-Chung Lin, and Tsai-Yen Li. 2010.
Building hand motion-based character animation: The case of puppetry. In 2010
International Conference on Cyberworlds. IEEE, 46–52.

Sageev Oore, Demetri Terzopoulos, and Geoffrey Hinton. 2002. A desktop input device
and interface for interactive 3d character animation. In Graphics Interface, Vol. 2.
133–140.

ACM Trans. Graph., Vol. 39, No. 4, Article 83. Publication date: July 2020.

83:12 • Hui Ye, Kin Chung Kwan, Wanchao Su, and Hongbo Fu

Yui Osato andNaoya Koizumi. 2018. Charrot: Pseudo-haptics withMid-air CGCharacter
and Small Robot. In Proceedings of the Virtual Reality International Conference-Laval
Virtual. ACM, Article 18, 5 pages.

Jaime Ruiz, Yang Li, and Edward Lank. 2011. User-defined motion gestures for mobile
interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 197–206.

Mose Sakashita, Tatsuya Minagawa, Amy Koike, Ippei Suzuki, Keisuke Kawahara, and
Yoichi Ochiai. 2017. You as a Puppet: Evaluation of Telepresence User Interface
for Puppetry. In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology. ACM, 217–228.

Yeongho Seol, Carol O’Sullivan, and Jehee Lee. 2013. Creature features: online mo-
tion puppetry for non-human characters. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ACM, 213–221.

Shaikh Shawon Arefin Shimon, Sarah Morrison-Smith, Noah John, Ghazal Fahimi, and
Jaime Ruiz. 2015. Exploring user-defined back-of-device gestures for mobile devices.
In Proceedings of the 17th International Conference on Human-Computer Interaction
with Mobile Devices and Services. ACM, 227–232.

Takaaki Shiratori, Moshe Mahler, Warren Trezevant, and Jessica K Hodgins. 2013.
Expressing animated performances through puppeteering. In 2013 IEEE Symposium
on 3D User Interfaces. IEEE, 59–66.

Matthew Thorne, David Burke, and Michiel van de Panne. 2004. Motion doodles: an
interface for sketching character motion. In ACM Transactions on Graphics (TOG),
Vol. 23. ACM, 424–431.

Amato Tsuji, Keita Ushida, and Qiu Chen. 2018. Real Time Animation of 3D Models
with Finger Plays and Hand Shadow. In Proceedings of the 2018 ACM International
Conference on Interactive Surfaces and Spaces. ACM, 441–444.

Meng Wang, Kehua Lei, Zhichun Li, Haipeng Mi, and Yingqing Xu. 2018. TwistBlocks:
Pluggable and Twistable Modular TUI for Armature Interaction in 3D Design. In
Proceedings of the 12th International Conference on Tangible, Embedded, and Embodied
Interaction. ACM, 19–26.

Jacob O Wobbrock, Htet Htet Aung, Brandon Rothrock, and Brad A Myers. 2005.
Maximizing the guessability of symbolic input. In CHI’05 extended abstracts on
Human Factors in Computing Systems. ACM, 1869–1872.

Ho-Sub Yoon, Jung Soh, Younglae J Bae, and Hyun Seung Yang. 2001. Hand ges-
ture recognition using combined features of location, angle and velocity. Pattern
recognition 34, 7 (2001), 1491–1501.

Wataru Yoshizaki, Yuta Sugiura, Albert C Chiou, Sunao Hashimoto, Masahiko Inami,
Takeo Igarashi, Yoshiaki Akazawa, Katsuaki Kawachi, Satoshi Kagami, and Masaaki
Mochimaru. 2011. An actuated physical puppet as an input device for controlling
a digital manikin. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 637–646.

Shengli Zhou, Qing Shan, Fei Fei, Wen J Li, Chung Ping Kwong, Patrick CK Wu, Bojun
Meng, Christina KH Chan, and Jay YJ Liou. 2009. Gesture recognition for interactive
controllers using MEMS motion sensors. In 2009 4th IEEE international conference
on nano/micro engineered and molecular systems. IEEE, 935–940.

Kening Zhu, Xiaojuan Ma, Haoyuan Chen, and Miaoyin Liang. 2017. Tripartite Effects:
Exploring Users’ Mental Model of Mobile Gestures under the Influence of Operation,
Handheld Posture, and Interaction Space. International Journal of Human–Computer
Interaction 33, 6 (2017), 443–459.

A DETAILED SUS QUESTIONS
For completeness, below we give a full list of SUS questions:

1. I think I would like to use this tool frequently.
2. I found the tool unnecessarily complex.
3. I thought the tool was easy to use.
4. I think that I would need the support of a technical person to

be able to use this system.
5. I found the various functions in this tool were well integrated.
6. I thought there was too much inconsistency in this tool.
7. I would imagine that most people would learn to use this tool

very quickly.
8. I found the tool very cumbersome to use.
9. I felt very confident using the tool.
10. I needed to learn a lot of things before I could get going with

this tool.

ACM Trans. Graph., Vol. 39, No. 4, Article 83. Publication date: July 2020.

	Abstract
	1 Introduction
	2 Related Work
	2.1 In-situ Character Animation in AR/VR
	2.2 Computer Puppetry and Character Animation
	2.3 User-defined Motion Gestures

	3 User-defined Character Motions & Gestures
	3.1 Study I: User-defined Character Motions
	3.2 Study II: User-defined Motion Gestures
	3.3 Discussions on the Findings

	4 ARAnimator System
	4.1 Authoring
	4.2 Editing
	4.3 Motion Synthesis

	5 Gesture Classification
	5.1 Data Collection
	5.2 SVM-based Gesture Classification
	5.3 Prediction

	6 Results
	6.1 Quantitative Evaluation on Gesture Classification
	6.2 Usability Study

	7 Conclusion and Discussion
	7.1 Limitations
	7.2 Discussion

	Acknowledgments
	References
	A Detailed SUS questions

