
Self-Organizing Maps for Intuitive Gesture-Based
Geometric Modelling in Augmented Reality

Benjamin Felbrich, Achim Menges
Institute for Computational Design and Construction

University of Stuttgart
Stuttgart, Germany

benjamin.felbrich@icd.uni-stuttgart.de

Gwyllim Jahn, Cameron Newnham
Fologram

Melbourne, Australia
gwyll@fologram.com

Abstract—Modelling three-dimensional virtual objects in the
context of architectural, product and game design requires
elaborate skill in handling the respective CAD software and is
often tedious. We explore the potentials of Kohonen networks,
also called self-organizing maps (SOM) as a concept for intuitive
3D modelling aided through mixed reality. We effectively
provide a computational “clay” that can be pulled, pushed and
shaped by picking and placing control objects with an
augmented reality headset. Our approach benefits from
combining state of the art CAD software with GPU computation
and mixed reality hardware as well as the introduction of
custom SOM network topologies and arbitrary data
dimensionality. The approach is demonstrated in three case
studies.

Keywords - augmented reality; computer-aided design;
parametric design; self-organizing maps

I. INTRODUCTION

The notion of utilizing a heads-up, see-through, head-
mounted display to aid manual manufacturing processes dates
back to the early 1990s [1]. Here the idea of overlaying the
physical act of assembly with helpful data to guide the
operator bears tremendous potential in much faster and less
error-prone manufacturing processes. As hardware in the form
of commercial headsets becomes more accessible to
manufacturers, owing to – among others – the introduction of
Microsoft’s Hololens, this idea is making its way from
fundamental research into actual applications and
commercialized workflows. It is based on the utilization of
predetermined digital information at hand, often provided in
the form of a 3D model of the workpiece with the relevant
information.

The creation of this digital information through complex
geometric modeling, however, still largely remains within the
realm of conventional desktop PCs and the modulation of
geometry through keyboard, mouse, trackpad or more
advanced 3d navigation devices like a “SpaceMouse” at best.
Especially in creative fields like architecture, game or
automotive design where demands in complex shape control
span beyond accumulating and intersecting simple geometric
bodies, but deal with complex doubly-curved surfaces, the

creative process still largely depends on the classic workflow:
coarse prototypes are being drafted through hand drawn
sketches, then formalized in rough digital 3D models, and
instantiated in the real world through models made from clay,
foam or cardboard to give a realistic impression of the object.
This process is repeated and refined, until the design task is
considered complete and further production planning can take
place. In the reverse manner, an object modelled in clay can
be digitized through 3D scanning.

The work at hand aims to provide an alternative to this
time and material-consuming approach by transferring the
entire workflow of prototypic 3D modelling into the realm of
augmented reality. Although the notion of using AR for 3D
modeling is not new by any means, current technology often
only allows for rather simple procedures such as moving,
rotating, scaling simple objects or extruding planar surfaces.
But more sophisticated means of geometry manipulation bear
tremendous potentials for the creative community.

The Self-Organizing Map (SOM) is a neural network
algorithm, which uses a competitive learning technique to
train itself in an unsupervised manner. As opposed to other
artificial neural networks SOMs use a neighborhood function
to preserve topological properties of the input space - typically
a two-dimensional grid in which the neurons are organized.
They are capable of creating a simplified, ordered
representation of multi-dimensional data and are often used
for clustering, prediction, data representation, classification
and visualization. Due to this topological nature, an adaption
in the form of polygonal meshes stands to reason. Although
other powerful surface modeling paradigms like NURBS
modeling exist, SOM-based geometric modeling inherently
offers the use of higher dimensional data to incorporate
properties like color and circumvents further processing steps
for triangulation in the display pipeline. Furthermore, due to
the highly incremental nature in its convergence, additional
geometric constraints such as mesh smoothing can be applied
during runtime. The SOM’s main drawback, the high
computational cost in the evaluation phase, can be overcome
by the use of highly parallelized state-of-the-art GPU
computation as this article aims to show.

61

2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)

978-1-5386-9269-1/18/$31.00 ©2018 IEEE
DOI 10.1109/AIVR.2018.00016

II. RELATED RESEARCH

AR applications have recently become ubiquitous with
software development kits for consumer mobile platforms
such as ARCore and ARKit. Extensive research has been
conducted to identify mixed reality applications within the
architecture, engineering and construction industry [2] and a
proliferation of recent literature demonstrates the use of
mobile augmented reality for design visualization and
construction review tasks [3] and for prototypic haptic design
tasks [4]. The use of augmented reality interfaces to assist with
design modelling and simulation has also been shown. These
include the use of motion controllers to create tactile and
gestural interfaces for parametric models [5] and projected
AR to calibrate digital and physical simulations of material
behavior [6].

Since the SOM algorithm was introduced by Teuvo
Kohonen in 1982 [7] it found applications in various research
fields wherever dimensionality reduction or mapping of large
amounts of multidimensional data is of relevance. It ranges
from structuring and visualizing vast amounts of weather data
[8] to project prioritization and selection [9] or associating
word meanings in language processing [10]. The benefits of
an SIMD implementation of the SOM algorithm using CUDA
was shown in [11].

Studies related to SOM in 3D modeling and adaptive
meshing aimed at reconstructing a given geometry with a
topologically ordered mesh [12]. Other CAD-oriented studies
employ the SOMs clustering capability to treat design relevant
information and / or produce an ordered range of related
design objects such as building blocks [13]. Parametric
design, the rule based, algorithmic branch of computer-aided
design is especially eligible to benefit from the SOM
paradigm as [14] alludes to. Here the interpretation of self-
organizing data in a 3D modeling context exceeds the mere
positioning of 3-dimensional vertices but serves as input for a
more complex parametric procedure of geometry generation.

Other related methods for mesh-based 3D modelling such
as free-form-deformation [15], mean value coordinates [16] or
bounded biharmonic weights [17] are usually based on
bending or deforming an already existing geometry. However,
the SOM approach was chosen for its potential to generate a
meaningful geometric solution, even when vertices are
initialized randomly. This allows for modeling objects even
with rather limited modes of interaction, as no complex
objects have to be sketched manually up front.

III. SOM-BASED GEOMETRIC MODELLING

A. Adaptation of SOM Algorithm
In order to fully utilize the potentials of SOMs for 3D

modeling, a number of restrictions imposed by classic SOM
model had to be reconsidered: 1) the conventional topology of
2-dimensional square or triangle grids was replaced by an
overall support for user-defined topologies. 2) the
conventional use of 2d or 3d feature vectors, as they are
suggested by 3D mesh modelling was generalized to use n-
dimensional feature vectors. 3) Conventional SOMs serve to
cluster large numbers of training vectors; on the contrary we
propose the use of a small number of training vectors over

very large number of neurons. Thus we’re able to control the
network’s shape with relatively few training vectors, in the
following referred to as “control objects”. 4) Due to increased
computational cost caused by serial network evaluation and
weight processing, a CPU-based SOM implementation is
practically inapplicable for intuitive real-time interaction with
complex SOMs. Thus a highly parallelized implementation in
CUDA was favored. These aspects are explained in more
detail hereafter.

B. Graph Topology and Learning Function
In our starting setup SOM neurons are assumed to be

vertices of a polygon mesh, their weights - respectively mesh
vertex positions - are denoted ܹ ∈ ℝ ; further the mesh
edges are interpreted as the synaptic connections ܧ between
neurons. The classic SOM learning algorithm is explained in
[7]. Our adapted workflow is summarized as follows:

The neuron weights ܹ are initialized according to a
predefined starting configuration - e.g. a sphere shaped
polygon mesh - along with a set of training vectors ܥ ∈ ℝ,
called control objects.

C. General SOM Learning Rule
A control object (ݐ)ܥ is fed to the network by computing the
Euclidean distance between (ݐ)ܥ and all neuron weights W.
The neuron closest to the control point is called the winning
neuron; its index is ݑ. Its weight ௨ܹ will be adjusted toward (ݐ)ܥ. All other neuron weights ௩ܹ in the network are also
adjusted toward (ݐ)ܥ . The magnitude of change in ௩ܹ
decreases with time and the neuron’s grid-distance to the
winning neuron with the following update rule:

௩ܹ(ݏ + 1) = ௩ܹ(ݏ) + ,ݑ)ߠ ,ݒ (ݏ ∗ (ݏ)ߙ ∗ (ݐ)ܥ) − ௩ܹ(ݏ))
With ݒ being the index of the neuron to update, ݏ being the
index of the iteration and (ݏ)ߙ being a monotonically
decreasing learning coefficient. ݑ)ߠ, ,ݒ (ݏ is the
neighborhood function depending on ݏ and the graph
distance between neuron ݒ and ݑ.

D. Neighborhood Initialization
In the initialization phase we utilize the information about the
predefined mesh topology to build and store a neighborhood
tree. When defining the topology in the form of mesh faces,
the scripting framework of our chosen 3D modeling
environment Rhino3D allows direct access to vertex indices
that are conjunct to a chosen vertex through a single mesh
edge ݁ ∈ ܧ . These direct neighbor indices to vertex ݒ are Ω௩ . The grid-distances ܦ௩ for every vertex ݒ to all other
neurons is computed from Ω using following procedure:

1) Store ݒ + Ω௩ as already mapped indices
2) Store Ω௩ as the current neighborhood ring
3) Set current neighborhood level to 2
4) While the number of already mapped indices is

smaller than the total number of neurons do:

62

a) Get the directly connected neighbors Ω for each
index ݅ in the current neighborhood ring

- For every direct neighbor index ݆ in Ω check if it
is already included in mapped indices or in the
current neighborhood;

- if it is not mapped yet, store current neighborhood
level as the grid-distance ݀௩ , add ݆ to mapped
indices and to ‘next neighborhood ring’

b) increase current neighborhood level by 1
c) reassign ‘next neighborhood ring’ to be ‘current

neighborhood ring’ in the next iteration

The procedure terminates when all neurons in the SOM are
mapped and works for arbitrary open and periodic (circular)
topologies alike. Neuron ݒ itself is stored as neuron
neighborhood of level 0, its direct neighbors as level 1 and all
other neurons in their respective neighborhood levels (fig. 1).
The procedure is executed for every neuron concurrently in
an individual GPU thread. The collection of mapped grid-
distances ܦ is of size |ܹ|ଶ and is stored in GPU memory for
quick access during runtime. As the number of neurons is
deliberately limited to 2ଵ and indices are stored as two-byte
integers, the memory required to store ܦ never exceeds 8GB
of GPU RAM. However, this theoretical upper limit was
never reached in our workflow. Furthermore the largest grid-
distance between two neurons that was found in the entire
network is stored as ݀௫ . It is then used to scale the
neighborhood function.

E. Learning Value Function
The commonly used Gaussian function was chosen to be the
neighborhood function as it performed better than the
Mexican Hat function in several tests. The general form of
the Gaussian is:

(ݔ)݂ = ܽ݁ି (௫ି)మଶమ
Where ܽ is the height of the bell curve’s peak, ܾ is the
position of the center and ܿ modulates the curve’s width. To
adhere to our learning goal, it is adapted as:

,ݑ)ߠ ,ݒ (ݏ = ݁ି ௗೠ,ೡమଶ(௦)మ
with ݀௨,௩ being the grid distance between the winning neuronݑ and the neuron in question ݒ. Here ܿ represents the radius
of neighbor neurons that are considered, also called the
learning radius. It modulates the function’s width according
to the largest grid-distance ݀௫ and the current iteration.
The full width at half maximum (FWHM) for the Gaussian
function [18] is:ܯܪܹܨ = 2 ∗ ඥ2 ∗ ln (2) ∗ ߪ
As we’re only interested in the neighborhood radius, the half
width at half maximum (HWHM) is more relevant to us. It is
by our definition the upper limit of neighborhood
propagation, the farthest grid-distance between two neurons ݀௫ . ݀௫ = ܯܪܹܪ = ඥ2 ∗ ln (2) ∗ ߪ
Hence,

ߪ = ݀௫ඥ2 ∗ ln (2)
We finally scale the bell curve to get narrower with
increasing iterations, to damp the neighborhood effect over
time and allows convergenceܿ(ݏ) = ߪ − ߪ ∗ ܵݏ
Where ݏ is the current iteration and ܵ the total number of
iterations.
The learning rate (ݏ)ߙ serves to further scale down the
movement with increased iterations to encourage
convergence. Through comparative testing, we chose a
hyperbolically decreasing learning rate relying on the initial
learning rate ݈௦௧௧ = 0.25 and a final learning rate ݈ௗ =0.03. Thus

(ݏ)ߙ = ݈௦௧௧ ∗ ݈ௗ݈ௗ + (݈௦௧௧ − ݈ௗ) ∗ ܵݏ
With ݑ)ߠ, ,ݒ (ݏ and (ݏ)ߙ defined we can define the product
of these two modules as the learning value ݑ)ܮ, ,ݒ (ݏ ,ݑ)ߠ = ,ݒ (ݏ ∗ (ݏ)ߙ (fig. 2) and slightly change the update
rule. ௩ܹ(ݏ + 1) = ௩ܹ(ݏ) + ,ݑ)ܮ ,ݒ (ݏ ∗ (ݐ)ܥ) − ௩ܹ(ݏ))
Similarly to the neighborhood topology, the results of ݑ)ܮ, ,ݒ (ݏ are computed during initialization and stored in
GPU memory. Thus computation time during runtime is

Figure 1. Levels of neighborhood for one mesh vertex (0): quad
mesh sphere (left), mixed topology (right)

63

minimized to simple memory access. With a size of a single
precision floating-point number multiplied by ܵ ∗ ݀௫, the
memory requirement is relatively small.

F. Implementation
As the scope of the proposed algorithm is narrowly defined,
third-party libraries optimized for generality could be
avoided in favor of a bare CUDA C/C++ implementation
with little computational overhead. In addition to the SOM
computation core, a thin layer in C++/CLI had to be
established. It forms the connection between unmanaged
code of the SOM core and the .Net CAD environment
Rhino3d and Grasshopper3d in which the geometry display,
interaction and connection to the Hololens is handled. It is
integrated into the workflow in the form of a Grasshopper
plugin. The SOM core’s main components are: 1) an
evaluation kernel to compute the Euclidean distances
between training vectors and neurons. Here each training
vector is assigned a single thread block and - along with all
neuron weights - loaded into very fast shared memory. Each
thread computes the distance between one training vector and
one neuron weight vector and stores it in shared memory. A
secondary reduction kernel finds the shortest distance for
each training vector. 2) A movement kernel applies changes
to the neuron weights based on the learning procedure
described above. This step heavily benefits from the results
of ݑ)ܮ, ,ݒ (ݏ being pre-computed and stored in GPU memory.
Each neuron is handled by an individual thread.
Case study 1 (fig. 3) shows the characteristics of this
approach: A three-dimensional space grid of 16 x 16 x 16
neurons is trained using eight three-dimensional training
vectors. The precomputed grid distances ܦ consist of the
distance between each neuron pair, thus 16ଷమ = 16,777,216
multiplied by the size of a two-byte integer. This results in
32MB of storage required with ݀௫ being 3 * (16-1). As we
intend to interact with the model, ܵ is deliberately kept small

at 1000 to avoid long convergence times. The cycle time per
weight update of the entire network including rendering time
is 0.4ms without further processing and 0.5ms if an additional
one-step Laplacian smoothing is applied [19]. As soon as a
control object is modified, the training phase is restarted from
the neurons latest positions. Thus the grid follows the moving
control objects instead of retracting to its initial position.

IV. COMPUTER AIDED DESIGN IN AUGMENTED REALITY

McNeel and Associates’ Rhinoceros 3D is a computer
aided design package designed to facilitate broad exploration
of conceptual ideas through 3D modelling. Grasshopper 3D, a
module-based visual programming extension for parametric
modelling in Rhinoceros 3D, extends this capability by
allowing users to dynamically generate geometry by
“expressing a geometric model as explicit functions of a
number of parameters” [20]. Fologram, a third-party
extension for Rhinoceros 3D and Grasshopper 3D, was
developed by the authors to enable designers to develop mixed
reality applications using existing third-party Grasshopper 3D
extensions and parametric models. Providing designers with a
means to leverage their expertise with CAD modelling
software improves the accessibility of mixed reality
development to those within the architecture, engineering and
design industries and eliminates the overheads associated with
building interactive CAD models within game engines.

Fologram creates a bi-directional data stream that renders
geometry in the CAD environment on the HoloLens,
implements Vuforia’s image target SDK to precisely align
digital and physical spaces and provides access to HoloLens
sensor data and gesture detection events as a parametric input
source. Natural and intuitive interaction with parametric
models can be facilitated by associating input parameters with
the physical motions of a user within a mixed reality
environment. For instance, the proximity of a user’s hand to
control vertices in the SOM model can be used to isolate and
translate these vertices based on relative hand motion. This
translation can occur at one-to-one scale in x, y and z axes
simultaneously and enables the user to perform and evaluate
design operations directly within the context of their physical
workspace.

The concept of this software follows the visual
programming principle. Relevant functions like gesture

Figure 2. Learning value function ݑ)ܮ, ,ݒ for maximum (ݏ
iterations ܵ = 5000 and largest grid distance ݀௫ = 50; the
function produces learning values between 0.0 and ݈௦௧௧ =0.25; ݈ௗ = 0.03

Figure 3. Case study 1: 16x16x16 nodes, S = 1000, ݈௦௧௧ =0.3, ݈ௗ = 0.03; additional 1-step Laplacian smoothing;
convergence time: 500ms on an Nvidia GTX1080 Ti

64

recognition, spatially tracking the Hololens or sending
geometric information to the augmented display are
accessible through modules which can be connected at will.
Along with already existing functions offered by the CAD
environment, this open-ended design allows users to
intuitively establish their own workflow.

V. RESULTS

The following case studies were processed using a
desktop host PC with an Nvidia GTX1080 Ti and an Intel
Core i7-8700K @ 4.7GHz. The visualization of and
interaction with the model through the Hololens was enabled
through a 2.4 GHz Wifi connection. As mesh information is
sent to the Hololens asynchronously, the SOM computation
on the host PC runs uninterrupted. This results in fast
convergence but entails the risk of lag between the two model
representations. Therefor the sizes of the following two case
studies were chosen to be sufficiently complex for modeling,
but small enough to be transmitted in real-time. Case study 2
(fig. 4, fig. 5) shows the modeling of a car geometry of 600
mesh faces, both quads and triangular. Each of the model’s
602 nodes consists of their ݔ, ,ݕ ݖ position and a value for hue
and saturation, thus forming a five-dimensional data set and
allowing for node colors to be adjusted to the color of the
nearest control object. While the control objects’ colors were
pre-defined, their ,ݔ ,ݕ ݖ positions are changed through
picking and dragging them around through a ‘tap and hold’
gesture. To identify the correct control object to drag, their ݔ, ,ݕ ݖ position along with the hand position are projected onto
the plane of view. The control object that is closest to the hand
in this projection gets selected; its display radius is enlarged
to indicate to the user that it is active

This way the user can manipulate nine control objects,
which are automatically mirrored against the ݖݔ -plane,
ultimately resulting in 18 control object. This allows for an
easy modeling of symmetric objects. Changing one control
object’s position triggers the model to be retrained, starting
from its latest configuration. Thus the geometry barely
changes in areas where near control objects haven’t been
altered, but deforms heavily when nearby control objects were
displaced. Through an ‘air tap’ gesture, the retraining from the
network’s initial ellipsoid configuration can be triggered. In
this way the user can easily reset training to retract unpleasant
warping. At 1000, ܵ was kept small enough to allow intuitive
interaction through fast convergence but large enough to
generate meaningful results.

In case study 3 (fig. 6, fig. 7) the same mesh topology as
in the previous model was employed to propagate
information. But here the network nodes are represented by
colored lines, each of which is described by the ݔ, ,ݕ ݖ position
of their root, an ,ݔ ,ݕ ݖ vector of their direction, their hue value
and length. Neighbor lines are connected through quad mesh
faces that incorporate color. Thus the simple mesh geometry
of example 2 is extended to a grid structure with structural
depth. This geometric interpretation exemplifies the potential
of using SOM generated data to feed more complex
parametric models over rather simple mesh geometries. For
better usability the control objects are displayed as colored
pipes and turn red, when they’re being selected. From its

Figure 5: Case study 3: picking and dragging a control object to
control the mesh geometry

Figure 4: Case study 2, desktop display; 602 five-dimensional nodes
connected with a quad mesh topology; S = 1000; convergence time:

300ms

65

initial elliptic configuration the model converges almost as
fast as in case study 2 when it is not transmitted to the
Hololens. However, due to larger transmission data – the
geometry consists of 1204 vertices and 2400 mesh faces – and
more complex geometry to display the SOM computation was
held for 10ms after each training cycle to avoid lag in the
device synchronization. Along with increased cost for more
complex mesh generation on the host side this resulted in a
significantly longer convergence time of 16.7s. However, if
the visualization of the network’s training phase is not needed
and only the final result is shown, a much faster interaction is
possible.

VI. DISCUSSION

The discussed case studies serve to prove the general
feasibility of modeling in mixed reality in conjunction with
SOM-based geometric representations. However, problems
of implementation in terms of speed and robustness must be
addressed. In our setup we found the main bottle neck of
speed to be the data transmission between host PC and the
Hololens, resulting in a suboptimal responsiveness of the
system. This issue could potentially be fixed through the use
of a powerful portable host device in the form of a backpack
and the connection through via USB. When a stationary host
PC is preferred, a 5GHz Wifi connection or optimized
transmission protocol could improve synchronization speed.
Furthermore, due to the data’s high dimensionality, the SOM
model in case study three sometimes converged incompletely
leaving visible gaps between control objects and closest
nodes. Through a more fine grained learning procedure with
increased ܵ , this could be overcome at the cost of
convergence speed. In addition, the geometry generation and
display on the host side CAD environment made up a large
portion of the computational cost. A more direct integration,
without geometric visualization and a more efficient
geometry generation outside Rhino3d and Grasshopper3d
could further improve speed. Lastly the robustness in gesture
recognition offered by the current model of Hololens could
be improved further; major improvements in this regard in
commercial products are foreseeable with the next release of
Hololens.

ACKNOWLEDGMENT

Researchers on this project have received funding from the
Collaborative Research Centre CRC 141 of the German
Research Foundation.

REFERENCES

[1] T. P. Caudell; D. W. Mizell, “Augmented reality: an application of
heads-up display technology to manual manufacturing processes.”
Proceedings of the Twenty-Fifth Hawaii International Conference on
System Sciences. Ding, W. and Marchionini, G. 1992. A Study on
Video Browsing Strategies. Technical Report. University of Maryland
at College Park.

[2] H.-L. Chi, S.-C. Kang, X. Wang, Xiangyu “Research trends and
opportunities of augmented reality applications in architecture,
engineering, and construction” Automation in Construction. 33. 2013,
116–122. 10.1016/j.autcon.2012.12.017.

Figure 7: Case study 3: picking and dragging control objects to
control mesh geometry

Figure 6: Case study 3; desktop display; 602 eight-dimensional nodes,
connected with grid topology; S = 1000; convergence time: 300ms

66

[3] D. Ren, T. Goldschwendt, Y. Chang and T. Höllerer, "Evaluating wide-
field-of-view augmented reality with mixed reality simulation," 2016
IEEE Virtual Reality (VR), Greenville, SC, 2016, pp. 93-102. doi:
10.1109/VR.2016.7504692

[4] W. Lee, J. Park, “Augmented Foam: A Tangible Augmented Reality
for Product Design” In: Proceedings of the 4th IEEE/ACM
International Symposium on Mixed and Augmented Reality.
Washington, DC, USA: IEEE Computer Society (ISMAR ’05), 2005,
pp. 106–109. Available online at
http://dx.doi.org/10.1109/ISMAR.2005.16.

[5] F. Salim, H. Mulder, J. Burry, “Form fostering: A novel design
approach for interacting with parametric models in the embodied
virtuality”, in Electronic Journal of Information Technology in
Construction 16. 2011

[6] G. Quinn, A. Galeazzi, C. Gengnagel “Augmented and Virtual Reality
Structures”. IASS Annual Symposium, 2017: Interfaces: architecture .
engineering . science At: Hamburg

[7] T. Kohonen, “Self-organized formation of topologically correct feature
maps” In Biological Cybernetics 43 (1), 1982, pp. 59–69. DOI:
10.1007/BF00337288.

[8] Y. Liu, R.H. Weisberg, “A review of self-organizing map applications
in meteorology and oceanography” In: Self-Organizing Maps-
Applications and Novel Algorithm Design, 2011, p. 253-272.

[9] G. Zheng and V. Vaishnavi, "A Multidimensional Perceptual Map
Approach to Project Prioritization and Selection," AIS Transactions on
Human-Computer Interaction (3) 2, 2011, pp. 82-103

[10] J. C. Príncipe, R. Miikkulainen, S. Kiran, “Modeling the Bilingual
Lexicon of an Individual Subject”. Advances in Self-Organizing Maps.
2009, Berlin, Heidelberg: Springer Berlin Heidelberg.

[11] F. C. Moraes; S. C. Botelho; N. D. Filho; J. F. O. Gaya “Parallel High
Dimensional Self Organizing Maps Using CUDA”. 2012 Brazilian
Robotics Symposium and Latin American Robotics Symposium. 2012
Brazilian Robotics Symposium and Latin American Robotics
Symposium.

[12] O. Nechaeva, G. K. and Matsopoulos “Using Self Organizing Maps for
3D surface and volume adaptive mesh generation”. In : Self-
Organizing Maps. Rijeka: IntechOpen, 2010, pp. Ch. 9. Available
online at https://doi.org/10.5772/9166.

[13] M. Zaghloul, “Machine-Learning aided architectural design”. Self-
Organizing map generate in between design alternatives. In Soddu C.,
Colabella, E. (eds.) Proceedings of the 18th Generative Art
Conference, Venice 9, 10 and 11 December 2015

[14] J. Harding “Dimensionality reduction for parametric design
exploration”. In: Adriaenssens, S., Gramazio, F., Kohler, M., Menges,
A. and Pauly, M., eds. (2016) Advances in Architectural Geometry
2016. Zurich, Switzerland: vdf Hochschulverlag AG an der ETH
Zurich, 2016, pp. 274-287. ISBN 9783728137777

[15] T. Sederberg, S. Parry, “Free Form Deformation of Solid Geometric
Models”. ACM Computer Graphics, Proceedings of SIGGRAPH, S.
151–160, 1986

[16] M. S. Floater, ”Mean value coordinates” In Computer Aided
Geometric Design 20 (1), 2003, pp. 19–27. DOI: 10.1016/S0167-
8396(03)00002-5.

[17] A. Jacobson, I. Baran, J. Popović, O. Sorkine: “Bounded Biharmonic
Weights for Real-time Deformation” In ACM Trans. Graph. 30 (4),
2011, 78:1 78:8. DOI: 10.1145/2010324.1964973.

[18] E. W. Weisstein, "Full Width at Half Maximum." From MathWorld--
A Wolfram Web Resource.
http://mathworld.wolfram.com/FullWidthatHalfMaximum.html

[19] L. R. Herrmann, "Laplacian-isoparametric grid generation scheme",
Journal of the Engineering Mechanics Division, 1976, 102 (5): 749–
756.

[20] D. Davis, “Modelled on Software Engineering: Flexible Parametric
Models in the Practice of Architecture.” PhD dissertation, RMIT
University, 2013.

67

