
A Generalized God-Object Method
for Plausible Finger-Based Interactions in Virtual Environments

Jan Jacobs∗
Group Research Virtual Technologies

Volkswagen AG

Michael Stengel†
Computer Graphics Lab

TU Braunschweig

Bernd Froehlich‡

Virtual Reality Systems Group
Bauhaus-Universität Weimar

Figure 1: The God hand: The fingers of the real hand may penetrate an object (left) while the representation of the virtual hand remains in a
plausible position outside of the object.

ABSTRACT

We generalize the six degree-of-freedom God-object approach to
enable its use for multi-finger interactions in virtual environments.
The connected finger phalanxes are modeled as multiple con-
strained God objects. The mutual interdependencies between mul-
tiple God objects are resolved using Gauss’ principle of least con-
straint. This generalization of the God-object method allows us to
avoid the penetration of multiple fingers and their phalanxes with
objects within a physically simulated virtual world.

Our observations indicate that the generalized God-object ap-
proach leads to plausible collision-free positions and motions of
the phalanxes of the user’s fingers during complex six degree-of-
freedom manipulations, while artifacts such as artificial friction or
a stuck hand are avoided.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual reality; G.1.6
[Mathematics of Computing]: Numerical Analysis—Optimization;
H.5.2 [Information Interfaces and Presentation]: User Interfaces—
direct manipulation

1 INTRODUCTION

Most real-time physics simulation engines are optimized for han-
dling reasonably large virtual models in a mostly plausible way.
An often encountered trade-off is the limited treatment of large

∗e-mail:jan.jacobs@volkswagen.de
†e-mail:stengel@cg.cs.tu-bs.de
‡e-mail:bernd.froehlich@uni-weimar.de

collision forces, and as a result, physically impossible deep inter-
penetrations of objects and pop-through effects may occur. How-
ever, users interacting with a physically simulated virtual world
may unintentionally create such large collision forces and will per-
ceive penetrations of their visual body representation with the ma-
nipulated geometry. While this is not only disturbing, it also leads
to a noncredible interaction behavior. Although the God-object ap-
proach by Ortega et al. [28] is currently the standard for efficiently
computing penetration-free interactions of two virtual objects (e.g.
between the virtual representation of a pen in the user’s hand and
a virtual object in the scene), it is not suitable for finger-based ma-
nipulation.

We introduce a generalization of the six degree-of-freedom
(DOF) God-object approach [28] to support multiple God objects
for enabling a penetration-free interaction with a multibody simu-
lation of dynamic objects. Our work is based on deriving the math-
ematical and algorithmic foundations to resolve the mutual interde-
pendencies among multiple interacting God objects. We solve the
dynamics equations of the corresponding N-body system and its in-
herent constraints using Gauss’ principle of least constraint [15].
Based on the resulting accelerations of all bodies and a continu-
ous collision detection, we successfully inhibit undesirable inter-
penetrations among the multiple God objects as well as among
God objects and objects in the virtual environment. For simulating
finger-based interaction with a physically simulated virtual world,
we developed the God-hand model (Figure 1). Each finger pha-
lanx is represented as an individual God object. The phalanxes of
each finger are tied together and limited in their local movement by
constraints. For enabling the simulation of complex scenarios, we
couple the accurate simulation of God objects with a less accurate
but faster physics simulation engine, which handles the interaction
among the remaining objects in the virtual environment.

Assembly simulations and ergonomic studies in the automotive
industry are often performed using finger-based interactions with-

43

IEEE Symposium on 3D User Interfaces 2012
4-5 March, Orange County, CA, USA
978-1-4673-1205-9/12/$31.00 ©2012 IEEE

out haptic feedback [23, 17]. In these scenarios penetrations of
the user’s fingers with the virtual objects occur quite often. How-
ever, Burns et al. [10] emphasized that our proprioception reacts
much less sensitively to incorrect or changing real-virtual move-
ment mappings than our visual system reacts to interpenetrations
of virtual body representations and virtual objects. Consequently,
these visual interpenetrations should be avoided by always keeping
the virtual finger representations in a plausible position outside of a
virtual object.

The main contribution of our work is a generalized 6-DOF God-
object method for a precise simulation of the interaction among
multiple God objects. We verified our approach by developing and
implementing a God-hand model for finger-based interaction with
a physically simulated environment. Our observations reveal that
our system always generates penetration-free and plausible virtual
finger positions and finger motions even if the real hand deeply pen-
etrates a virtual object. Furthermore, common physical simulation
artifacts such as artificial friction or finger phalanxes that are get-
ting stuck inside an object do not occur. Initial experiments with the
coupling of our God-object simulation with a less precise, penalty
force-based real-time physics simulator show that our God-hand
representations smoothly interact with complex virtual models.

2 RELATED WORK

Recently realistic finger-based grasping of virtual objects has be-
come an important research topic. Weber et al. [30] showed a semi-
automated grasping approach, where a virtual hand automatically
executes an ideal grasping gesture once the user’s hand comes close
to an object. This approach leads to stable, non-penetrative grasp
gestures but lacks the flexibility to consider the movements of the
user’s fingers. Holz et al. [16] developed a grasping approach that
uses friction cones to establish a grasp between finger pairs and ob-
jects. This approach was extended by Moehring et al. [22] to sup-
port multiple hands and the grasping stability was increased by the
introduction of grasping proxies. While these approaches attempt
to mimic physical behavior, they cannot properly deal with finger-
object interpenetrations and neglect object-object interactions.

Bergamasco et al. [6] introduced the use of collision-based
grasping and point-based force calculations to achieve physically
plausible object behavior. Borst et al. [8] pioneered the use of
physics engines for the precise simulation of finger-based grasping
in virtual environments. Jacobs et al. [17] improved the grasping
stability of this approach by introducing an advanced hand model
consisting of a rigid-bone skeleton and soft bodies for representing
the contact surfaces of the fingers. Both approaches use real-time
physics engines which are optimized for a plausible simulation and
may allow for object interpenetrations in complex situations. A
more reliable collision handling is needed to address the needs of
complex virtual assembly simulations.

According to Erleben [14], a dynamics simulator consists of two
core components: collision detection and simulation. The colli-
sion detection is responsible for the quality of the generated contact
points between colliding objects. Precise computation of contact
points is ideally performed with a continuous collision detection.
Kockara et al. [18] provided an overview of commonly used colli-
sion detection approaches.

Baraff [2] developed an iterative approach for the simulation of
contact forces. The computation of constraint forces between two
dynamic bodies requires solving a linear complementarity problem.
This approach results in a precise simulation of object movements
whereby deep mutual penetrations are avoided. Redon et al. [29]
demonstrated that Gauss’ principle of least constraint [15] leads to
a similarly efficient computation of object movements as compared
to Baraff’s approach [2], even though it is a quadratic programming
problem. However, Redon’s approach is better conditioned if com-
plex objects or many contact points are involved.

Bender [5] used an iterative approach for resolving contact
forces and constraints in an impulse-based dynamics simulation.
The number of required iterations for precise results varies depend-
ing on the complexity of the situation, particularly if penetrations
have to be resolved. Alternatives to impulse-based simulations are
position-based approaches [26, 25] or mass-spring systems for de-
formable objects [27]. The latter approaches mostly focus on plau-
sible visual effects rather than on a correct or penetration-free sim-
ulation.

There are a number of different approaches for dealing with col-
lisions. A simple approach computes penalty forces if the physical
state is incorrect. These forces are supposed to move the objects
back into a valid physical state [24]. This penalty force-based ap-
proach is computationally expensive if high precision is needed.
It also requires the use of implicit solvers if the system gets stiff.
Object penetrations can also be resolved by the iterative use of im-
pulses [21, 4], which may require a large number of iterations since
each iteration may introduce new collisions. An alternative is the
use of compensation forces, which are computed by solving a linear
complementarity problem [1]. This approach simultaneously con-
siders all contact points and computes a precise and penetration-free
state in a single step. However, an efficient implementation is rather
involved such that the other approaches based on penalty forces or
impulses are more often used.

Haptic feedback requires very high update rates to provide con-
tinuous collision feedback to the user. In this context, a single con-
tact object serves as a proxy for the haptic device. The God-object
method for 3-DOF haptic devices [35] and its extended 6-DOF ver-
sion [28] generate a penetration-free position for the device proxy
during haptic interaction with rigid bodies. The God object (device
proxy) always remains at a plausible position on the surface of an
object, even though the haptic device may actually penetrate the
object. Both methods work at sufficiently high update rates for the
haptic devices as well as for the visual display of the device proxy.
However, mutually influencing dynamic bodies were not consid-
ered.

Zachmann et al. [33] used virtual proxies for generating pseudo-
physical object motions during two-handed manipulations. Their
approach generates a ghost object for a tracked human hand, which
is always kept close but outside of a manipulated object using a
minimization approach. Borst et al. [8] developed a spring model
for the whole hand, which avoids hand-object penetrations. This
spring-damping approach is limited in the amount of force that can
be transferred, which in turn is limiting in the interaction with large
objects and for two-handed interactions.

3 SIX DEGREE-OF-FREEDOM GOD-OBJECT METHOD

To introduce the extended God-object method, we first provide an
overview of the regular 6-DOF God-object method by Ortega et
al. [28]. They have shown how Gauss’ Least Constraint Principle
can be used for a penetration-free 6-DOF simulation of dynamic
objects. Their approach targets highly accurate haptic rendering of
a virtual scene.

The simulation setup by Ortega et al. contains an interactive rigid
body, which is movable by the user with the haptic device. Further-
more, the scene contains a static rigid body, which can be ”touched”
but not moved by the user. The algorithm calculates a visual rep-
resentation of the interactive object and a force, which can be used
by the haptic device for haptic rendering.

For haptic interaction, it is important that the user is not able
to pierce an obstacle body (pop-through). Therefore, the 6-DOF
God-object approach considers two representations of the interac-
tive body, target and God object. At all times, the target is located at
the position of the haptic device. The target is invisible to the user,
whereas the God object is visualized. It is connected to the target by
constraints. However, the God object remains outside of the volume

44

God object

Target

zc

zu

Scene object

Figure 2: Relationship between God object and target for the time of
penetration.

of the other rigid body even if the target penetrates the body caused
by the position of the haptic device. The relationship between both
bodies is shown in Figure 2. Besides a very natural interpretation of
the force action, the penetration-free visualization of the contacting
bodies is a valuable side-effect for the observer. The pose of the
God object is guided by using a constraint, which establishes a re-
lationship between target and God object. If the target resides in a
contact-free condition, the God object is also brought into this con-
dition by the constraint, which is ideal for this case. If the target is
moved by the user into a penetration state with the obstacle body in
the scene, contact points are generated. Using these contacts, a pose
on the surface of the obstacle is calculated, in which the least resis-
tance acts on the God object. Hence, the simulation is formulated
as an optimization problem.

For their approach, Ortega et al. assumed continuous collision
detection (CCD). This completely avoids missing collisions and al-
lows avoidance of perceptual penetrations. For computing such a
state, an acceleration vector for the God object is estimated by us-
ing Gauss’ principle of least constraint. This principle can be pos-
tulated by minimizing the following Equation 1.

G(a) =
1
2
‖a−au‖2

M (1)

Vector au describes the acceleration of a rigid body assuming
unconstrained movements. The body is specified by the 6×6 mass
matrix M. The principle of least constraint can be understood in a
way that it chooses one specific acceleration a from the set of pos-
sible accelerations, which minimizes Equation 1. This acceleration
a takes into account all of the external constraints on the body and
matches the unconstrained acceleration as close as possible. There-
fore, the acceleration is in a sense minimal for all accelerations and
actually taken for moving the rigid body.

As previously mentioned, in the God-object approach a connec-
tion between target and God object is simulated. This is done by the
virtual coupling equation (Eq. 2). Additionally, to avoid artifacts in
force feedback, Ortega et al. formulate a constraint-based coupling.

zu = ks(xTarget − xGod) (2)

In Equation 2 vector zu is a stacked 6D vector containing respec-
tive linear and angular accelerations of the God object. The poses
of both considered bodies, each consisting of position and orienta-
tion, are also specified by 6D state vectors, xTarget and xGod . The
variable ks is a coupling constant and defines the tightness of the
connection of the target and God object.

Considering all constraints acting on the God object, the con-
strained acceleration zc can be estimated by the following mini-
mization (Eq. 3). Ortega et al. only took contacts into account for
constraining the God object. All constraints are stacked in a Jaco-
bian matrix Jn×6 for n contacts.

zc = argmin
{

1
2
‖z− zu‖2

M : Jz≥ 0
}

(3)

This minimization system was used by Ortega et al. to estimate
the acceleration of a single God object [28]. They have shown that
this approach is efficient for calculating penetration-free contact
states and is also inexpensive with respect to computation time.

4 SIMULATING MULTIPLE GOD OBJECTS

A major challenge for the simulation of multiple God objects is
the proper consideration of potential reciprocal force transmissions
among them. We solve this problem by calculating valid poses for
multiple God objects in an N-body simulation. The following steps
constitute the main components of our approach:

1. Computing of inner constraints and contact constraints based
on accelerations for all dynamic bodies.

2. Stacking constraints within a Jacobian matrix.

3. Deriving dynamics equations from the Jacobian matrix con-
sidering Gauss’ Principle of Least Constraint.

4. Calculating a generalized acceleration vector zc by finding an
optimal solution for the dynamics equations.

5. Computing the constrained target positions using accelera-
tions from the generalized acceleration vector a in an Euler
integration.

6. Computing the minimal time-of-contact (TOC) using contin-
uous collision detection among all bodies using their last and
new positions.

7. Using minimal TOC for time step adaptation during Euler in-
tegration for a penetration-free update of the targets’ body po-
sitions.

In the following section 4.1, we will show how to generalize a
constraint solver, which is necessary for (3) to be able to perform
the calculations. In Section 4.2 we discuss how a set of constraints
can be defined for multiple bodies. The basic handling of the TOC
information is not explained before Section 6.3 as the implementa-
tion details need to first be introduced. In this section we will also
explain the integration scheme used with our implementation.

4.1 Least Constraint Solver
The most important aspect is the correct treatment of body contacts.
Physical contacts have to be simulated whenever the collision de-
tection generates a contact point of two bodies A and B. The contact
point is determined by a contact point coordinate r and a contact
normal n which, by definition, always points from body B towards
body A. Depending on the movement of the body, there are dif-
ferent types of contact. To determine the contact type, the relative
velocity vrel at the contact point along the contact normal can be
calculated by

vrel = n (ṙB− ṙA). (4)

The difference of velocities at the contact point with regard to
body A and B is defined in world frame XY Z. The velocities are
calculated by taking the first derivatives of the body points at the
contact, ṙA and ṙB. Figure 3 explains the relation of a point on
the body and the world frame. Physical contacts should always be
determined by using a CCD for the God objects, since this approach
avoids missing collisions. Once physical contacts are determined,
they must be correctly treated such that objects do not penetrate.
In our method we calculate compensation forces in a way that they
always apply v̇rel ≥ 0. To achieve a simulation with an arbitrary

45

number of objects, Equation 3 needs to be generalized. For this
purpose, the mass matrix M is replaced by the generalized mass
matrix M of all dynamic bodies. Furthermore, the Jacobian matrix
now contains constraints of all bodies in the scene. This leads to
the following formulation of the minimization problem for N rigid
bodies:

zc = argmin
{

1
2
‖z− zu‖2

M : Jz≥ c
}
. (5)

The vector c∈R1×m at the right-hand side may deliver non-zero
values for m general acceleration-based constraints. The introduc-
tion of this vector c is necessary to allow for the handling of joints.
In this formulation the generalized acceleration vectors z and zu are
used, which contain the acceleration components of all considered
bodies.

The minimization equation is put into the form of a projection
problem and solved as such. This is in analogy to the method of
Ortega et al. [28]. In the first step, the generalized mass matrix
M ∈R6N×6N and the Jacobian matrix J ∈Rm×6N , containing the
constraint equations for all bodies, are determined. According to
Redon et al. [29], it is additionally necessary to compute a factor-
ization of the generalized mass matrix. This is always possible,
since the mass matrix for a rigid body is symmetric and positive-
definite. A factorization can be achieved numerically through a
QR-decomposition [12].

The factorization of M results in an upper triangular matrix Q ∈
R6N×6N , for which Equation 6 holds.

M = QT Q (6)

The constrained acceleration can not directly be solved in the
form of Equation 5, because the constraints are formulated by the
Jacobian matrix in the secondary condition.

Through the Equation 7, a solution vector k ∈ R1×6N needs to
be calculated.

Jk = c (7)

With this vector, the factorization matrix Q and the uncon-
strained acceleration zu ∈ R1×6N the vector s ∈ R1×6N is deter-
mined.

s = Q(k− zu) (8)

After calculating the inverse Q−1, the matrix JQ can be calcu-
lated by

JQ = JQ−1. (9)

With this matrix JQ and the vector s it is possible to formulate
the following minimization equation.

λ = argmin

{∥∥∥∥1
2

JT
Qλ − s

∥∥∥∥2
: λ ≥ 0

}
. (10)

The solution of this equation is a least squares problem with the
condition of a non-negative solution (non-negative least squares,
NNLS). For this standard problem, efficient numerical solvers ex-
ist [7, 9]. It should be emphasized that the required matrix for this
minimization is always sparse. The same applies to the matrix J in
the solution of the equation system according to k. This fact should
be considered for selecting an appropriate and efficient numerical
solver.

The solution λ provides the constrained acceleration zc ∈R1×6N

via the final equation

zc = Q−1JT
Qλ + zu. (11)

This generalized acceleration vector allows for the movement of
all components of a scene. The definition of constraints is explained
in the following section.

XYZ

XiYiZi

uXYZ
n

p, A

r

World frame

Body frame

Figure 3: Definition of reference frames.

4.2 Constraints
Constraints are necessary to correctly deal with relationships be-
tween objects. For this purpose, constraint equations are intro-
duced. Constraints usually act on a single or between two different
bodies. For clarifying the notation, world frame and body frame
are described in Figure 3. The world frame is defined as XY Z . The
pose of the local reference frame X iY iZi for a body i is defined by
its center of gravity p and the rotational matrix A, resulting in a 6D
state vector xi of the body. Any point within the body is noted as
r, whereas u denotes the distance between r and p. This distance is
uXY Z in world frame.

There are two types of constraints to restrict the movement of
bodies: non-holonomic and holonomic.

Holonomic constraints
Holonomic constraints always reduce the allowed degrees of free-
dom. This includes various constraints such as prismatic joints,
revolute joints or spherical joints.

Holonomic constraints between two bodies that are not depen-
dent on time can be described by the Equation

C(xi,x j) = 0. (12)

In this equation, both bodies are defined by their 6D state vec-
tors. The constraint equation between two bodies is considered to
be satisfied if it provides the zero vector for the given parameters.

Non-holonomic constraints
Non-holonomic constraints can not be solved by Equation 12, but
are needed to define permissible ranges of movement, such as for
joint limits. In general, a non-holonomic constraint can be formu-
lated by the following inequality

C(x)> 0. (13)

The degrees of freedom remain intact within the defined permis-
sible range.

For modeling a constraint between two bodies Bi and B j , their
respective states have to be considered.

C(xi,x j) =C(pi,Ai, p j,A j) = 0 (14)

In this formulation the position constraint depends on the posi-
tion vectors p and the orientation matrices A of both bodies. The
constrained movement can now be converted into an acceleration-
based constraint by the second derivative C̈.

Ċ = dC
dt = ∂C

∂x ẋi + ∂C
∂x ẋ j = Jiyi + J jy j (15)

C̈ = Jiẏi + J̇iyi + J j ẏ j + J̇ jy j (16)

In Equation 15, yi and y j describe the rate of changes of posi-
tions and orientations, which can be called generalized velocities.

46

In generalized coordinates, the acceleration-based constraint equa-
tion has the form

C̈(zi,z j) = C̈(ai,α i,a j,α j) = 0, (17)

whereas zi and z j describe the generalized acceleration vectors
containing linear and angular accelerations, a and α . The God-
object method considers the simulated bodies as quasi-static. This
means, that a speed of zero is assumed at each time step. Using
this assumption, we can simplify the constraint equation for two
involved bodies to Equation 18 or to Equation 19 for a single body.

C̈ = Jizi + J jz j (18)
C̈ = Jz. (19)

Multiple constraints can be stacked into the equation system

C̈ =


C̈1
C̈2
...

C̈m

 , (20)

and can be transferred into a Jacobian matrix J by partial deriva-
tion, if we apply the above scheme.

J =


J1
J2
...

Jm

=


J1

1 J2
1 · · · Jn

1
J1

2 J2
2 · · · Jn

2
...

...
. . .

...
J1

m J2
m · · · Jn

m


m×6N

(21)

Each vector Ji
c within the matrix contains six values (sparse ma-

trix). These values are the partial derivatives of the constraint C̈c
according to the acceleration components of the body i.

4.3 Body Contacts
For an exhaustive simulation of multiple God objects, we have to
consider contacts that could occur among objects within the scene.
They are also influencing the movement of the God objects. For
this purpose, additional contact constraints are taken into account.
To avoid the interpenetration of objects, we define that accelera-
tions should always act in the direction of the contact normal. The
acceleration at a contact point r is defined as follows.

ar = ap︸︷︷︸
linear

+(α×uXY Z)︸ ︷︷ ︸
angular

+ω× (ω×uXY Z)︸ ︷︷ ︸
centripetal

(22)

In this equation, u describes the vector in the world frame from
the position of the body (center of mass p) to the contact point.
Also the linear and angular accelerations, a and α , refer to the world
frame. Figure 5 illustrates the acceleration that has to be calculated,
so that penetration is avoided in the case of contact. By the quasi-
static assumption (see Section 4.2), the angular velocity ω is zero.
Therefore, the centripetal acceleration is eliminated. To comply
with the normal condition, the acceleration terms are projected onto
the contact normal. This sets up the following constraint equation.

C(a,α) = an+α(u×n) (23)

The Jacobian matrix can be obtained by partial derivation.

J =


nx
ny
nz

uynz−uzny
uznx−uxnz
uxny−uynx


T

1×6

(24)

A set of c non-penetration conditions for body contacts can be
summarized by noting each one in a single row of the Jacobian
matrix JContacts.

God objects

Targets

Tracked hand

Scene object

Contact

Figure 4: A tracked finger is represented by one God object per pha-
lanx. The finger is penetrating the scene object while the God objects
stay on the outside. Through the contact point, a direct manipulation
can be computed (i.e. the object might be pushed downwards).

5 THE GOD-HAND MODEL

We developed the Jacobian matrix for representing a hand model
using the components of our extended God-object approach. In
analogy to the work of Jacobs et al. [17], our hand model consists
of three separate phalanxes per finger. The difference is that each
phalanx is represented by a God object rather than by a rigid body.
For the palm we use a single God object, resulting in 16 God objects
for each hand. Figure 4 shows an example for a single finger. In
addition, the individual phalanxes are connected together by joints
to simulate the natural movement constraints of the human hand.
This limitation could be relaxed if more flexibility is needed (e.g. if
different hand sizes of different users are to be used with a single
virtual hand model).

To limit the movement of the fingers (F) in relation to the hand’s
palm (H), we use spherical joints with two degrees of freedom. The
five compounds are defined in a Jacobian matrix JH−F ∈ R20×96

containing four constraints for each joint. The matrix has 20 rows
given by the number of constraints and 96 columns given by 6D
state vectors for each of the 16 hand components.

JH−F =

 JH−F,1
...

JH−F,5


20×96

(25)

In conjunction, the phalanxes are interconnected using revolute
joints that allow for just one rotational degree of freedom. As be-
fore, the number of rows in the Jacobian matrix depends on the
number of constraints. The Jacobian matrix for the constraints of
the phalanxes is defined as follows.

JF−F =

 JF−F,1
...

JF−F,10


50×96

(26)

Additionally, we constrain the joint positions to remain within
a sensible range according to approximated values reported by Lin
et al. [19]. If the joint limits for m constraints are violated within
one simulation step, a Jacobian matrix JLimits ∈ Rm×96 has to be
set up. For a complete hand model, the resulting Jacobian matrix
JHand ∈R(70+m)×96 is defined.

47

pp uu arar

nn

(a, α)(a, α)

Scene object

God objects

Tracked hand

XYZ

r

Figure 5: Accelerations acting on a scene object during contact.

JHand =

 JH−F
JF−F

JLimits


(70+m)×96

(27)

The Jacobian matrix for the entire hand model also needs to con-
sider contacts occuring among objects in the scene as introduced in
Section 4.3. They are also influencing the movement of the God ob-
jects (Figure 5). These additional contact constraints are captured
by the Jacobian matrix JContacts. The complete Jacobian matrix J
for the hand model just consists of the two stacked Jacobians.

J =

[
JContacts

JHand

]
(70+m+c)×96

. (28)

The motion of the virtual hand can be computed by plugging J
into Equation 9 and solving the resulting system of equations.

Resolving the mutual interdependencies between multiple God
objects may lead to large equation systems, which in turn will slow
down the God-object solver. The complexity of the equations is
highly dependent on the amount of contacts, since each one is rep-
resented as an entry in a single Jacobian matrix. To limit the size
of the equation systems, we can take advantage of the topologi-
cal and geometric properties of the scene. Connected God objects
such as the fingers of a hand should be clustered together. Com-
pletely independent God objects, such as the two hands of a user,
should be organized as separate clusters. The corresponding equa-
tion systems are independently solved based on the assumption that
separate clusters do not share any contact points and do not directly
interact with each other. Nevertheless, the interaction of both hands
with a single object in the scene is still possible as discussed in
Section 7.

6 IMPLEMENTATION

We describe the implementation of the presented concepts for the
interaction of two God hands with a physically simulated virtual
world.

6.1 Handling of Complex Scenes
In the automotive context, virtual assembly simulations often re-
quire the use of highly detailed models, which quickly make the
continuous collision detection a bottleneck. As a result, only low
frame rates are achieved. Hence, we had to consider a trade-off be-
tween simulation quality and interactive simulation rates. The cal-
culations using the God-object method are very accurate and pro-
vide a penetration-free state for any number of objects. However,

Forces F

Correction of small
penetrations

God‐object simulation

Yes

Calculation of forces

Colliding?
No

Simulation of the
physics scene

Perform
simulation step

Solve collisions

Figure 6: Simulation loop

a penetration-free simulation is particularly important for the ob-
jects with which the user directly interacts. Typically scene objects
move rather slowly, whereby they generally only undergo small in-
terpenetrations. This fact is exploited in order to save simulation re-
sources. We decided to simulate only the hands using our extended
God-object method. The remaining scene objects are simulated by
a less precise but much more efficient dynamics solver. As a con-
sequence, a coupling of the two solvers is required. The decisive
factor is the required exchange of forces between the two simula-
tions such that a consistent state is reached. This approach extends
the scope of our approach to larger models that can be simulated in
real time.

The library TSNNLS [11] is used to calculate the minimization
system for the God objects. We use the CLAPACK [32] library for
the factorization and the inversion of matrices. The latter is also
used by the extended God-object implementation for solving linear
systems of equations and performing matrix multiplication. For the
CCD we are using the FAST library [34].

6.2 Simulation Loop

Figure 6 shows the required steps for coupling our extended God-
object approach and the dynamic simulator for scene objects. Here-
after scene objects are referred to as physics objects to clarify the
distinction of God objects.

We use the physics engine Bullet [31] for handling our physics
objects. As a first step, a complete calculation through the physics
pipeline of Bullet is performed, including collision detection, solver
calculations as well as pose and force updates. This will include
forces from the God objects calculated in the previous time step.
All objects are in a valid state after the simulation by the physics
engine Bullet.

The movement of the physics objects can cause slight penetra-
tions with the God objects. Therefore, in the next step a collision
detection has to be performed to produce a penetration-free state. In
analogy to the descriptions of Millington [20], a non-linear projec-
tion solves slight penetrations between a pair of objects considering
plausible object movements. This step is necessary so that the com-
putation of contact points for the extended God-object approach
provides sensible results. It should be noted that such a correction
can produce new penetrations among other objects. Therefore, the
correction of slight penetrations needs to be performed iteratively
until a penetration-free state is reached for all pairs of physics ob-
jects or a maximum number of iterations is reached. The deepest
intersections are resolved first in order to reduce the likelihood of
new penetrations.

48

What follows is the simulation of the God objects, and in our
case we consider two God hands. This computation is done inde-
pendently for each hand, since collisions between the hands are un-
desirable in most scenarios. Under this condition, following the rec-
ommendation of Section 5, the equation systems to determine the
accelerations can be kept smaller and executed sequentially. The
necessary steps for calculating the accelerations for a set of God
objects was described in detail in Section 4. The resulting forces
are passed on to the physics engine Bullet.

The integration step is performed after having calculated the gen-
eralized constrained acceleration vector zc for all God objects. In
this case, starting from the last time step t0, a new target position
for a God hand at the current time t0 +∆t is calculated with ∆t be-
ing the length of the current time step. The integration is performed
through a symplectic Euler step in generalized coordinates. The in-
tegration step in the last part of the simulation loop calculates the
target transformations for the God objects that are assumed based
on the body accelerations. All constraints that were in existence
at the beginning of the time step are included in the motion of the
bodies by determining their constrained acceleration.

The calculation of the target transformations for God objects can
in turn lead to intersections with the physics objects. Therefore,
which God objects would be in contact with physics objects after
the application of the target transformation needs to be evaluated
once again. We perform a CCD for all God objects that are in a
contact state with physics objects. The CCD computes the earliest
TOC along the trajectory of God objects. God objects have to adapt
their target transformation if the CCD returns a collision to maintain
a penetration-free state. This collision handling is performed by the
algorithm that is described in the following section.

6.3 Collision Handling

Collision handling is critical for the interaction of the two solvers.
An overview is provided in Algorithm 1. The God objects
A1,A2,A3, ...,A16 and the physics objects B j are considered as a
starting point for continuous collision detection.

At the beginning, only the movements of the God objects during
the current time step are considered since the movements of God
objects and physics objects are performed successively. Thus the
components Ai are moving from t0 until t0 +∆t. We normalize the
time interval ∆t to the interval t = [0,1] for simplicity. After the
integration step the movement of an object Ai is known and it is
transformed from TAi,t=0 to the transformation TAi,t=1. For an ob-
ject B j , no movement is allowed during the God-object simulation
resulting in TB j ,t=0 = TB j ,t=1.

The transformations and the geometry of all pairs of objects
(Ai,B j) are passed individually to the CCD. The CCD calculates
the TOC at which objects collide. The computation is based on the

Algorithm 1 collision handling
1: TOCmin⇐ 1
2: for all God objects A do
3: Tstart⇐ start transformation of A
4: Ttarget⇐ target transformation of A
5: for all physics objects B do
6: TB⇐ transformation of B
7: Result R = CCD(A,Tstart,Ttarget,B,TB) // collision detection
8: TOCmin⇐ min(TOCmin, R.TOC)
9: end for

10: end for
11: for all God objects A do
12: move A until TOCmin
13: update contacts for time step TOCmin
14: end for

assumption that the objects do not leave their trajectories. The po-
sitions of God objects have to be corrected if a collision was found.
During the symplectic Euler step, the time step ∆t is shortened to
the minimal TOC of all God objects, which just results in a mul-
tiplication of ∆t with the minimal TOC due to the normalization
(Equations 29 and 30).

yi(tc) = zi(t0) ∆t TOCmin (29)

xi(tc) = xi(t0)+ yi(tc) ∆t TOCmin (30)

Finally, the contact points must be generated for the time step
tc and stored for the God objects. Contact points are removed that
are no longer active. The remaining contact points are treated as
constraints during the next time step. After updating the pose in-
formation, the transformations of the virtual hands and the physics
objects are stored and can be passed on to the rendering system for
display. Afterwards, the simulation loop repeats for the next time
step.

7 RESULTS

To explore the principal behavior of our implementation, we per-
formed a number of benchmarks on a single computer equipped
with an Intel Core i7-940. The test scene was displayed in a three-
sided CAVE as shown in Figure 7. Rendering for the CAVE was
done by a cluster, which only receives the position updates from
the physics simulator. The physics engine Bullet was used to simu-
late the interaction among the objects in the scene.

We observed that our algorithm always provided a non-
penetrating visual representation of the user’s hand independently
of how far a user stuck the hands into an object. Contact constraints
are therefore treated correctly by the simulator. The combination of
both solvers, for God objects and the physics scene, worked without
major difficulties. Even rapid movements of the user were handled
correctly by our hybrid approach. While the penetrations were cor-
rectly avoided, which was our goal in the first place, there were
some situations where the simulation did not fully respect all of
the constraints created by the joints of the God hands. This led to
slightly separated finger phalanxes. A higher prioritization of joint
constraints and their limits within the optimization problem could
ameliorate this problem.

Figure 8 shows some benchmark results for a short interaction
sequence with one God hand within our basic test scenario (Fig-
ure 7a). The simple test scene contained only five physics objects.
The total number of triangles in the scene was 100,000 and the
largest object consisted of about 30,000 triangles. It can be clearly
seen that the computation time directly depends on the number of
contact points in each simulation step. The CCD algorithm gen-
erates many contact points, which is necessary to achieve a stable
simulation. Fortunately we observed only a linear relationship be-
tween the number of constraints and processing time, which was
also reported by Baraff [3]. During the entire interaction sequence

a) b)

Figure 7: a) A simple test environment for finger-based interaction
in a CAVE. b) Penetration-free collision between a God hand and a
detailed engine compartment of a car consisting of one million trian-
gles.

49

0

20

40

60

80

100

120

0

1

2

3

4

5

6

7

8

S
im

u
la

ti
o

n
 t

im
e

in
 m

s

N
u

m
b

e
r
 o

f

c
o

n
ta

c
ts

1 501 1001 1501 2001 2501 3001

Frame

Figure 8: Benchmark simple scene – contacts during an interac-
tion sequence and corresponding simulation time over a sequence
of frames.

we achieved an interactive simulation rate of at least 100Hz. On
average, a value of more than 600Hz was achieved. The calculation
peaks correlate directly with points in time when a large number
of contacts was found. A more detailed analysis of the benchmark
results provides information about the optimization potential. Fig-
ure 9 shows the breakdown of the computation time for the con-
tributing parts of a simulation step. It is clearly evident that the
continuous collision detection contributes a large fraction of about
40% of the frame time. There is also further potential for optimiza-
tion by thinning out overly dense contact points.

We also performed benchmarks involving two-handed interac-
tions. For each God hand, an independent cluster of God objects
was created and collisions between both hands were not consid-
ered. To avoid slight penetrations caused by separated calculations
of the accelerations, we are using the collision handling method as
described in Section 6.3. In this step, all penetrations are solved
algorithmically by taking all God objects into account. During an
interaction sequence with two hands, we achieved a speed-up for
the calculation of accelerations by a factor of approximately 1.7,
whereas the penetration solving process was as fast as with one cal-
culation cluster for both hands.

We also investigated more complex models as shown in Fig-
ure 7b. The engine compartment consists of about 1,000,000 tri-
angles. The largest single object was made up of about 100,000
triangles. In total, the scene consists of approximately 20 acces-
sible parts that are simulated. The simulation rate typically varied
between 50Hz and 70Hz depending on which part of the engine was
touched. However, it could also drop below 20Hz if a large num-
ber of contacts was generated in the proximity of a highly detailed
part. Figure 10 shows the simulation results of the compartment
scene in a one-handed interaction sequence. In comparison to the
simple test scene, we observe a much stronger variation of the over-

CCD integration

Calculate

accelerations

Solve penetrations

Calculate forces
6 %

17 %

40 %

37 %

Figure 9: Analysis of the contributions of different simulation com-
ponents to the duration of a simulation frame within the simple test
scene.

210

180

150

120

90

60

30

0

S
im

u
la

ti
o

n
 t

im
e

in
 m

s

N
u

m
b

e
r
 o

f

c
o

n
ta

c
ts

1 501 1001 1501 2001 2501 3001

Frame

40

35

30

25

20

15

10

5

0

Figure 10: Benchmark motor compartment – timings vary more
strongly than for the simple scene.

all simulation time. During peaks, the CCD utilizes up to 80% of
the processing time even though the number of generated contact
points is not much larger in this scene as it mostly depends on the
God-hand model.

We explored the limitations of our approach by performing some
tests with current CAD models in which individual parts consisted
of up to 400,000 triangles. In this case the CCD utilizes about 70-
80% of the simulation time. The overall performance was still inter-
active at about 10-15Hz. We expect that replacing the general pur-
pose CCD implementation of the FAST library [34] by an adapted
and parallelized implementation will considerably extend the appli-
cability of our system.

8 CONCLUSIONS AND FUTURE WORK

We extended the 6-DOF God-object method to simultaneously con-
sider multiple dependent and independent God objects. First we
derived an equation system for simulating multiple God objects us-
ing Gauss principle of least constraint and showed that it is a non-
negative least squares problem, which can be efficiently solved. We
also showed how to consider several types of constraints during the
optimization. Based on our general formulation for multiple God
objects, we derived a description of a God-hand model consisting
of a palm and separate connected phalanxes for each finger. For
dealing with complex virtual environments, we coupled our pre-
cise God-hand simulation to a physics engine, which simulates the
motion of regular objects in the scene. The experience with our
implementation showed that the God-hand simulation is very sta-
ble, effectively avoids deep virtual hand-object penetrations, gen-
erates plausible finger positions and runs at interactive frame rates
for models consisting of more than one million triangles. In addi-
tion, motion artifacts such as artificial friction, pop-through effects
or fingers getting stuck in an object were avoided.

The central goal of this work was to avoid deep penetrations of
a virtual hand model and objects in the scene. This is an important
requirement for adding a stable friction simulation into the model
as a next step for guaranteeing stable grasps. The approach by
Duriez [13] allowed rather precise simulation of friction behavior,
but it led to a non-linear complementarity problem (NCP), which
is computationally expensive if the number of contact points gets
large. However, it is promising that we only need to deal with the
contact points of the God hands. An alternative is the use of a soft-
body representation of the user’s fingers in combination with our
generalized God-object approach, which also has the potential for
a precise and direct manipulation of virtual objects by the user’s
hands.

50

ACKNOWLEDGEMENTS

We thank the team of the Volkswagen VRlab for their help with
the hardware setup and the valuable discussions, Raimund Dachselt
from the User Interface & Software Engineering Group at Otto-
von-Guericke-Universität Magdeburg for his support and the re-
viewers for their detailed and constructive comments.

REFERENCES

[1] D. Baraff. Analytical methods for dynamic simulation of non-
penetrating rigid bodies. In Proceedings of the 16th annual confer-
ence on Computer graphics and interactive techniques, SIGGRAPH
’89, pages 223–232, New York, NY, USA, 1989. ACM.

[2] D. Baraff. Coping with friction for non-penetrating rigid body sim-
ulation. In Proceedings of the 18th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’91, pages 31–41.
ACM, 1991.

[3] D. Baraff. Fast contact force computation for nonpenetrating rigid
bodies. Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, pages 23–34, 1994.

[4] J. Bender, D. Finkenzeller, and A. Schmitt. An impulse-based dy-
namic simulation system for VR applications. In Proceedings of Vir-
tual Concept 2005, Biarritz, France, 2005. Springer.

[5] J. Bender and A. Schmitt. Constraint-based collision and contact han-
dling using impulses. In Proceedings of the 19th international confer-
ence on computer animation and social agents, pages 3–11, Geneva
(Switzerland), July 2006.

[6] M. Bergamasco, P. Degl’Innocenti, and D. Bucciarelli. A realistic
approach for grasping and moving virtual objects. Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems
IROS94, 1:717–724, 1994.

[7] Å. Björck. Numerical Methods for Least Squares Problems. Society
for Industrial Mathematics, Philadelphia, 1996.

[8] C. W. Borst and A. P. Indugula. Realistic virtual grasping. In Virtual
Reality Conference (VR), 2005 IEEE, pages 91–98, 320, 2005.

[9] R. Bro and S. De Jong. A fast non-negativity-constrained least squares
algorithm. Journal of Chemometrics, 11(5):393–401, 1997.

[10] E. Burns, S. Razzaque, A. T. Panter, M. C. Whitton, M. R. McCal-
lus, and F. P. Brooks, Jr. The hand is more easily fooled than the
eye: users are more sensitive to visual interpenetration than to visual-
proprioceptive discrepancy. Presence: Teleoperators & Virtual Envi-
ronments, 15:1–15, February 2006.

[11] J. Cantarella and M. Piatek. Tsnnls: A solver for large
sparse least squares problems with non-negative variables. CoRR,
cs.MS/0408029, 2004.
http://www.jasoncantarella.com/.

[12] J. Choi, J. Dongarra, L. Ostrouchov, A. Petitet, D. Walker, and
R. Whaley. Design and implementation of the ScaLAPACK LU,
QR, and Cholesky factorization routines. Scientific Programming,
5(3):173–184, 1996.

[13] C. Duriez, H. Courtecuisse, J. Alcalde, and P. Bensoussan. Contact
skinning. In Proceedings of the 2008 Eurographics, volume 27, 2008.

[14] K. Erleben. Stable, robust, and versatile multibody dynamics anima-
tion. Unpublished Ph. D. Thesis, University of Copenhagen, Copen-
hagen, 2004.

[15] C. Gauß. Über ein neues allgemeines Grundgesetz der Mechanik.
Journal für die reine und angewandte Mathematik, 1829(4):232–235,
1829.

[16] D. Holz, S. Ullrich, M. Wolter, and T. Kuhlen. Multi-contact grasp
interaction for virtual environments. Journal of Virtual Reality and
Broadcasting, 5(7), July 2008. ISSN 1860-2037.

[17] J. Jacobs and B. Froehlich. A soft hand model for physically-based
manipulation of virtual objects. Proceedings of Virtual Reality Con-
ference (VR), 2011 IEEE, pages 11–18, 2011.

[18] S. Kockara, T. Halic, C. Bayrak, K. Iqbal, and R. Rowe. Contact
Detection Algorithms. Journal of Computers, 4(10):1053, 2009.

[19] J. Lin, Y. Wu, and T. Huang. Modeling the constraints of human hand
motion. Proceedings of the Workshop on Human Motion (HUMO’00),
pages 121–126, 2002.

[20] I. Millington. Game physics engine development. Morgan Kaufmann,
2007.

[21] B. V. Mirtich. Impulse-based dynamic simulation of rigid body sys-
tems. PhD thesis, University of California, Berkeley, 1996.

[22] M. Moehring and B. Froehlich. Enabling functional validation of vir-
tual cars through natural interaction metaphors. In Virtual Reality
Conference (VR), 2010 IEEE, pages 27–34. IEEE, 2010.

[23] M. Moehring and B. Froehlich. Effective Manipulation of Virtual Ob-
jects Within Arm’s Reach. In Virtual Reality Conference (VR), 2011
IEEE, pages 131–138. IEEE, March 2011.

[24] M. Moore and J. Wilhelms. Collision detection and response for com-
puter animation. Proceedings of the 15th annual conference on Com-
puter graphics and interactive techniques, pages 289–298, 1988.

[25] M. Mueller. Hierarchical position based dynamics. In Proceedings
of Virtual Reality Interactions and Physical Simulations (VRIPHYS),
pages 1–10, 2008.

[26] M. Mueller, B. Heidelberger, M. Hennix, and J. Ratcliff. Position
based dynamics. Journal of Visual Communication and Image Repre-
sentation, 18(2):109–118, 2007.

[27] M. Mueller, B. Heidelberger, M. Teschner, and M. Gross. Meshless
deformations based on shape matching. ACM Transactions on Graph-
ics (TOG), 24(3):471–478, 2005.

[28] M. Ortega, S. Redon, and S. Coquillart. A six degree-of-freedom god-
object method for haptic display of rigid bodies with surface prop-
erties. IEEE Transactions on Visualization and Computer Graphics,
pages 458–469, 2007.

[29] S. Redon, A. Kheddar, and S. Coquillart. Gauss’ least constraints
principle and rigid body simulations. Robotics and Automation, 2002.
Proceedings. ICRA’02. IEEE International Conference on, 1:517–
522, 2002.

[30] M. Weber, G. Heumer, H. B. Amor, and B. Jung. An animation system
for imitation of object grasping in virtual reality. In ICAT, pages 65–
76, 2006.

[31] Website. Bullet Physics Library, Nov. 2011.
http://bulletphysics.org.

[32] Website. CLAPACK, Nov. 2011.
http://www.netlib.org/clapack/.

[33] G. Zachmann and A. Rettig. Natural and robust interaction in virtual
assembly simulation. In Eighth ISPE International Conference on
Concurrent Engineering: Research and Applications (ISPE/CE2001),
volume 1, pages 425–434, West Coast Anaheim Hotel, July 2001.

[34] X. Zhang, M. Lee, and Y. Kim. Interactive continuous collision detec-
tion for non-convex polyhedra. The Visual Computer, 22(9):749–760,
2006.

[35] C. Zilles and J. Salisbury. A constraint-based god-object method for
haptic display. Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems 95, 3:146–151, 1995.

51

