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Abstract—Modelling three-dimensional virtual objects in the 
context of architectural, product and game design requires 
elaborate skill in handling the respective CAD software and is 
often tedious. We explore the potentials of Kohonen networks, 
also called self-organizing maps (SOM) as a concept for intuitive 
3D modelling aided through mixed reality. We effectively 
provide a computational “clay” that can be pulled, pushed and
shaped by picking and placing control objects with an 
augmented reality headset. Our approach benefits from 
combining state of the art CAD software with GPU computation
and mixed reality hardware as well as the introduction of 
custom SOM network topologies and arbitrary data 
dimensionality. The approach is demonstrated in three case 
studies.

Keywords - augmented reality; computer-aided design;
parametric design; self-organizing maps

I. INTRODUCTION

The notion of utilizing a heads-up, see-through, head-
mounted display to aid manual manufacturing processes dates 
back to the early 1990s [1]. Here the idea of overlaying the 
physical act of assembly with helpful data to guide the 
operator bears tremendous potential in much faster and less 
error-prone manufacturing processes. As hardware in the form 
of commercial headsets becomes more accessible to 
manufacturers, owing to – among others – the introduction of 
Microsoft’s Hololens, this idea is making its way from 
fundamental research into actual applications and 
commercialized workflows. It is based on the utilization of 
predetermined digital information at hand, often provided in 
the form of a 3D model of the workpiece with the relevant 
information.

The creation of this digital information through complex 
geometric modeling, however, still largely remains within the 
realm of conventional desktop PCs and the modulation of 
geometry through keyboard, mouse, trackpad or more 
advanced 3d navigation devices like a “SpaceMouse” at best.
Especially in creative fields like architecture, game or 
automotive design where demands in complex shape control 
span beyond accumulating and intersecting simple geometric 
bodies, but deal with complex doubly-curved surfaces, the 

creative process still largely depends on the classic workflow: 
coarse prototypes are being drafted through hand drawn 
sketches, then formalized in rough digital 3D models, and 
instantiated in the real world through models made from clay, 
foam or cardboard to give a realistic impression of the object. 
This process is repeated and refined, until the design task is 
considered complete and further production planning can take 
place. In the reverse manner, an object modelled in clay can 
be digitized through 3D scanning.

The work at hand aims to provide an alternative to this 
time and material-consuming approach by transferring the 
entire workflow of prototypic 3D modelling into the realm of 
augmented reality. Although the notion of using AR for 3D 
modeling is not new by any means, current technology often 
only allows for rather simple procedures such as moving, 
rotating, scaling simple objects or extruding planar surfaces. 
But more sophisticated means of geometry manipulation bear 
tremendous potentials for the creative community.

The Self-Organizing Map (SOM) is a neural network 
algorithm, which uses a competitive learning technique to 
train itself in an unsupervised manner. As opposed to other 
artificial neural networks SOMs use a neighborhood function 
to preserve topological properties of the input space - typically 
a two-dimensional grid in which the neurons are organized. 
They are capable of creating a simplified, ordered 
representation of multi-dimensional data and are often used 
for clustering, prediction, data representation, classification 
and visualization. Due to this topological nature, an adaption 
in the form of polygonal meshes stands to reason. Although 
other powerful surface modeling paradigms like NURBS 
modeling exist, SOM-based geometric modeling inherently 
offers the use of higher dimensional data to incorporate 
properties like color and circumvents further processing steps 
for triangulation in the display pipeline. Furthermore, due to 
the highly incremental nature in its convergence, additional 
geometric constraints such as mesh smoothing can be applied
during runtime. The SOM’s main drawback, the high 
computational cost in the evaluation phase, can be overcome 
by the use of highly parallelized state-of-the-art GPU 
computation as this article aims to show.
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II. RELATED RESEARCH

AR applications have recently become ubiquitous with 
software development kits for consumer mobile platforms 
such as ARCore and ARKit. Extensive research has been 
conducted to identify mixed reality applications within the 
architecture, engineering and construction industry [2] and a 
proliferation of recent literature demonstrates the use of 
mobile augmented reality for design visualization and 
construction review tasks [3] and for prototypic haptic design 
tasks [4]. The use of augmented reality interfaces to assist with 
design modelling and simulation has also been shown. These 
include the use of motion controllers to create tactile and 
gestural interfaces for parametric models [5] and projected 
AR to calibrate digital and physical simulations of material 
behavior [6].

Since the SOM algorithm was introduced by Teuvo 
Kohonen in 1982 [7] it found applications in various research 
fields wherever dimensionality reduction or mapping of large 
amounts of multidimensional data is of relevance. It ranges 
from structuring and visualizing vast amounts of weather data 
[8] to project prioritization and selection [9] or associating 
word meanings in language processing [10]. The benefits of 
an SIMD implementation of the SOM algorithm using CUDA 
was shown in [11].

Studies related to SOM in 3D modeling and adaptive 
meshing aimed at reconstructing a given geometry with a 
topologically ordered mesh [12]. Other CAD-oriented studies 
employ the SOMs clustering capability to treat design relevant 
information and / or produce an ordered range of related 
design objects such as building blocks [13]. Parametric 
design, the rule based, algorithmic branch of computer-aided 
design is especially eligible to benefit from the SOM 
paradigm as [14] alludes to. Here the interpretation of self-
organizing data in a 3D modeling context exceeds the mere 
positioning of 3-dimensional vertices but serves as input for a 
more complex parametric procedure of geometry generation.

Other related methods for mesh-based 3D modelling such 
as free-form-deformation [15], mean value coordinates [16] or 
bounded biharmonic weights [17] are usually based on 
bending or deforming an already existing geometry. However, 
the SOM approach was chosen for its potential to generate a
meaningful geometric solution, even when vertices are 
initialized randomly. This allows for modeling objects even 
with rather limited modes of interaction, as no complex 
objects have to be sketched manually up front.

III. SOM-BASED GEOMETRIC MODELLING

A. Adaptation of SOM Algorithm
In order to fully utilize the potentials of SOMs for 3D 

modeling, a number of restrictions imposed by classic SOM 
model had to be reconsidered: 1) the conventional topology of 
2-dimensional square or triangle grids was replaced by an 
overall support for user-defined topologies. 2) the 
conventional use of 2d or 3d feature vectors, as they are 
suggested by 3D mesh modelling was generalized to use n-
dimensional feature vectors. 3) Conventional SOMs serve to 
cluster large numbers of training vectors; on the contrary we 
propose the use of a small number of training vectors over 

very large number of neurons. Thus we’re able to control the 
network’s shape with relatively few training vectors, in the 
following referred to as “control objects”. 4) Due to increased 
computational cost caused by serial network evaluation and 
weight processing, a CPU-based SOM implementation is 
practically inapplicable for intuitive real-time interaction with 
complex SOMs. Thus a highly parallelized implementation in 
CUDA was favored. These aspects are explained in more 
detail hereafter.

B. Graph Topology and Learning Function
In our starting setup SOM neurons are assumed to be 

vertices of a polygon mesh, their weights - respectively mesh 
vertex positions - are denoted ܹ ∈  ℝ ; further the mesh 
edges are interpreted as the synaptic connections ܧ between 
neurons. The classic SOM learning algorithm is explained in 
[7]. Our adapted workflow is summarized as follows:

The neuron weights ܹ are initialized according to a 
predefined starting configuration - e.g. a sphere shaped 
polygon mesh - along with a set of training vectors ܥ ∈  ℝ,
called control objects.

C. General SOM Learning Rule
A control object (ݐ)ܥ is fed to the network by computing the 
Euclidean distance between (ݐ)ܥ and all neuron weights W. 
The neuron closest to the control point is called the winning 
neuron; its index is ݑ. Its weight ௨ܹ will be adjusted toward (ݐ)ܥ. All other neuron weights ௩ܹ in the network are also 
adjusted toward (ݐ)ܥ . The magnitude of change in ௩ܹ
decreases with time and the neuron’s grid-distance to the 
winning neuron with the following update rule:

௩ܹ(ݏ + 1) =  ௩ܹ(ݏ) + ,ݑ)ߠ  ,ݒ (ݏ ∗ (ݏ)ߙ  ∗ (ݐ)ܥ) − ௩ܹ(ݏ))
With ݒ being the index of the neuron to update, ݏ being the 
index of the iteration and (ݏ)ߙ being a monotonically 
decreasing learning coefficient. ݑ)ߠ, ,ݒ (ݏ is the 
neighborhood function depending on ݏ and the graph 
distance between neuron ݒ and ݑ.

D. Neighborhood Initialization
In the initialization phase we utilize the information about the 
predefined mesh topology to build and store a neighborhood 
tree. When defining the topology in the form of mesh faces, 
the scripting framework of our chosen 3D modeling 
environment Rhino3D allows direct access to vertex indices 
that are conjunct to a chosen vertex through a single mesh 
edge ݁ ∈ ܧ . These direct neighbor indices to vertex ݒ are Ω௩ . The grid-distances ܦ௩ for every vertex ݒ to all other 
neurons is computed from Ω using following procedure:

1) Store ݒ +  Ω௩ as already mapped indices
2) Store Ω௩ as the current neighborhood ring
3) Set current neighborhood level to 2
4) While the number of already mapped indices is 

smaller than the total number of neurons do:
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a) Get the directly connected neighbors Ω for each 
index ݅ in the current neighborhood ring

- For every direct neighbor index ݆ in Ω check if it 
is already included in mapped indices or in the 
current neighborhood;

- if it is not mapped yet, store current neighborhood 
level as the grid-distance ݀௩ , add ݆ to mapped 
indices and to ‘next neighborhood ring’

b) increase current neighborhood level by 1
c) reassign ‘next neighborhood ring’ to be ‘current 

neighborhood ring’ in the next iteration

The procedure terminates when all neurons in the SOM are 
mapped and works for arbitrary open and periodic (circular) 
topologies alike. Neuron ݒ itself is stored as neuron 
neighborhood of level 0, its direct neighbors as level 1 and all 
other neurons in their respective neighborhood levels (fig. 1). 
The procedure is executed for every neuron concurrently in 
an individual GPU thread. The collection of mapped grid-
distances ܦ is of size |ܹ|ଶ and is stored in GPU memory for 
quick access during runtime. As the number of neurons is 
deliberately limited to 2ଵ and indices are stored as two-byte 
integers, the memory required to store ܦ never exceeds 8GB 
of GPU RAM. However, this theoretical upper limit was 
never reached in our workflow. Furthermore the largest grid-
distance between two neurons that was found in the entire 
network is stored as ݀௫ . It is then used to scale the 
neighborhood function.

E. Learning Value Function
The commonly used Gaussian function was chosen to be the 
neighborhood function as it performed better than the 
Mexican Hat function in several tests. The general form of 
the Gaussian is:

(ݔ)݂ =  ܽ݁ି (௫ି)మଶమ
Where ܽ is the height of the bell curve’s peak, ܾ is the 
position of the center and ܿ modulates the curve’s width. To 
adhere to our learning goal, it is adapted as:

,ݑ)ߠ ,ݒ (ݏ =  ݁ି ௗೠ,ೡమଶ(௦)మ
with ݀௨,௩ being the grid distance between the winning neuronݑ and the neuron in question ݒ. Here ܿ represents the radius 
of neighbor neurons that are considered, also called the 
learning radius. It modulates the function’s width according 
to the largest grid-distance ݀௫ and the current iteration. 
The full width at half maximum (FWHM) for the Gaussian 
function [18] is:ܯܪܹܨ = 2 ∗  ඥ2 ∗ ln (2)  ∗ ߪ
As we’re only interested in the neighborhood radius, the half 
width at half maximum (HWHM) is more relevant to us. It is 
by our definition the upper limit of neighborhood 
propagation, the farthest grid-distance between two neurons ݀௫ . ݀௫ = ܯܪܹܪ =  ඥ2 ∗ ln (2) ∗ ߪ 
Hence,

ߪ =  ݀௫ඥ2 ∗ ln (2)
We finally scale the bell curve to get narrower with 
increasing iterations, to damp the neighborhood effect over 
time and allows convergenceܿ(ݏ) = ߪ  − ߪ  ∗ ܵݏ
Where ݏ is the current iteration and ܵ the total number of 
iterations.
The learning rate (ݏ)ߙ serves to further scale down the 
movement with increased iterations to encourage 
convergence. Through comparative testing, we chose a 
hyperbolically decreasing learning rate relying on the initial 
learning rate ݈௦௧௧ = 0.25 and a final learning rate ݈ௗ =0.03. Thus

(ݏ)ߙ =  ݈௦௧௧ ∗  ݈ௗ݈ௗ +  (݈௦௧௧ − ݈ௗ) ∗ ܵݏ
With ݑ)ߠ, ,ݒ (ݏ and (ݏ)ߙ defined we can define the product 
of these two modules as the learning value ݑ)ܮ, ,ݒ (ݏ ,ݑ)ߠ = ,ݒ (ݏ ∗ (ݏ)ߙ  (fig. 2) and slightly change the update
rule. ௩ܹ(ݏ + 1) = ௩ܹ(ݏ) + ,ݑ)ܮ ,ݒ (ݏ ∗ (ݐ)ܥ) − ௩ܹ(ݏ))
Similarly to the neighborhood topology, the results of ݑ)ܮ, ,ݒ (ݏ are computed during initialization and stored in 
GPU memory. Thus computation time during runtime is 

Figure 1. Levels of neighborhood for one mesh vertex (0): quad 
mesh sphere (left), mixed topology (right)
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minimized to simple memory access. With a size of a single 
precision floating-point number multiplied by ܵ ∗ ݀௫, the 
memory requirement is relatively small.

F. Implementation
As the scope of the proposed algorithm is narrowly defined, 
third-party libraries optimized for generality could be 
avoided in favor of a bare CUDA C/C++ implementation 
with little computational overhead. In addition to the SOM 
computation core, a thin layer in C++/CLI had to be 
established. It forms the connection between unmanaged 
code of the SOM core and the .Net CAD environment 
Rhino3d and Grasshopper3d in which the geometry display, 
interaction and connection to the Hololens is handled. It is 
integrated into the workflow in the form of a Grasshopper 
plugin. The SOM core’s main components are: 1) an 
evaluation kernel to compute the Euclidean distances 
between training vectors and neurons. Here each training 
vector is assigned a single thread block and - along with all 
neuron weights - loaded into very fast shared memory. Each 
thread computes the distance between one training vector and 
one neuron weight vector and stores it in shared memory. A 
secondary reduction kernel finds the shortest distance for 
each training vector. 2) A movement kernel applies changes 
to the neuron weights based on the learning procedure 
described above. This step heavily benefits from the results 
of ݑ)ܮ, ,ݒ (ݏ being pre-computed and stored in GPU memory. 
Each neuron is handled by an individual thread.
Case study 1 (fig. 3) shows the characteristics of this 
approach: A three-dimensional space grid of 16 x 16 x 16 
neurons is trained using eight three-dimensional training 
vectors. The precomputed grid distances ܦ consist of the 
distance between each neuron pair, thus 16ଷమ = 16,777,216
multiplied by the size of a two-byte integer. This results in 
32MB of storage required with ݀௫ being 3 * (16-1). As we 
intend to interact with the model, ܵ is deliberately kept small 

at 1000 to avoid long convergence times. The cycle time per 
weight update of the entire network including rendering time 
is 0.4ms without further processing and 0.5ms if an additional 
one-step Laplacian smoothing is applied [19]. As soon as a 
control object is modified, the training phase is restarted from 
the neurons latest positions. Thus the grid follows the moving 
control objects instead of retracting to its initial position.

IV. COMPUTER AIDED DESIGN IN AUGMENTED REALITY

McNeel and Associates’ Rhinoceros 3D is a computer 
aided design package designed to facilitate broad exploration 
of conceptual ideas through 3D modelling. Grasshopper 3D, a 
module-based visual programming extension for parametric 
modelling in Rhinoceros 3D, extends this capability by 
allowing users to dynamically generate geometry by 
“expressing a geometric model as explicit functions of a 
number of parameters” [20]. Fologram, a third-party 
extension for Rhinoceros 3D and Grasshopper 3D, was 
developed by the authors to enable designers to develop mixed 
reality applications using existing third-party Grasshopper 3D 
extensions and parametric models. Providing designers with a 
means to leverage their expertise with CAD modelling 
software improves the accessibility of mixed reality 
development to those within the architecture, engineering and 
design industries and eliminates the overheads associated with 
building interactive CAD models within game engines. 

Fologram creates a bi-directional data stream that renders 
geometry in the CAD environment on the HoloLens, 
implements Vuforia’s image target SDK to precisely align 
digital and physical spaces and provides access to HoloLens 
sensor data and gesture detection events as a parametric input 
source. Natural and intuitive interaction with parametric 
models can be facilitated by associating input parameters with 
the physical motions of a user within a mixed reality 
environment. For instance, the proximity of a user’s hand to 
control vertices in the SOM model can be used to isolate and 
translate these vertices based on relative hand motion. This 
translation can occur at one-to-one scale in x, y and z axes 
simultaneously and enables the user to perform and evaluate 
design operations directly within the context of their physical 
workspace.

The concept of this software follows the visual 
programming principle. Relevant functions like gesture 

Figure 2. Learning value function ݑ)ܮ, ,ݒ  for maximum (ݏ
iterations ܵ = 5000 and largest grid distance ݀௫ = 50; the 
function produces learning values between 0.0 and ݈௦௧௧ =0.25; ݈ௗ = 0.03

Figure 3. Case study 1: 16x16x16 nodes, S = 1000, ݈௦௧௧ =0.3, ݈ௗ = 0.03; additional 1-step Laplacian smoothing; 
convergence time: 500ms on an Nvidia GTX1080 Ti
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recognition, spatially tracking the Hololens or sending 
geometric information to the augmented display are 
accessible through modules which can be connected at will. 
Along with already existing functions offered by the CAD 
environment, this open-ended design allows users to 
intuitively establish their own workflow. 

V. RESULTS

The following case studies were processed using a 
desktop host PC with an Nvidia GTX1080 Ti and an Intel 
Core i7-8700K @ 4.7GHz. The visualization of and 
interaction with the model through the Hololens was enabled 
through a 2.4 GHz Wifi connection. As mesh information is 
sent to the Hololens asynchronously, the SOM computation 
on the host PC runs uninterrupted. This results in fast 
convergence but entails the risk of lag between the two model 
representations. Therefor the sizes of the following two case 
studies were chosen to be sufficiently complex for modeling, 
but small enough to be transmitted in real-time. Case study 2 
(fig. 4, fig. 5) shows the modeling of a car geometry of 600 
mesh faces, both quads and triangular. Each of the model’s 
602 nodes consists of their ݔ, ,ݕ ݖ position and a value for hue 
and saturation, thus forming a five-dimensional data set and 
allowing for node colors to be adjusted to the color of the 
nearest control object. While the control objects’ colors were 
pre-defined, their ,ݔ ,ݕ ݖ positions are changed through 
picking and dragging them around through a ‘tap and hold’ 
gesture. To identify the correct control object to drag, their ݔ, ,ݕ ݖ position along with the hand position are projected onto 
the plane of view. The control object that is closest to the hand 
in this projection gets selected; its display radius is enlarged 
to indicate to the user that it is active

This way the user can manipulate nine control objects, 
which are automatically mirrored against the ݖݔ -plane, 
ultimately resulting in 18 control object. This allows for an 
easy modeling of symmetric objects. Changing one control 
object’s position triggers the model to be retrained, starting 
from its latest configuration. Thus the geometry barely 
changes in areas where near control objects haven’t been 
altered, but deforms heavily when nearby control objects were 
displaced. Through an ‘air tap’ gesture, the retraining from the 
network’s initial ellipsoid configuration can be triggered. In 
this way the user can easily reset training to retract unpleasant 
warping. At 1000, ܵ was kept small enough to allow intuitive 
interaction through fast convergence but large enough to 
generate meaningful results.

In case study 3 (fig. 6, fig. 7) the same mesh topology as 
in the previous model was employed to propagate 
information. But here the network nodes are represented by 
colored lines, each of which is described by the ݔ, ,ݕ ݖ position 
of their root, an ,ݔ ,ݕ ݖ vector of their direction, their hue value 
and length. Neighbor lines are connected through quad mesh 
faces that incorporate color. Thus the simple mesh geometry 
of example 2 is extended to a grid structure with structural 
depth. This geometric interpretation exemplifies the potential 
of using SOM generated data to feed more complex 
parametric models over rather simple mesh geometries. For 
better usability the control objects are displayed as colored 
pipes and turn red, when they’re being selected.  From its

Figure 5: Case study 3: picking and dragging a control object to 
control the mesh geometry

Figure 4: Case study 2, desktop display; 602 five-dimensional nodes 
connected with a quad mesh topology; S = 1000; convergence time: 

300ms
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initial elliptic configuration the model converges almost as 
fast as in case study 2 when it is not transmitted to the 
Hololens. However, due to larger transmission data – the 
geometry consists of 1204 vertices and 2400 mesh faces – and 
more complex geometry to display the SOM computation was
held for 10ms after each training cycle to avoid lag in the 
device synchronization. Along with increased cost for more 
complex mesh generation on the host side this resulted in a 
significantly longer convergence time of 16.7s. However, if 
the visualization of the network’s training phase is not needed 
and only the final result is shown, a much faster interaction is
possible.

VI. DISCUSSION

The discussed case studies serve to prove the general 
feasibility of modeling in mixed reality in conjunction with 
SOM-based geometric representations. However, problems 
of implementation in terms of speed and robustness must be 
addressed. In our setup we found the main bottle neck of 
speed to be the data transmission between host PC and the 
Hololens, resulting in a suboptimal responsiveness of the 
system. This issue could potentially be fixed through the use 
of a powerful portable host device in the form of a backpack 
and the connection through via USB. When a stationary host 
PC is preferred, a 5GHz Wifi connection or optimized 
transmission protocol could improve synchronization speed. 
Furthermore, due to the data’s high dimensionality, the SOM 
model in case study three sometimes converged incompletely 
leaving visible gaps between control objects and closest 
nodes. Through a more fine grained learning procedure with 
increased ܵ , this could be overcome at the cost of 
convergence speed. In addition, the geometry generation and 
display on the host side CAD environment made up a large 
portion of the computational cost. A more direct integration, 
without geometric visualization and a more efficient 
geometry generation outside Rhino3d and Grasshopper3d 
could further improve speed. Lastly the robustness in gesture 
recognition offered by the current model of Hololens could 
be improved further; major improvements in this regard in 
commercial products are foreseeable with the next release of 
Hololens.
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