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Abstract

Our work focuses on using Image Based Lighting in Aug-
mented Reality applications. In our application the real
environment has immidiate effects on the virtual objects.
It is possible for us to render reflective objects and see our
own reflection in the objects, updated 30 times per second.
Moreover the virtual objects cast soft shadows on the real
floor and on each other. The virtual shadows resemble the
real ones because the real light sources are detected in the
environment.
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1 Introduction

In this paper we present the use of realtime Image Based
Lighting in an Augmented Reality (AR) setup. Aug-
mented Reality is a way to extend the real world with a
virtual overlay (also see [2]). This could be simple infor-
mation about the real world or photorealistic renderings of
objects like car prototypes or architectural models.

In many AR applications it is desirable for virtual ob-
jects to fit seamlessly into the real environment. This re-
quires the virtual objects to be lit consistently with their
neighbouring real objects. We try to enhance the light-
ing of the virtual objects by using the technique of Image
Based Lighting (IBL), where an image or video of the en-
vironment is used to compute lighting. IBL is widely used
in feature films and impressive filmlets. A detailed de-
scription of the technique is offered in [5] and [4]. In [8]
a behind-the-scenes report of a filmlet is given. In these
applications lighting is captured offline, requiring a huge
amount of time. In contrast, our application captures the
lighting in realtime. This permits the real environment to
influence the lighting of the virtual objects immidiately. It
is thus possible for a real person to see his/her own mirror
image in one of the virtual objects. An application similar
to ours is described in [12].

In this paper we first explain the principles of Image
Based Lighting in section 2. Afterwards, we discuss the
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capturing of realtime environment maps in our setup in
section 3. In section 4 the final rendering of the virtual ob-
jects is described. Here we also explain how to add shad-
ows to the virtual scene. Finally we discuss the results of
our approach and future work in section 5.

2 Image Based Lighting

One of the most essential aspects to make virtual objects
look like real ones is lighting. In traditional computer
graphics a simple lighting model is calculated with point
light sources, which have a distinct position and are in-
finitely small. Thus, an object only receives light from a
few user-defined points. It is a problem to approximate
non-point-shaped light sources (e.g. neon tubes or over-
cast sky), because a large number of point-lights would be
necessary. In the real world an objects does not only re-
ceive photons emitted from light sources, but also photons
which bounce off other objects. Image Based Lighting can
simulate these effects by using an image of the environ-
ment to calculate lighting. Thereby it is also possible to
simulate irregularly-shaped indirect light sources.

In Image Based Lighting it is usually assumed that the
light-emitting objects are infinitely far away (see [9, chap-
ter 19] for an exception). While this is not theoretically
correct, it enables extremely efficient rendering.

2.1 Diffuse Lighting in IBL

A point on a Lambertian diffuse surface reflects light
equally in all directions. But it also does not reflect light
from only one direction. It is assumed that light is re-
flected from a hemisphere of approximately 180 ◦(see fig-
ure 1). The axis of this hemisphere is the surface normal
�N of the rendered point P. This is because the pixels along
the surface normal have the strongest impact on the light-
ing. The impact gradually decreases in direction of the
surface tangent. Therefore, instead of one or more distinct
light-sources calculated with Lambert’s law, all points in
the environment map which face the surface are sampled.
Afterwards they are weighted by the cosine between their
direction and the surface normal, as if all of them were di-
rectional lights calculated with Lamberts law. The sum of
these values is used to calculate lighting.
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Figure 1: A point on a surface receives light from a
180◦solid angle.

Unfortunately, that many texture lookups cannot be per-
formed in realtime. Instead of performing all the lookups
for every rendered pixel, the map is pre-convoluted. Every
texel in the environment map represents a vector into the
environment. For every texel all entries in the environment
map can be sampled, weighted by the cosine of the an-
gle between the vectors represented by the sample and the
current texel and accumulated. This resembles the amount
of light a surface pointing in the direction of the current
sample receives. Accordingly one texture lookup at the
direction of the normal vector retrieves the correct value
of diffuse lighting. Another preconvolution method ap-
proximates the above results by blurring the environment
map. This does not give exactly the same result but is close
enough for lighting. The big advantage of this technique is
that it can be implemented faster than the exact solution.
By using a Gaussian blur filter, every point in the envi-
ronment texture receives information from its surrounding
pixels. The kernel of the filter has to include that area of
the texture that represents half of the environment for dif-
fuse lighting. The map resulting from the convolution is
called an irradiance map (see [9, chapter 3] for further de-
tails). Table 1 (d) shows an example.

2.2 Specular Lighting in IBL

Highlights on objects are basically reflections of light
sources. Thus it would theoretically be appropriate to use
environment mapping for specular highlights. But this is
only correct for perfectly reflective surfaces (like chrome).
Most materials absorb and scatter light. Only bright ob-
jects like light sources are seen as reflections (see figure
2). Even these objects are not sharp, but blurred. Not only
the reflection from one direction is visible, but from all di-
rections in a certain solid angle (see figure 3). The size of
the solid angle depends on the shininess of the object’s ma-
terial. The center of this solid angle is the reflection �R of
the eye vector�V on the surface. Instead of one or more dis-
tinct light sources calculated with the formulas of Phong
or Blinn, all points in the environment map at this solid
angle are sampled. Afterwards they are weighted by the

cosine between their direction and the reflection vector �R
raised to the power of shininess. Thus they are treated as if
all of them were directional lights calculated with Phong’s
formula. The sum of these values is the amount of specular
light coming from this direction of the environment.

Figure 2: On most sufaces (like the skin of an apple) the
reflection is blurry and only bright objects are visible.

Again, so many texture lookups cannot be performed
in realtime. Pre-convolution of the map is necessary (see
section 2.1). Like with diffuse textures, all texels of the en-
vironment map can be sampled, this time weighted by the
cosine of the angle between the vectors represented by the
sample and the current texture taken by the power of the
shininess of the material. The result is the amount of light
that is seen if the reflection of the eye vector points in the
direction of the current sample. Again another possibility
is to approximate the result with a blur filter. The problem
with specular maps is that the size of the filter kernel de-
pends on the shininess, which varies between different ma-
terials. Theoretically a separate texture has to be generated
for every material. An alternative is to generate Mip-Maps
and use a lower Mip-Map-level for blurrier materials. An-
other possibility is using the technique of Summed Area
Tables (see [11]).

To simulate the absorption of light in the material it
may be necessary to darken the specular map, so that only
bright lights are visible as highlights.
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Figure 3: When simulating blurry reflections all texels in
a certain solid angle have to be sampled.



2.3 Setup
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Figure 4: The setup using two cameras and the mirrored
sphere to capture the environment.

The aim of our work is to use the techniques described
above in an Augmented Reality environment, updating the
environment map continuously. To capture the real envi-
ronment a mirrored sphere (similar to a christmas sphere)
is well suited. In its reflection nearly the entire environ-
ment can be seen. Images of this sphere are captured
and used to create environment maps. We figured out two
kinds of setup to achieve this.

1. The first setup uses two cameras as seen in figure
4. One camera captures the environment. This can
be done either with a mirrored sphere, as mentioned
above, or with a fisheye lens on the camera mount.
The second camera captures a video of the scene
which afterwards is overlaid with virtual objects.

2. The second setup uses only one camera which cap-
tures the scene to be overlaid (see figure 5 and 6). In
this scene a mirrored sphere is used which reflects the
environment. The sphere is in a fixed position rela-
tive to a marker of a visual tracking system (like AR-
Toolkit [13] or ARTag [10]). The marker is tracked to
calculate the position of the sphere in the video im-
age. The image of the sphere is then cropped of the
video image and used as an environment map.

In our application we use the second setup because it
requires fewer hardware components.

3 Retrieving the Environment Maps

3.1 Finding the Mirrored Sphere

The first step is to find the image of the mirrored sphere
in the camera image. The position of the sphere relative
to the marker �Sm is known. The transformation matrix M
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Figure 5: Our setup viewed from above.

from the camera to the center of the marker is known too.
To get the center of the sphere in camera space �Sc we mul-
tiply �Sm with M (see figure 7). Now we create a rectangle
in viewspace which faces the camera. The side length of
the rectangle is equal to the diameter D of the sphere. This
rectangle is projected into screen space and now equals the
bounding rectangle of the sphere image in the video image
(see figure 8).

To use the image of the sphere as a sphere map, it has to
be extracted from the camera image. For this purpose the
camera image is copied into a texture. A quad is rendered
with this texture mapped onto it. The texture coordinates
of this quad are set to equal the above mentioned bounding
rectangle of the sphere. Thus in the rendered quad only
the sphere is visible. This rendering is copied to another
texture that can now be used as sphere map.
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Figure 6: Our setup seen from the side. The sphere is in a
certain position relative to the marker.

3.2 Creating Sphere Maps

3.2.1 Sphere Maps vs. Cube Maps

A big issue in the beginning of the project was the question
if sphere maps or cube maps should be used for rendering.
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Figure 7: After transforming with the matrix of the marker,
the position of the sphere is in camera coordinates.
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Figure 8: The scene as seen from the camera. The calcu-
lated bounding rectange of the sphere is marked red.

The image captured from the mirrored sphere is equal to
a sphere map. But even if the sphere reflects (almost) the
entire scene the resolution in the border regions is bad (see
figure 9). Artifacts may also occur when retrieving sam-
ples across the border regions of the sphere map. When
looking at reflective objects from behind, these drawbacks
of sphere maps become visible through bad reflections.
In our application the camera always views the mirrored
sphere and the virtual objects from the same direction.
Border samples from the sphere map are mapped to bor-
ders of the object, so the bad resolution is concealed.
Using a separate camera to capture the mirrored sphere
(see section 2.3) the disadvantages of sphere maps would
most likely become visible. Thus it would be more attrac-
tive to use cube maps. But as mentioned above the cap-
tured image is already a sphere map. Using a cube map
requires to convert this map into a cube map every time a
new image is avaliable from the video.

We decided that sphere maps are the more efficient so-
lution as long as the mirrored sphere is viewed from the

Figure 9: In the closeup the distortions and bad sample
resolution at the border of the spheremap is visible.

same camera as the scene.

3.2.2 The Specular Sphere Map

The image of the mirrored sphere can be used as environ-
ment map for perfectly reflective surfaces (like chrome).
For glossy materials (like plastic) the map has to be pre-
processed (see section 2 for details).

An ordinary 2D Gaussian blur filter is not sufficient be-
cause the sample resolution at the edge of the sphere map
is different from the sample resolution in the middle. The
solution is a radial blur in all 3 axis (see [14, page 100]).
Table 1 illustrates this process. The radial blur is achieved
by rendering a sphere with radius 1, seen from above, with
the perfectly reflective sphere map mapped onto it. The
texture coordinates are chosen so that the image of the
sphere is seen exactly on the sphere object. The sphere is
rotated step by step around the x-axis. At every step an im-
age is taken and all the images are averaged, weighted by
the amount of rotation of the sphere. The resulting blurred
image (see table 1 (a)) is now mapped onto the sphere ob-
ject. This time the sphere is rotated around the y-axis and
the images are averaged. The resulting image (now blurred
in x and y direction) is mapped onto the sphere object
again and finally the sphere is rotated around the z-axis.
Table 1 (d) shows the resulting map.

3.2.3 The Diffuse Sphere Map

Like the specular sphere map, the diffuse map has to be
preprocessed too. The difference is that the diffuse sphere
map has to be blurred over a solid angle of 180 ◦. To
achieve this with the technique described above, a lot of
samples would be necessary to avoid banding artefacts. To
reduce the number of samples the map is scaled down be-
fore blurring.

4 Rendering

4.1 Rendering IBL

Rendering and lighting with IBL is not much different
from usual rendering. Instead of the results of the formulas
of Lambert and Blinn the texture lookups into the diffuse



(a) (b)

(c) (d)

Table 1: The process of blurring the sphere map correctly.
Picture (a) shows the effect of the radial blur filter in the
x-axis, (b) shows the effect of the same filter in the z-
axis, (c) the effect in the y-axis and (d) shows the resulting
blurred image.

and specular environment maps are performed. Figures
11 and 10 show the vectors involved in the calculation of
the texture coordinates. The diffuse environment texture
lookup is done with the surface normal �Neye. For the spec-
ular texture lookup the reflection of the vector ( �Veye) from
the eye to the surface point at �Neye is used. This vector is
called �Reye. Since the sphere map is in view space, all
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Figure 10: Calculation of sphere map texture coordinates
for a diffuse lookup.

these vectors have to be in view space too. The calculation
of the actual sphere map texture coordinates is performed
as seen in [1, section 5.7].

4.2 Adding Shadows

Shadows are important to determine proportions and rela-
tive positions of objects. For a survey about the effect of
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Figure 11: Calculation of sphere map texture coordinates
for a reflective lookup.

shadows in Augmented Reality scenes see [7].
Every real object in a real scene casts shadows. Virtual

objects usually do not and so they are easily identifiable as
virtual. In pure virtual environments approximated shad-
ows may look visually acceptable. In Mixed and Aug-
mented Reality environments virtual shadows can directly
be compared to shadows of real objects. In this case they
have to match the real shadows in shape as well as in color,
softness and direction to look realistic.

The geometry of the real environment is usually not
known. Virtual objects only cast shadows on themselves
and onto a ground plane determined by the markers. To
overcome this virtual shadow receivers representing the
real objects may be registered in the virtual scene like in
[7]. So real objects may also receive virtual shadows.

4.2.1 Extracting the Light Sources

To calculate adequate shadows it is necessary to know the
position and shape of all light sources in the real scene
which are strong enough to cast shadows. Since all our
lighting is done with environment maps, we do not have
this information. We could either change the light param-
eters manually (which is a very inflexible solution) or ex-
tract them out of the environment map.

There are some very sophisticated methods for extract-
ing light sources out of environment maps used in offline
rendering (see [6]). For realtime we use only a very basic
method. We retrieve the potential light sources by find-
ing all pixels in the environment map which are above a
certain threshold. If many points are found, those close to-
gether are clustered. Every pixel on the environment map
represents a direction into the environment. So the cen-
ter of a region of clustered potential light sources can be
transformed into a directional vector, the area of the region
can be used to determine the size of the light source.

This method may lead to problems in bright environ-
ments. Objects which do not emit enough light to cause
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Table 2: The process of finding useful light positions. In
picture (a) the original sphere map is visible. This sphere
map is scaled down with a maximum filter, as seen in (b).
Picture (c) shows all potential light sources, and picture (d)
shows them clustered to three main light sources.

shadows are also interpreted as light sources, because they
appear as bright as the light sources themselves in the
video image. In section 5.1 this problem is investigated
in more detail.

4.2.2 Soft Shadows

Shadows in the real world almost always have a soft edge.
Perfectly hard shadows are acceptable in games, but in AR
they do not suffice in direct comparison with real shad-
ows. There are several techniques to render soft shadows.
Some of them are fairly realistic, e.g. penumbra wedges
(see [15]) or smoothies (see[3]), others only blur the shad-
ows as efficiently as possible [16, page 269ff].

We decided to use the shadow-map algorithm to ren-
der shadows in our scene because it is easier to simulate
a kind of penumbra with this technique than with shadow
volumes. For the moment we use one of the simplest solu-
tions, which takes several samples from the shadow-map
to create a blurred shadow. Although simple, this approach
greatly enhanced the visual quality of the virtual objects.
In the future, we want to use one of the more realistic al-
gorithms mentioned above.

5 Conclusions and Future Work

5.1 High Dynamic Range

As mentioned in section 4.2.1 the extraction of the light
sources from the sphere map image may cause difficulties.
Due to the limited dynamic range of digital cameras it is
very likely that a lot of pixels have the same value (pure
white), although the real light emission of the objects dif-
fers greatly. Consider a scene where the sun is visible and
illuminates a white wall. Most likely both the sun and the
wall will appear white in the video image, although the sun
is several hundred times brighter than the wall and thus
causes a much more distinct shadow. A solution to this
problem would be the use of images with higher dynamic
range (HDR images, see [5]). These can be created by tak-
ing several images with different exposure settings. Either
aperture stop, gain or exposure time can be adjusted to get
a series of images with different brightness. Both dark and
bright areas in the scene are exposed correctly in one of
these images. The combination of the images can be used
as one HDR texture to calculate lighting and extract the
strongest light sources.

5.2 Other Setups

5.2.1 More cameras

A drawback of the setup with one camera (see section
2.3) is that a new environment map can only be created
if the mirrored sphere is inside the camera image. At the
moment we are experimenting with a two-camera setup,
where one camera captures the scene and the other one
the environment. This has the advantage that the resolu-
tion of the sphere map is not decreased when the scene
camera moves away from the mirrored sphere. Another
advantage is that instead of the mirrored sphere a camera
with a wide fisheye lens can be used. This simplifies the
hardware setup, because the camera does not need to be
exactly aligned.

5.2.2 More Spheres

Video cameras have limited dynamic range. As discussed
in section 5.1 this causes light sources of different intensity
to have the same pixel value in the video image. To over-
come this problem, different types of spheres for the envi-
ronment map and light position extraction could be used.
The mirrored sphere would create the environment map as
usual. In the reflection of a black, glossy sphere, like the
black sphere in a pool game, only bright lights are visible.
The idea is to use a sphere like this for the extraction of
the light source.

5.3 Visual Results

In the following images you see our setup with the mir-
rored sphere in the back. On the left side we placed a real



can for comparison. In figure 12 the virtual objects are
lighted using only the irradiance map. Figure 13 shows
them perfectly reflective. Finally figure 14 shows the ob-
jects lighted with their different material properties. The
teapot is rendered perfectly reflective while the can adds
a decal texture to its reflective material. The globe uses
both diffuse and reflective lighting combined with a decal
texture.

Figure 12: The virtual objects with diffuse lighting only.

Figure 13: The virtual objects with reflective lighting only.
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