3D User Interfaces for Games and Virtual Reality

Lecture #1: Introduction
Spring 2021
Joseph J. LaViola Jr.

Instructor
Professor – Joseph J. LaViola Jr.
Email – jjl@cs.ucf.edu
Office Hours – Mon. 6:00pm – 7:00pm
Tues. 4:00pm – 5:30pm
Office is Harris 321

Website will have all required info
www.cs.ucf.edu/courses/cap6121/spr2021
Class Goals

- Provide in-depth introduction to spatial 3D user interfaces
- Focus on 3D games and other apps
- Speaking and presentation skills
- Start of master’s projects and PhD dissertations
- Possible publications
 - Virtual Reality 2022
 - CHI PLAY 2021
 - SUI 2021
 - UIST 2021
 - SIGGRAPH Asia 2021

Required Books
Grading

Assignment 1 (group?) 15%
Assignment 2 (group?) 15%
Survey Paper (individual) 15%
Paper presentation (individual) 5%
Final Project (group?) 50%

Final Projects

- 2-3 person teams
- Must have research component
 - Does not have to be related to games
 - Innovative 3D UI
- Everyone must write and get approved a project proposal
- DEMO DAY!!!! – May 3, 2021
Class Structure (see syllabus for details)

- Lectures
 - Fundamentals of 3D user interfaces
 - hardware
 - common interaction tasks
 - user evaluation
- Student paper presentation
 - 20 minute presentation
- Final project update sessions
- Work done
 - VR Lab – Barbara Ying Center, Room 119
 - ISUE Lab – Harris 208 (laptops also)
 - Home
 - code access required

Course Topics

- Unity 3D
- 3D Hardware
 - perception
 - input and output devices
- Common 3D Interaction Tasks
 - travel (e.g., navigation and wayfinding)
 - selection and manipulation
 - system control
- 3D UI Design
- 3D UI Evaluation
- 3D UI and Augmented/Mixed Reality
Collaboration and Late Policy

- Collaboration encouraged
 - do your own work on assignments
 - cheating = BAD!!!
- All assignments must be handed in on time
 - Assignments – by 11:59pm on due date

Tools – Hardware
Tools – More Hardware

- NVIDIA 3D Vision Kit
- Wii Balance Board
- Novint Falcon
- Tobii Eye X
- IZ3D Monitor
- Thalmic Labs Myo

Tools – Even More Hardware

- PlayStation Move
- Wii U
- PlayLink
- Xbox 360
- HTC Vive
- Leap Motion

Spring 2021
Tools – Even More Hardware
Interactive Visualization Wall

Tools – Software

- Visual Studio 2019, C#
- Unity 3D
 - game engine
 - audio support, graphics support
 - physics engine
 - development UI
 - Scripting in C#, Javascript
 - Supports 3D stereo
 - HTC Vive support
- Microsoft Research Kinect 2 SDK
- Sony Move.Me
- Leap Motion API
- Custom Client/Server code
- Google SketchUp Pro
 - nice model database
Terminology

Human-computer interaction (HCI)
- Field of study that examines all aspects of the interplay between humans and interactive technologies
- Communication between users and systems

User interface (UI)
- Medium for human-system communication
- Translates human actions/state to a system representation and vice-versa
Terminology

Input device
- Physical device allowing users to communicate with a system

Degrees of freedom (DOF)
- The number of independent dimensions of the motion of a body

Output device
- Physical device allowing system to communicate with users through any of the senses (display)

Interaction technique
- Method by which a user accomplishes a task via the UI
- Has hardware components (input/output devices)
- Has software components (mappings)
Terminology

Usability
- Characteristics of an artifact that affect the user’s use of the artifact
- Includes ease of use, task performance, user comfort

User experience (UX)
- Characterization of a user’s entire relationship with an artifact
- Includes usability, but also usefulness and emotional impact

UX evaluation
- Process of assessing or measuring some aspects of the user experience of an artifact

3D interaction
- Human-computer interaction in which the user’s tasks are performed directly in a real or virtual 3D spatial context
 - 2D device input translated directly to 3D virtual action (e.g., mouse dragging virtual sphere for 3D object rotation)
 - 3D device input to interact in a 2D virtual space (e.g., tracked laser pointer to define 2D cursor location on a large display)
 - Focus of the book: 3D device input to interact in a 3D virtual space (e.g., tracked controller to grab/move objects in VR)

3D user interface (3D UI)
- A UI that involves 3D interaction
Terminology

Virtual environment (VE)
- Synthetic, spatial world seen from a first-person POV
- View is under real-time user control

Virtual reality (VR)
- An approach using technologies to immerse the user in a VE
- VE and VR sometimes used interchangeably

Augmented reality (AR)
- An approach using technologies to enhance the user’s view of a real-world environment with synthetic objects or information

Mixed reality (MR)
- A set of approaches in which real and virtual information is mixed in different combinations
- Includes VR and AR
- MR continuum (Milgram & Kishino 1994)
Terminology

Ubiquitous computing (UbiComp)
- Computing devices and infrastructure may be scattered and mobile so that users have anytime, anywhere access to computing

Telerobotics
- Remote control of one or more robots

Both UbiComp and telerobotics may involve 3D UIs

Why 3D Interfaces?

- 3D applications should be useful
 - immersion
 - natural skills
 - immediacy of visualization
- But, applications in common use have low complexity of interaction
- More complex applications have serious usability problems
- Technology alone is not the solution!
What makes 3D interaction difficult?

- Spatial input
- Lack of constraints
- Lack of standards
- Lack of tools
- Lack of precision
- Fatigue
- Layout more complex
- Perception

Interaction Goals

- Performance
 - efficiency
 - accuracy
 - productivity
- Usability
 - ease of use
 - ease of learning
 - user comfort
- Usefulness
 - interaction helps meet system goals
 - interface relatively transparent so users can focus on tasks
Universal 3D Interaction Tasks

- **Navigation**
 - travel: motor component
 - wayfinding: cognitive component
- **Selection/Picking**
- **Manipulation**
 - specification of object position & orientation
 - specification of scale, shape, other attributes
- **System Control**
 - changing the system state or interaction mode
 - may be composed of other tasks
- **Symbolic Input**

3D UI Design Philosophies

- **Artistic approach**: Base design decisions on
 - intuition about users, tasks, and environments
 - heuristics, metaphors, common Sense
 - aesthetics
 - adaptation/inversion of existing interfaces
- **Scientific approach**: Base design decisions on
 - formal characterization of users, tasks, and environments
 - quantitative evaluation results
 - performance requirements
 - examples: taxonomies, formal experimentation
Applications

- Architecture / CAD
- Education
- Manufacturing
- Medicine
- Simulation / Training
- Entertainment – Games!!!
- Design / Prototyping
- Information / Scientific Visualization
- Collaboration / Communication
- Robotics

3D UI RoadMap
Introduction to Case Studies

VR Gaming Case Study
- Speculative, but based on reasoning from research and experience
- Action-adventure genre (puzzles + physical skill)
- Large indoor environment (spooky hotel)
- Goal: escape via the roof while avoiding monsters
- Challenges: natural navigation, unobtrusive system control, avoid cybersickness

Mobile AR Case Study
- HYDROSYS: *in situ* environmental analysis with mobile AR, sensor stations, and remote cameras
- Users: environmental scientists but also general public
- User tasks: data observations and deeper analysis
- Challenges: robust handheld AR platform, navigation among multiple camera viewpoints
Next Class

- Games and 3DUIs

- Readings
 - LaViola – Chapters 1 and 2