
Associative Embedding:
End-to-End Learning for Joint Detection and Grouping

Alejandro Newell
University of Michigan
alnewell@umich.edu

Zhiao Huang*
Tsinghua University

hza14@mails.tsinghua.edu.cn

Jia Deng
University of Michigan
jiadeng@umich.edu

Abstract

We introduce associative embedding, a novel method for
supervising convolutional neural networks for the task of
detection and grouping. A number of computer vision prob-
lems can be framed in this manner including multi-person
pose estimation, instance segmentation, and multi-object
tracking. Usually the grouping of detections is achieved with
multi-stage pipelines, instead we propose an approach that
teaches a network to simultaneously output detections and
group assignments. This technique can be easily integrated
into any state-of-the-art network architecture that produces
pixel-wise predictions. We show how to apply this method
to both multi-person pose estimation and instance segmenta-
tion and report state-of-the-art performance for multi-person
pose on the MPII and MS-COCO datasets.

1. Introduction
Many computer vision tasks can be viewed as joint de-

tection and grouping: detecting smaller visual units and
grouping them into larger structures. For example, multi-
person pose estimation can be viewed as detecting body
joints and grouping them into individual people; instance
segmentation can be viewed as detecting relevant pixels and
grouping them into object instances; multi-object tracking
can be viewed as detecting object instances and grouping
them into tracks. In all of these cases, the output is a variable
number of visual units and their assignment into a variable
number of visual groups.

Such tasks are often approached with two-stage pipelines
that perform detection first and grouping second. But such
approaches may be suboptimal because detection and group-
ing are usually tightly coupled: for example, in multiperson
pose estimation, a wrist detection is likely a false positive if
there is not an elbow detection nearby to group with.

In this paper we ask whether it is possible to jointly per-
form detection and grouping using a single-stage deep net-

* Work done while a visiting student at the University of Michigan.

Figure 1. Both multi-person pose estimation and instance segmenta-
tion are examples of computer vision tasks that require detection of
visual elements (joints of the body or pixels belonging to a semantic
class) and grouping of these elements (as poses or individual object
instances).

work trained end-to-end. We propose associative embedding,
a novel method to represent the output of joint detection and
grouping. The basic idea is to introduce, for each detection,
a real number that serves as a “tag” to identify the group the
detection belongs to. In other words, the tags associate each
detection with other detections in the same group.

Consider the special case of detections in 2D and em-
beddings in 1D (real numbers). The network outputs both
a heatmap of per-pixel detection scores and a heatmap of
per-pixel identity tags. The detections and groups are then
decoded from these two heatmaps.

To train a network to predict the tags, we use a loss func-
tion that encourages pairs of tags to have similar values if
the corresponding detections belong to the same group in the
ground truth or dissimilar values otherwise. It is important to
note that we have no “ground truth” tags for the network to
predict, because what matters is not the particular tag values,
only the differences between them. The network has the
freedom to decide on the tag values as long as they agree
with the ground truth grouping.

We apply our approach to multiperson pose estimation,
an important task for understanding humans in images. Con-
cretely, given an input image, multi-person pose estimation
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seeks to detect each person and localize their body joints.
Unlike single-person pose there are no prior assumptions of
a person’s location or size. Multi-person pose systems must
scan the whole image detecting all people and their corre-
sponding keypoints. For this task, we integrate associative
embedding with a stacked hourglass network [31], which
produces a detection heatmap and a tagging heatmap for each
body joint, and then groups body joints with similar tags
into individual people. Experiments demonstrate that our
approach outperforms all recent methods and achieves state
of the art results on MS-COCO [27] and MPII Multiperson
Pose [3, 35].

We further demonstrate the utility of our method by ap-
plying it to instance segmentation. Showing that it is straight-
forward to apply associative embedding to a variety of vision
tasks that fit under the umbrella of detection and grouping.

Our contributions are two fold: (1) we introduce associa-
tive embedding, a new method for single- stage, end-to-end
joint detection and grouping. This method is simple and
generic; it works with any network architecture that produces
pixel-wise prediction; (2) we apply associative embedding
to multiperson pose estimation and achieve state of the art
results on two standard benchmarks.

2. Related Work
Vector Embeddings Our method is related to many prior
works that use vector embeddings. Works in image retrieval
have used vector embeddings to measure similarity between
images [17, 53]. Works in image classification, image cap-
tioning, and phrase localization have used vector embeddings
to connect visual features and text features by mapping them
to the same vector space [16, 20, 30]. Works in natural lan-
guage processing have used vector embeddings to represent
the meaning of words, sentences, and paragraphs [39, 32].
Our work differs from these prior works in that we use vector
embeddings as identity tags in the context of joint detection
and grouping.
Perceptual Organization Work in perceptual organization
aims to group the pixels of an image into regions, parts, and
objects. Perceptual organization encompasses a wide range
of tasks of varying complexity from figure-ground segmen-
tation [37] to hierarchical image parsing [21]. Prior works
typically use a two stage pipeline [38], detecting basic visual
units (patches, superpixels, parts, etc.) first and grouping
them second. Common grouping approaches include spec-
tral clustering [51, 46], conditional random fields (e.g. [31]),
and generative probabilistic models (e.g. [21]). These group-
ing approaches all assume pre-detected basic visual units
and pre-computed affinity measures between them but dif-
fer among themselves in the process of converting affinity
measures into groups. In contrast, our approach performs
detection and grouping in one stage using a generic network
that includes no special design for grouping.

It is worth noting a close connection between our ap-
proach to those using spectral clustering. Spectral clustering
(e.g. normalized cuts [46]) techniques takes as input pre-
computed affinities (such as predicted by a deep network)
between visual units and solves a generalized eigenprob-
lem to produce embeddings (one per visual unit) that are
similar for visual units with high affinity. Angular Embed-
ding [37, 47] extends spectral clustering by embedding depth
ordering as well as grouping. Our approach differs from spec-
tral clustering in that we have no intermediate representation
of affinities nor do we solve any eigenproblems. Instead our
network directly outputs the final embeddings.

Our approach is also related to the work by Harley et
al. on learning dense convolutional embeddings [24], which
trains a deep network to produce pixel-wise embeddings
for the task of semantic segmentation. Our work differs
from theirs in that our network produces not only pixel-
wise embeddings but also pixel-wise detection scores. Our
novelty lies in the integration of detection and grouping
into a single network; to the best of our knowledge such an
integration has not been attempted for multiperson human
pose estimation.

Multiperson Pose Estimation Recent methods have made
great progress improving human pose estimation in images
in particular for single person pose estimation [50, 48, 52,
40, 8, 5, 41, 4, 14, 19, 34, 26, 7, 49, 44]. For multiperson
pose, prior and concurrent work can be categorized as either
top-down or bottom-up. Top-down approaches [42, 25, 15]
first detect individual people and then estimate each person’s
pose. Bottom-up approaches [45, 28, 29, 6] instead detect
individual body joints and then group them into individuals.
Our approach more closely resembles bottom-up approaches
but differs in that there is no separation of a detection and
grouping stage. The entire prediction is done at once by
a single-stage, generic network. This does away with the
need for complicated post-processing steps required by other
methods [6, 28].

Instance Segmentation Most existing instance segmenta-
tion approaches employ a multi-stage pipeline to do de-
tection followed by segmentation [23, 18, 22, 11]. Dai et
al. [12] made such a pipeline differentiable through a special
layer that allows backpropagation through spatial coordi-
nates.

Two recent works have sought tighter integration of de-
tection and segmentation using fully convolutional networks.
DeepMask [43] densely scans subwindows and outputs a
detection score and a segmentation mask (reshaped to a vec-
tor) for each subwindow. Instance-Sensitive FCN [10] treats
each object as composed of a set of object parts in a regular
grid, and outputs a per-piexl heatmap of detection scores
for each object part. Instance-Sensitive FCN (IS-FCN) then
detects object instances where the part detection scores are
spaitally coherent, and assembles object masks from the



Figure 2. We use the stacked hourglass architecture from Newell et al. [40]. The network performs repeated bottom-up, top-down inference
producing a series of intermediate predictions (marked in blue) until the last “hourglass” produces a final result (marked in green). Each box
represents a 3x3 convolutional layer. Features are combined across scales by upsampling and performing elementwise addition. The same
ground truth is enforced across all predictions made by the network.

heatmaps of object parts. Compared to DeepMask and IS-
FCN, our approach is substantially simpler: for each object
category we output only two values at each pixel location, a
score representing foreground versus background, and a tag
representing the identity of an object instance, whereas both
DeepMask and IS-FCN produce much higher dimensional
output.

3. Approach

3.1. Overview

To introduce associative embedding for joint detection
and grouping, we first review the basic formulation of visual
detection. Many visual tasks involve detection of a set of
visual units. These tasks are typically formulated as scoring
of a large set of candidates. For example, single-person hu-
man pose estimation can be formulated as scoring candidate
body joint detections at all possible pixel locations. Object
detection can be formulated as scoring candidate bounding
boxes at various pixel locations, scales, and aspect ratios.

The idea of associative embedding is to predict an em-
bedding for each candidate in addition to the detection score.
The embeddings serve as tags that encode grouping: de-
tections with similar tags should be grouped together. In
multiperson pose estimation, body joints with similar tags
should be grouped to form a single person. It is important
to note that the absolute values of the tags do not matter,
only the distances between tags. That is, a network is free to
assign arbitrary values to the tags as long as the values are
the same for detections belonging to the same group.

Note that the dimension of the embeddings is not criti-
cal. If a network can successfully predict high-dimensional
embeddings to separate the detections into groups, it should
also be able to learn to project those high-dimensional em-
beddings to lower dimensions, as long as there is enough
network capacity. In practice we have found that 1D embed-
ding is sufficient for multiperson pose estimation, and higher
dimensions do not lead to significant improvement. Thus
throughout this paper we assume 1D embeddings.

To train a network to predict the tags, we enforce a

loss that encourages similar tags for detections from the
same group and different tags for detections across different
groups. Specifically, this tagging loss is enforced on can-
didate detections that coincide with the ground truth. We
compare pairs of detections and define a penalty based on
the relative values of the tags and whether the detections
should be from the same group.

3.2. Stacked Hourglass Architecture

In this work we combine associative embedding with the
stacked hourglass architecture [40], a model for dense pixel-
wise prediction that consists of a sequence of modules each
shaped like an hourglass (Fig. 2). Each “hourglass” has a
standard set of convolutional and pooling layers that process
features down to a low resolution capturing the full con-
text of the image. Then, these features are upsampled and
gradually combined with outputs from higher and higher res-
olutions until reaching the final output resolution. Stacking
multiple hourglasses enables repeated bottom-up and top-
down inference to produce a more accurate final prediction.
We refer the reader to [40] for more details of the network
architecture.

The stacked hourglass model was originally developed
for single-person human pose estimation. The model out-
puts a heatmap for each body joint of a target person. Then,
the pixel with the highest heatmap activation is used as the
predicted location for that joint. The network is designed to
consolidate global and local features which serves to cap-
ture information about the full structure of the body while
preserving fine details for precise localization. This balance
between global and local features is just as important in
other pixel-wise prediction tasks, and we therefore apply the
same network towards both multiperson pose estimation and
instance segmentation.

We make some slight modifications to the network archi-
tecture. We increase the number of ouput features at each
drop in resolution (256 -> 386 -> 512 -> 768). In addition,
individual layers are composed of 3x3 convolutions instead
of residual modules, the shortcut effect to ease training is
still present from the residual links across each hourglass as



Figure 3. An overview of our approach for producing multi-person pose estimates. For each joint of the body, the network simultaneously
produces detection heatmaps and predicts associative embedding tags. We take the top detections for each joint and match them to other
detections that share the same embedding tag to produce a final set of individual pose predictions.

well as the skip connections at each resolution.

3.3. Multiperson Pose Estimation

To apply associative embedding to multiperson pose esti-
mation, we train the network to detect joints as performed
in single-person pose estimation [40]. We use the stacked
hourglass model to predict a detection score at each pixel
location for each body joint (“left wrist”, “right shoulder”,
etc.) regardless of person identity. The difference from
single-person pose being that an ideal heatmap for multiple
people should have multiple peaks (e.g. to identify multiple
left wrists belonging to different people), as opposed to just
a single peak for a single target person.

In addition to producing the full set of keypoint detections,
the network automatically groups detections into individual
poses. To do this, the network produces a tag at each pixel
location for each joint. In other words, each joint heatmap
has a corresponding “tag” heatmap. So, if there are m body
joints to predict then the network will output a total of 2m
channels, m for detection and m for grouping. To parse
detections into individual people, we use non-maximum
suppression to get the peak detections for each joint and
retrieve their corresponding tags at the same pixel location
(illustrated in Fig. 3). We then group detections across body
parts by comparing the tag values of detections and matching
up those that are close enough. A group of detections now
forms the pose estimate for a single person.

To train the network, we impose a detection loss and a
grouping loss on the output heatmaps. The detection loss
computes mean square error between each predicted detec-
tion heatmap and its “ground truth” heatmap which consists
of a 2D gaussian activation at each keypoint location. This
loss is the same as the one used by Newell et al. [40].

The grouping loss assesses how well the predicted tags
agree with the ground truth grouping. Specifically, we re-

trieve the predicted tags for all body joints of all people at
their ground truth locations; we then compare the tags within
each person and across people. Tags within a person should
be the same, while tags across people should be different.

Rather than enforce the loss across all possible pairs of
keypoints, we produce a reference embedding for each per-
son. This is done by taking the mean of the output embed-
dings of the person’s joints. Within an individual, we com-
pute the squared distance between the reference embedding
and the predicted embedding for each joint. Then, between
pairs of people, we compare their reference embeddings to
each other with a penalty that drops exponentially to zero as
the distance between the two tags increases.

Formally, let hk ∈ RW×H be the predicted tagging
heatmap for the k-th body joint, where h(x) is a tag value
at pixel location x. Given N people, let the ground truth
body joint locations be T = {(xnk)}, n = 1, . . . , N, k =
1 . . . ,K, where xnk is the ground truth pixel location of the
k-th body joint of the n-th person.

Assuming all K joints are annotated, the reference em-
bedding for the nth person would be

h̄n =
1

K

∑
k

hk(xnk)

The grouping loss Lg is then defined as

Lg(h, T ) =
1

N

∑
n

∑
k

(
h̄n − hk(xnk, )

)2
+

1

N2

∑
n

∑
n′

exp{− 1

2σ2

(
h̄n − h̄n′

)2},
To produce a final set of predictions we iterate through

each joint one by one. An ordering is determined by first
considering joints around the head and torso and gradually



Figure 4. Tags produced by our network on a held-out validation image from the MS-COCO training set. The tag values are already well
separated and decoding the groups is straightforward.

moving out to the limbs. We start with our first joint and take
all activations above a certain threshold after non-maximum
suppression. These form the basis for our initial pool of
detected people.

We then consider the detections of a subsequent joint.
We compare the tags from this joint to the tags of our cur-
rent pool of people, and try to determine the best matching
between them. Two tags can only be matched if they fall
within a specific threshold. In addition, we want to prioritize
matching of high confidence detections. We thus perform
a maximum matching where the weighting is determined
by both the tag distance and the detection score. If any new
detection is not matched, it is used to start a new person
instance. This accounts for cases where perhaps only a leg
or hand is visible for a particular person.

We loop through each joint of the body until every detec-
tion has been assigned to a person. No steps are taken to
ensure anatomical correctness or reasonable spatial relation-
ships between pairs of joints. To give an impression of the
types of tags produced by the network and the trivial nature
of grouping we refer to Figure 4.

While it is feasible to train a network to make pose pre-
dictions for people of all scales, there are some drawbacks.
Extra capacity is required of the network to learn the nec-
essary scale invariance, and the precision of predictions for
small people will suffer due to issues of low resolution after
pooling. To account for this, we evaluate images at test time
at multiple scales. There are a number of potential ways
to use the output from each scale to produce a final set of
pose predictions. For our purposes, we take the produced
heatmaps and average them together. Then, to combine
tags across scales, we concatenate the set of tags at a pixel
location into a vector v ∈ Rm (assuming m scales). The de-
coding process does not change from the method described
with scalar tag values, we now just compare vector distances.

Figure 5. To produce instance segmentations we decode the network
output as follows: First we threshold on the detection heatmap, the
resulting binary mask is used to get a set of tag values. By looking
at the distribution of tags we can determine identifier tags for each
instance and match the tag of each activated pixel to the closest
identifier.

3.4. Instance Segmentation

The goal of instance segmentation is to detect and classify
object instances while providing a segmentation mask for
each object. As a proof of concept we show how to apply
our approach to this problem, and demonstrate preliminary
results. Like multi-person pose estimation, instance segmen-
tation is a problem of joint detection and grouping. Pixels
belonging to an object class are detected, and then those
associated with a single object are grouped together. For
simplicity the following description of our approach assumes
only one object category.

Given an input image, we use a stacked hourglass network
to produce two heatmaps, one for detection and one for
tagging. The detection heatmap gives a detection score
at each pixel indicating whether the pixel belongs to any
instance of the object category, that is, the detection heatmap
segments the foreground from background. At the same
time, the tagging heatmap tags each pixel such that pixels
belonging to the same object instance have similar tags.

To train the network, we supervise the detection heatmap
by comparing the predicted heatmap with the ground truth



Figure 6. Qualitative pose estimation results on MSCOCO validation images

heatmap (the union of all instance masks). The loss is the
mean squared error between the two heatmaps. We supervise
the tagging heatmap by imposing a loss that encourages the
tags to be similar within an object instance and different
across instances. The formulation of the loss is similar to that
for multiperson pose. There is no need to do a comparison
of every pixel in an instance segmentation mask. Instead
we randomly sample a small set of pixels from each object
instance and do pairwise comparisons across the group of
sampled pixels.

Formally, let h ∈ RW×H be a predicted W ×H tagging
heatmap. Let x denote a pixel location and h(x) the tag at
the location, and let Sn = xkn, k = 1, . . . ,K be a set of
locations randomly sampled within the n-th object instance.
The grouping loss Lg is defined as

Lg(h, T ) =
∑
n

∑
x∈Sn

∑
x′∈Sn

(h(x)− h(x′))2

+
∑
n

∑
n′

∑
x∈Sn

∑
x′∈Sn′

exp{− 1

2σ2
(h(x)− h(x′))2}

To decode the output of the network, we first threshold
on the detection channel heatmap to produce a binary mask.

Then, we look at the distribution of tags within this mask. We
calculate a histogram of the tags and perform non-maximum
suppression to determine a set of values to use as identifiers
for each object instance. Each pixel from the detection mask
is then assigned to the object with the closest tag value. See
Figure 5 for an illustration of this process.

Note that it is straightforward to generalize from one
object category to multiple: we simply output a detection
heatmap and a tagging heatmap for each object category. As
with multi-person pose, the issue of scale invariance is worth
consideration. Rather than train a network to recognize the
appearance of an object instance at every possible scale,
we evaluate at multiple scales and combine predictions in a
similar manner to that done for pose estimation.

4. Experiments

4.1. Multiperson Pose Estimation

Dataset We evaluate on two datasets: MS-COCO [35] and
MPII Human Pose [3]. MPII Human Pose consists of about
25k images and contains around 40k total annotated people
(three-quarters of which are available for training). Eval-



Figure 7. Here we visualize the associative embedding channels for different joints. The change in embedding predictions across joints is
particularly apparent in these examples where there is significant overlap of the two target figures.

Head Shoulder Elbow Wrist Hip Knee Ankle Total
Iqbal&Gall, ECCV16 [29] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1
Insafutdinov et al., ECCV16 [28] 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5
Insafutdinov et al., arXiv16a [45] 89.4 84.5 70.4 59.3 68.9 62.7 54.6 70.0
Levinkov et al., CVPR17 [33] 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6
Insafutdinov et al., CVPR17 [27] 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3
Cao et al., CVPR17 [6] 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6
Fang et al., arXiv17 [15] 88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7
Our method 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5

Table 1. Results (AP) on MPII Multi-Person.

uation is performed on MPII Multi-Person, a set of 1758
groups of multiple people taken from the test set as outlined
in [45]. The groups for MPII Multi-Person are usually a
subset of the total people in a particular image, so some
information is provided to make sure predictions are made
on the correct targets. This includes a general bounding box
and scale term used to indicate the occupied region. No in-
formation is provided on the number of people or the scales
of individual figures. We use the evaluation metric outlined
by Pishchulin et al. [45] calculating average precision of
joint detections.

MS-COCO [35] consists of around 60K training images
with more than 100K people with annotated keypoints. We
report performance on two test sets, a development test set
(test-dev) and a standard test set (test-std). We use the official
evaluation metric that reports average precision (AP) and
average recall (AR) in a manner similar to object detection
except that a score based on keypoint distance is used instead
of bounding box overlap. We refer the reader to the MS-
COCO website for details [1].
Implementation The network used for this task consists
of four stacked hourglass modules, with an input size of
512×512 and an output resolution of 128×128. We train the
network using a batch size of 32 with a learning rate of 2e-4

(dropped to 1e-5 after 100k iterations) using Tensorflow [2].
The associative embedding loss is weighted by a factor of
1e-3 relative to the MSE loss of the detection heatmaps. The
loss is masked to ignore crowds with sparse annotations.
At test time an input image is run at multiple scales; the
output detection heatmaps are averaged across scales, and the
tags across scales are concatenated into higher dimensional
tags. Since the metrics of MPII and MS-COCO are both
sensitive to the precise localization of keypoints, following
prior work [6], we apply a single-person pose model [40]
trained on the same dataset to further refine predictions.

MPII Results Average precision results can be seen in
Table 1 demonstrating an improvement over state-of-the-art
methods in overall AP. Associative embedding proves to
be an effective method for teaching the network to group
keypoint detections into individual people. It requires no
assumptions about the number of people present in the image,
and also offers a mechanism for the network to express
confusion of joint assignments. For example, if the same
joint of two people overlaps at the exact same pixel location,
the predicted associative embedding will be a tag somewhere
between the respective tags of each person.

We can get a better sense of the associative embedding
output with visualizations of the embedding heatmap (Figure



AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

CMU-Pose [6] 0.611 0.844 0.667 0.558 0.684 0.665 0.872 0.718 0.602 0.749
G-RMI [42] 0.643 0.846 0.704 0.614 0.696 0.698 0.885 0.755 0.644 0.771
Our method 0.663 0.865 0.727 0.613 0.732 0.715 0.897 0.772 0.662 0.787

Table 2. Results on MS-COCO test-std, excluding systems trained with external data.

AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

CMU-Pose [6] 0.618 0.849 0.675 0.571 0.682 0.665 0.872 0.718 0.606 0.746
Mask-RCNN [25] 0.627 0.870 0.684 0.574 0.711 – – – – –
G-RMI [42] 0.649 0.855 0.713 0.623 0.700 0.697 0.887 0.755 0.644 0.771
Our method 0.655 0.868 0.723 0.606 0.726 0.702 0.895 0.760 0.646 0.781

Table 3. Results on MS-COCO test-dev, excluding systems trained with external data.

7). We put particular focus on the difference in the predicted
embeddings when people overlap heavily as the severe oc-
clusion and close spacing of detected joints make it much
more difficult to parse out the poses of individual people.

MS-COCO Results Table 2 and Table 3 report our re-
sults on MS-COCO. We report results on both test-std and
test-dev because not all recent methods report on test-std.
We see that on both sets we achieve the state of the art
performance. An illustration of the network’s predictions
can be seen in Figure 6. Typical failure cases of the net-
work stem from overlapping and occluded joints in cluttered
scenes. Table 4 reports performance of ablated versions of
our full pipeline, showing the contributions from applying
our model at multiple scales and from further refinement
using a single-person pose estimator. We see that simply
applying our network at multiple scales already achieves
competitive performance against prior state of the art meth-
ods, demonstrating the effectiveness of our end-to-end joint
detection and grouping.

We also perform an additional experiment on MS-COCO
to gauge the relative difficulty of detection versus grouping,
that is, which part is the main bottleneck of our system. We
evaluate our system on a held-out set of 500 training images.
In this evaluation, we replace the predicted detections with
the ground truth detections but still use the predicted tags.
Using the ground truth detections improves AP from 59.2
to 94.0. This shows that keypoint detection is the main
bottleneck of our system, whereas the network has learned to
produce high quality grouping. This fact is also supported by
qualitative inspection of the predicted tag values, as shown
in Figure 4, from which we can see that the tags are well
separated and decoding the grouping is straightforward.

4.2. Instance Segmentation

Dataset For evaluation we use the val split of PASCAL
VOC 2012 [13] consisting of 1,449 images. Additional
pretraining is done with images from MS COCO [35]. Eval-
uation is done using mean average precision of instance

AP AP50 AP75 APM APL

single scale 0.566 0.818 0.618 0.498 0.670
single scale + refine 0.628 0.846 0.692 0.575 0.706
multi scale 0.630 0.857 0.689 0.580 0.704
multi scale + refine 0.655 0.868 0.723 0.606 0.726

Table 4. Effect of multi-scale evaluation and single person refine-
ment on MS-COCO test-dev.

segments at different IOU thresholds. [22, 10, 36]

Implementation The network is trained in Torch [9] with
an input resolution of 256 × 256 and output resolution of
64× 64. The weighting of the associative embedding loss is
lowered to 1e-4. During training, to account for scale, only
objects that appear within a certain size range ar supervised,
and a loss mask is used to ignore objects that are too big or
too small. In PASCAL VOC ignore regions are also defined
at object boundaries, and we include these in the loss mask.
Training is done from scratch on MS COCO for three days,
and then fine tuned on PASCAL VOC train for 12 hours. At
test time the image is evaluated at 3-scales (x0.5, x1.0, and
x1.5). Rather than average heatmaps we generate instance
proposals at each scale and do non-maximum suppression
to remove overlapping proposals across scales. A more
sophisticated approach for multi-scale evaluation is worth
further exploration.

Results We show mAP results on the val set of PASCAL
VOC 2012 in Table 4.2 along with some qualitative examples
in Figure 8. We offer these results as a proof of concept that
associative embeddings can be used in this manner. We
achieve reasonable instance segmentation predictions using
the supervision as we use for multi-person pose. Tuning of
training and postprocessing will likely improve performance,
but the main takeaway is that associative embedding serves
well as a general technique for disparate computer vision
tasks that fall under the umbrella of detection and grouping
problems.



Figure 8. Example instance predictions produced by our system on
the PASCAL VOC 2012 validation set.

IOU=0.5 IOU=0.7
SDS [22] 49.7 25.3
Hypercolumn [23] 60.0 40.4
CFM [11] 60.7 39.6
MPA [36] 61.8 –
MNC [12] 63.5 41.5
Our method 35.1 26.0

Table 5. Semantic instance segmentation results (mAP) on PASCAL
VOC 2012 validation images.

5. Conclusion
In this work we introduce associative embeddings to su-

pervise a convolutional neural network such that it can si-
multaneously generate and group detections. We apply this
method to two vision problems: multi-person pose and in-
stance segmentation. We demonstrate the feasibility of train-
ing for both tasks, and for pose we achieve state-of-the-art
performance. Our method is general enough to be applied
to other vision problems as well, for example multi-object
tracking in video. The associative embedding loss can be
implemented given any network that produces pixelwise
predictions, so it can be easily integrated with other state-of-
the-art architectures.
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