

3D Interaction Techniques

- Choosing the right input and output devices not sufficient for an effective 3D UI
- Interaction techniques: methods to accomplish a task via the interface
 - Hardware components
 - Software components: control-display mappings or transfer functions
 - Metaphors or concepts
- Universal tasks: selection and manipulation, travel, system control

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Overview

- Manipulation: a fundamental task in both physical and virtual environments
- 3D manipulation task types
- Classifications of manipulation techniques
- Techniques classified by metaphor:
 - Grasping
 - PointingSurface

 - Indirect
 - Bimanual
 - Hybrid

Spring 2019

CAP6121 – 3D User Interfaces for Games and Virtual Reality

3D Manipulation Tasks

- Broad definition: any act of physically handling objects with one or two hands
- Narrower definition: spatial rigid object manipulation (shape preserving)

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Ji

3D Manipulation Tasks

Canonical Manipulation Tasks

- Selection: acquiring or identifying an object or subset of objects
- Positioning: changing object's 3D position
- Rotation: changing object's 3D orientation
- Scaling: uniformly changing the size of an object

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

3D Manipulation Tasks

Canonical Manipulation Tasks

Task parameters

Task	Parameters
Selection	Distance and direction to target, target size, density of objects around the target, number of targets to be selected, target occlusion
Positioning	Distance and direction to initial position, distance and direction to target position, translation distance, required precision of positioning
Rotation	Distance to target, initial orientation, final orientation, amount of rotation, required precision of rotation

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

3D Manipulation Tasks

Application-Specific Manipulation Tasks

- Canonical tasks can fail to capture important task properties for real applications
- Ex: positioning a medical probe relative to virtual models of internal organs in a VR medical training application
- Techniques must capture and replicate minute details of such manipulation tasks

Spring 2019

CAP6121 – 3D User Interfaces for Games and Virtual Reality

3D Manipulation Tasks

Manipulation Techniques and Input Devices

- Number of control dimensions
- Integration of control dimensions
 - Multiple integrated DOFs typically best for 3D manipulation
- Force vs. position control
 - Position control preferred for manipulation
 - Force control more suitable for controlling rates

Spring 2019

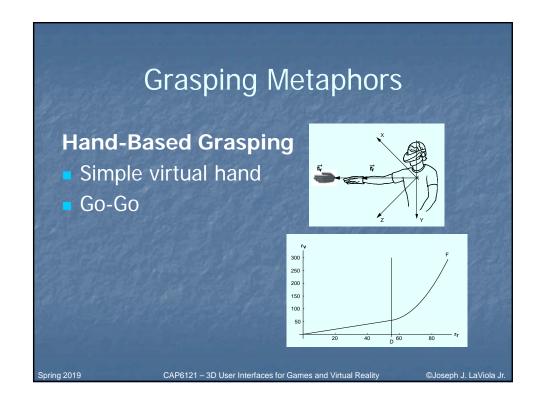
CAP6121 - 3D User Interfaces for Games and Virtual Reality

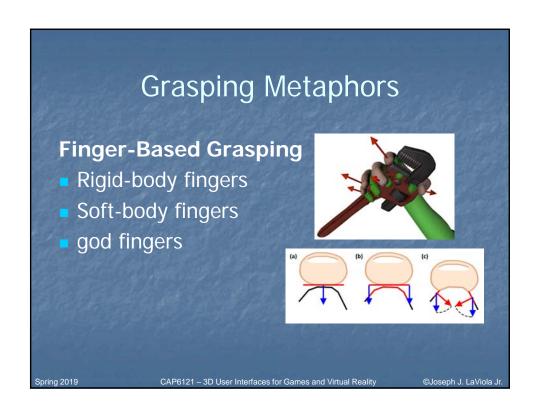
©Joseph J. LaViola Jr

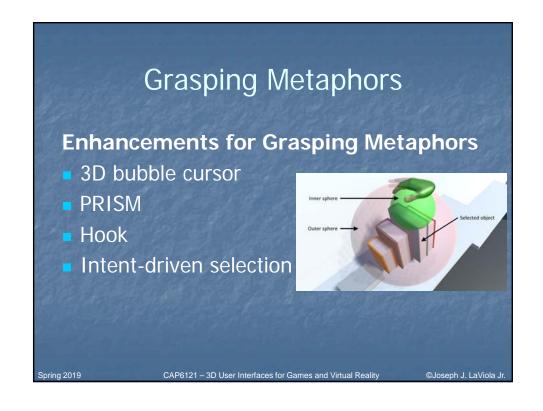
3D Manipulation Tasks

Manipulation Techniques and Input Devices

- Device shape
 - Generic vs. task-specific
- Device placement/grasp
 - Power grip
 - Precision grip
 - Use fingers
 - Reduce clutching






Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Classifications for 3D Manipulation Isomorphic (realistic) vs. non-Occlusion isomorphic (magic) Indication of Task decomposition 3D gaze 3D hand Event gesture voice command no explicit command Selection technique List of selection Indirect Metaphor Text/symbolic aural visual force/tactile CAP6121 - 3D User Interfaces for Games and Virtual Reality

Pointing Metaphors

- Pointing is powerful for selection
 - Remote selection
 - Fewer DOFs to control
 - Less hand movement required
- Pointing is poor for positioning
- Design variables:
 - How pointing direction is defined
 - Type of selection calculation

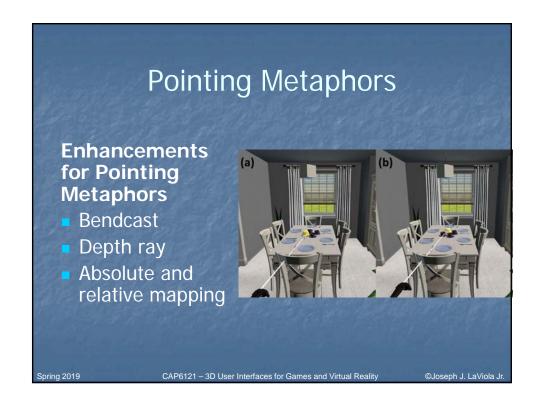
Spring 2019

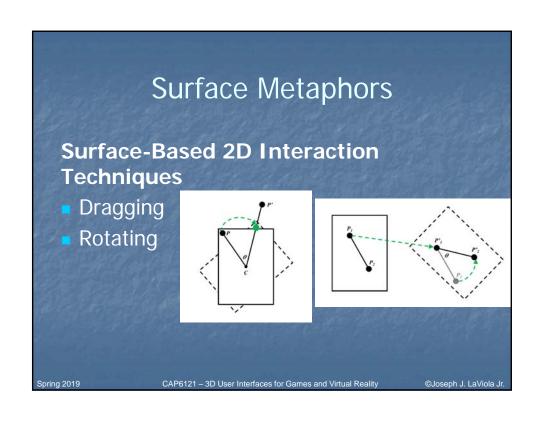

CAP6121 – 3D User Interfaces for Games and Virtual Reali

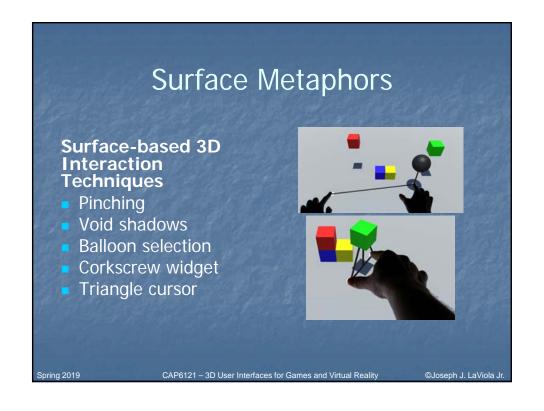
©Joseph J. LaViola Jr

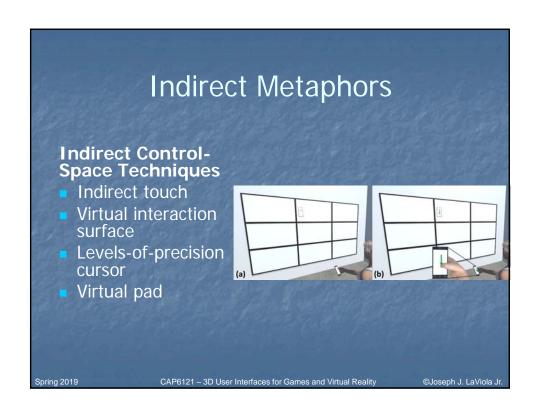
Pointing Metaphors

Vector-Based Pointing Techniques

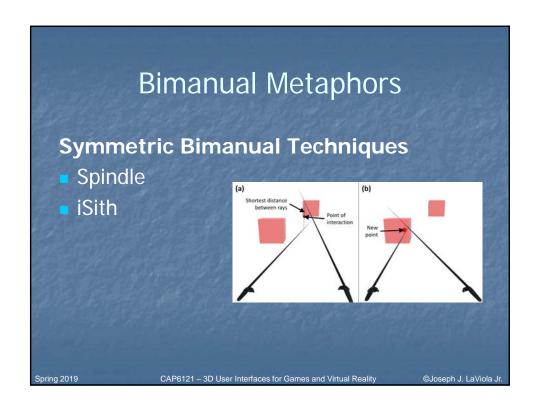

- Ray-casting
- Fishing reel
- Image-plane pointing

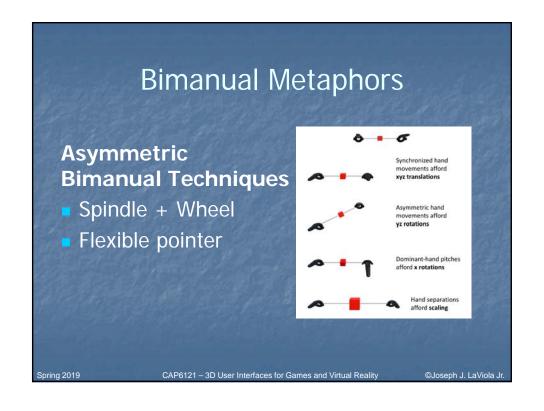



Spring 2019


CAP6121 – 3D User Interfaces for Games and Virtual Reality

Pointing Metaphors Volume-Based Pointing Techniques Flashlight Aperture Sphere-casting CAP6121 – 3D User Interfaces for Games and Virtual Reality Quoseph J. LaViola Jr.


Indirect Widget Techniques 3D widgets Virtual sphere Arcball CAP6121 – 3D User Interfaces for Games and Virtual Reality CJoseph J. LaViola Jr.


Bimanual Metaphors

- Dominant and non-dominant hands
- Symmetric vs. asymmetric
- Synchronous vs. asynchronous
- Ex: balloon selection is asymmetric (two hands have different functions) and synchronous (two hands operate at the same time)

Spring 2019

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Hybrid Metaphors

- Aggregation of techniques
- Integration of techniques
 - HOMER
 - Scaled-world grab

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Other Aspects of 3D Manipulation

Nonisomorphic 3D rotation

- Amplifying 3D rotations to increase range and decrease clutching
- Slowing down rotation to increase precision
- Absolute vs. relative mappings
 - Absolute mappings can violate directional compliance
 - Relative mappings do not preserve nulling compliance

Spring 2019

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Isomorphic vs. Non-Isomorphic Philosophies

- Human-Machine interaction
 - input device
 - display device
 - transfer function (control to display mapping)
- Isomorphic one-to-one mapping
- Non-isomorphic scaled linear/non-linear mapping

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

@ Joseph J. LaViola J

Non-Isomorphic 3D Spatial Rotation

- Important advantages
 - manual control constrained by human anatomy
 - more effective use of limited tracking range (i.e vision-based tracking)
 - additional tools for fine tuning interaction techniques
- Questions
 - faster?
 - more accurate?

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Rotational Space

- Rotations in 3D space are a little tricky
 - do not follow laws of Euclidian geometry
- Space of rotations is not a vector space
- Represented as a closed and curved surface
 - 4D sphere or manifold
- Quaternions provide a tool for describing this surface

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola J.

Quaternions

- Four-dimensional vector (\mathbf{v}, \mathbf{w}) where \mathbf{v} is a 3D vector and \mathbf{w} is a real number
- A quaternion of unit length can be used to represent a single rotation about a unit axis \hat{u}

and angle θ as

$$q = (\sin(\frac{\theta}{2}\hat{u}), \cos(\frac{\theta}{2})) = e^{\frac{\theta}{2}\hat{u}}$$

Spring 2019

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Linear Oth Order 3D Rotation

Let q_c be the orientation of the input device and q_d be the displayed orientation then

(1)
$$q_c = (\sin(\frac{\theta_c}{2}\hat{u}_c), \cos(\frac{\theta_c}{2})) = e^{\frac{\theta_c}{2}\hat{u}_c}$$

(2)
$$q_d = (\sin(\frac{k\theta_c}{2}\hat{u}_c), \cos(\frac{k\theta_c}{2})) = e^{\frac{k\theta_c}{2}\hat{u}_c} = q_c^k$$

- Final equations w.r.t. identity or reference orientation $q_{\scriptscriptstyle o}$ are
 - (3) $q_q = q_c^k$ (4) $q_d = (q_c q_o^{-1})^k q_o$, k = CD gain coefficien t

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Non-Linear 0th Order 3D Rotation

Consider

(3)
$$q_d = q_c^k$$
 (4) $q_d = (q_c q_o^{-1})^k q_o$

Let *k* be a non-linear function as in $\omega = 2 \arccos(q_c \cdot q_a)$ or $\omega = 2 \arccos(w)$

$$k = F(\omega) = \begin{cases} 1 & \text{if } \omega < \omega_o \\ f(\omega) = 1 + c(\omega - \omega_o)^2 & \text{otherwise} \end{cases}$$

where c is a coefficient and ω_o is the theshold angle

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Design Considerations

 Absolute mapping – taken on *i-th* cycle of the simulation loop

$$q_{d_i} = q_{c_i}^k$$

Relative mapping – taken between the *i-th* and *i-1th* cycle of the simulation loop

$$q_{d_i} = (q_{c_i} q_{c_{i-1}}^{-1})^k q_{d_{i-1}}$$

Spring 2019

CAP6121 – 3D User Interfaces for Games and Virtual Reali

©Joseph J. LaViola J.

Absolute Non-Isomorphic Mapping

- Generally do not preserve directional compliance
- Strictly preserves nulling compliance

Spring 2019

CAP6121 – 3D User Interfaces for Games and Virtual Reali

Relative Non-Isomorphic Mapping

- Always maintain directional compliance
- Do not generally preserve nulling compliance

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Ji

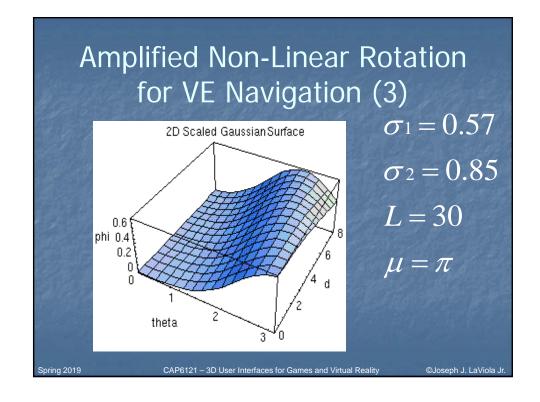
Amplified Non-Linear Rotation for VE Navigation (1)

- Users expect the virtual world to exist in any direction
 - 3-walled Cave does not allow this
 - adapt expected UI to work in restricted environment
- Amplified rotation allows users to see a full 360 degrees in a 3-walled display
- A number of approaches were tested
 - important to take cybersickness into account

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Amplified Non-Linear Rotation for VE Navigation (2)


- Apply a non-linear mapping function to the user's waist orientation θ and his or her distance d from the back of the Cave
- Calculate the rotation factor using a scaled 2D Gaussian function

$$\phi = f(\theta, d) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(|\theta| - \pi(1 - d/L))^2}{2\sigma_2^2}}$$

The new viewing angle is $\theta_{new} = \theta(1-\phi)$

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Non-Linear Translation for VE Navigation (1)

- Users lean about the waist to move small to medium distances
 - users can lean and look in different directions
- Users can also lean to translate a floorbased interactive world in miniature (WIM)
 - Step WIM must be active
 - user's gaze must be 25 degrees below horizontal

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Ji

Non-Linear Translation for VE Navigation (2)

- Leaning vector \vec{L}_R is the projection of the vector between the waist and the head onto the floor
 - gives direction and raw magnitude components
- Navigation speed is dependent on the user's physical location
 - Leaning sensitivity increases close to a boundary
- Linear function $L_T = a \cdot D_{\min} + b$
- Mapped velocity $v = \|\vec{L}_R\| L_T$

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Non-Linear Translation for VE Navigation (3)

- Navigation speed is also dependent on the user's head orientation with respect to the vertical axis
 - especially useful when translating the floor-based WIM
- Mapping is done with a scaled exponential function

 $F = lpha \cdot e^{-eta \left| ec{H} \cdot ec{V}_{u_p}
ight|}$

ullet Final leaning velocity is $\,v_{final}\!=\!F\cdot\!v\,$

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

@ Joseph J. LaViola J

Other Aspects of 3D Manipulation

Multiple Object Selection

- Serial selection mode
- Volume-based selection techniques
 - e.g., flashlight, aperture, sphere-casting
- Defining selection volumes
 - e.g., two-corners, lasso on image plane
- Selection-volume widget
 - e.g., PORT

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Other Aspects of 3D Manipulation Progressive Refinement Gradually reducing set of objects till only one remains Multiple fast selections with low precision requirements SQUAD Expand Double Bubble

Design Guidelines

CAP6121 - 3D User Interfaces for Games and Virtual Reality

- Use existing manipulation techniques unless a large amount of benefit might be derived from designing a new application-specific technique.
- Use task analysis when choosing a 3D manipulation technique.
- Match the interaction technique to the device.
- Use techniques that can help to reduce clutching.

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Design Guidelines

- Nonisomorphic ("magic") techniques are useful and intuitive.
- Use pointing techniques for selection and grasping techniques for manipulation.
- Consider the use of grasp-sensitive object selection.
- Reduce degrees of freedom when possible.
- Consider the trade-off between technique design and environment design.
- There is no single best manipulation technique.

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jı

Case Studies

VR Gaming Case Study

- Bimanual approach:
 - Non-dominant hand defines interaction area ("flashlight")
 - Dominant hand selects/manipulates in that area ("tool")
- Playful metaphors, multiple tools
- Key concepts:
 - Progressive refinement selection techniques can help users avoid fatigue by not requiring precise interactions.
 - Basic 3D selection and manipulation techniques can be customized to fit the theme or story of a particular application.

Spring 2019

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Case Studies

Mobile AR Case Study

- Finger-based selection for infrequent use with single datasets
- Pen-based selection for frequent use or richer datasets
- Key concepts:
 - Size of selectable items: keep the size of your selectable objects or menu items as small as possible, while reflecting the limitations of your input method and the visibility (legibility) of these items.
 - Selection method: depending on the frequency of selection tasks, different input methods could be preferable. Often, there is a direct relationship between input method, selection performance and frequency, and user comfort.

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jı

Conclusion

- 3D manipulation is a foundational task in 3D UIs
- Huge design space with many competing considerations
- Consider tradeoffs in your application context carefully

Spring 2019

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Next Class Navigation – Travel Readings Jul Book – Chapter 7 Spring 2019 CAP6121 – 3D User Interfaces for Games and Virtual Reality @Joseph J. LaViola Jr.