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Abstract. With the growing use of head-mounted displays for virtual
reality (VR), generating 3D contents for these devices becomes an impor-
tant topic in computer vision. For capturing full 360 degree panoramas
in a single shot, the Spherical Panoramic Camera (SPC) are gaining in
popularity. However, estimating depth from a SPC remains a challeng-
ing problem. In this paper, we propose a practical method that generates
all-around dense depth map using a narrow-baseline video clip captured
by a SPC. While existing methods for depth from small motion rely on
perspective cameras, we introduce a new bundle adjustment approach
tailored for SPC that minimizes the re-projection error directly on the
unit sphere. It enables to estimate approximate metric camera poses
and 3D points. Additionally, we present a novel dense matching method
called sphere sweeping algorithm. This allows us to take advantage of the
overlapping regions between the cameras. To validate the effectiveness
of the proposed method, we evaluate our approach on both synthetic
and real-world data. As an example of the applications, we also present
stereoscopic panorama images generated from our depth results.

Keywords: Structure from Motion (SfM), Small Motion, Stereoscopic
Panorama, Spherical Panoramic Camera

1 Introduction

For virtual reality (VR) purpose, monoscopic 360◦ videos are currently the most
commonly filmed contents. Major electronic companies are constantly launching
new VR head-mounted displays [1–3] to further immerse users into VR contents.
For capturing 360◦ scenes, cheap and compact Spherical Panoramic Cameras
(SPC) equipped with two fisheye lenses, are gaining in popularity.

Only two types of omnidirectional imaging sensor have the ability to capture
a full 360◦ image. The first possibility is to employ a panoramic catadioptric
camera [4, 5]. A catadioptric camera is the association of a perspective camera
with a convex mirror whose shapes are conic, spherical, parabolic or hyperbolic.
This layout requires complex optics which incurs a loss of resolution. However,
such type of camera can be cost-effective since a single camera is sufficient to
cover the whole scene [6, 7]. The second type of spherical sensors are called
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Fig. 1. Spherical panoramic cameras (Ricoh Theta S, Samsung Gear 360 and LG 360)

(a) Reference panoramic image (b) 3D point cloud and Camera poses

(c) Our depth map (d) Anaglyph panoramic image using (c)

Fig. 2. Stereoscopic panorama generation from small motion.

polydioptric cameras, with such sensors, images captured from multiple cameras
are stitched to form a single spherical image. This bulky architecture allows
to obtain a high resolution panoramic image, but is relatively expensive. To
balance the advantage of the cost efficiency and image quality, some companies
have recently released spherical panoramic cameras (SPCs) [8–10] (see Fig. 1).
The SPC consists of two fisheye cameras (covering a field of view of 200◦ each)
staring at opposite directions.

Several 3D reconstruction algorithms [11, 12] involving omnidirectional cam-
eras have been developed for VR applications. However, these methods are ef-
fective only when the input images contain large motions. For the practical uses,
one interesting research direction is depth estimation from a small-motion video
clip captured by off-the-shelf cameras, such as DSLRs or mobile phone cam-
eras [13–15]. Although these approaches achieve competitive results, they have
not been applied to spherical sensors.

In this paper, we present an accurate dense 3D reconstruction algorithm us-
ing small baseline image sequences captured by a SPC as shown in Fig. 2. To
achieve this, we design a novel bundle adjustment which minimizes the resid-
uals directly on the unit sphere and estimates approximated-metric depth as
well as camera poses; this approach is presented in Sec. 3.2. In order to esti-
mate the all-around depth map, we propose a novel sphere sweeping algorithm
in Sec. 3.3. This approach utilizes both the frontal and rear cameras for tak-
ing advantage of overlapping regions. The qualitative and quantitative results
in Sec. 4 demonstrate that the proposed framework generates highly accurate
depth of the entire surrounding scene. Using the accurate depth map, we also
show realistic 3D panoramas which are suitable for VR devices (Sec. 4.4).
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2 Related Work

The related work can be divided in two categories: the 3D reconstruction from
small baseline images and the depth estimation from fisheye cameras.
Structure from small motion Structure from Small Motion (SfSM) have
recently been spotlighted [13–17]. These approaches require 2 steps; the cam-
era poses estimation and the dense 3D reconstruction. A simplified version of
this framework has been presented in [16] where the dense 3D reconstruction
is computed using a sequence of images captured by a linearly moving DSLR
camera mounted on a rail. To do so, the authors developed an approach inspired
by light-field cameras. The 3D reconstruction method designed for unstructured
small motions have been proposed by Yu and Gallup in [13]. This novel method
relies on the small angle approximation and inverse depth computation. There-
fore, their bundle adjustment is initialized with zero motion and random depths.
After bundle adjustment, the dense depth map is computed using a plane sweep-
ing algorithm [18] and a MRF optimization. Other improvements of this method
have been developed, for instance, in [14], Im et al. designed a new bundle ad-
justment for rolling shutter cameras. More recently, Ha et al. [15] presented a
framework for uncalibrated SfSM and proposed a plane sweeping stereo with a
robust measure based on the variance of pixel intensity.
3D reconstruction using fisheye cameras Although omnidirectional cam-
eras have been extensively used for sparse 3D reconstruction and SLAM [11,
19–23], estimating the dense depth map from the fisheye cameras remains a chal-
lenging problem. For this particular problem, Li [24] presented a fisheye stereo
method, where the author reformulated a conventional stereo matching scheme
for binocular spherical stereo system using the unified spherical model. Kim and
Hilton [25] also proposed a stereo matching method for a fisheye stereo camera,
where a continuous depth map is obtained from a partial differential equation
optimization. Meanwhile, Hane et al. [12] presented a real-time plane-sweeping
algorithm which is suitable for images acquired with fisheye cameras.

In this paper, we combine these two concepts for SPCs. This configuration
is more challenging than the previous methods due to the sensor characteristics.
Thus, the ultimate goal of this work is to estimate an accurate and dense depth
map using a unified optimization framework designed for weakly overlapping
dual fisheye camera system. We show the details of our method in the next
section.

3 All-around Depth from Small Motion

To capture our dataset we used a Ricoh Theta S(see Fig. 1-(a)). This sensor is a
consumer device which has the advantage to be cheap and compact. Each fisheye
camera has a field of view of approximatively 200◦. Therefore, a small overlapping
region is still available, this extra information is taken into consideration in our
technique in order to obtain a better estimation of the depth at the boundary
regions of the image. Another advantage of using this dual fisheye sensor is that
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(a) Unified omnidirectional camera model (b) Camera extrinsic parameterization

Fig. 3. Illustration on bundle adjustment variables

the both images are captured simultaneously on the same imaging sensor thanks
to a clever design involving mirrors and prisms (see Fig. 4). Thus, the images are
always acquired simultaneous without requiring an external electronic trigger.

The goal of the proposed method is to estimate an all-around dense depth
map from a 360◦ spherical video clip with small viewpoint variations for real-
istic stereoscopic applications. Our method consists of two steps: 1) a bundle
adjustment (BA) for camera pose estimation along with a sparse 3D reconstruc-
tion, and 2) a sphere sweep stereo for dense depth map estimation. Our method
differs from the prior works [13–15] by its adaptation to the unified spherical
camera model making our approach very versatile (compatible with any single
viewpoint camera). Furthermore, we propose a novel formulation of the dense
matching which takes overlapping regions into consideration. The details of these
techniques are explained in the following sections.

3.1 Unified Omnidirectional Camera Model

The spherical model allows us to represent the projection of any single view-point
cameras thanks to a stereographic projection model [26–29]. Indeed, the image
formation process for any central camera can be expressed by a double projection
on a unit sphere (see Fig. 3). Firstly, the 3D point X(X,Y, Z) is projected on

a camera-centered unit sphere X̂ = X/‖X‖. Then, the point X̂(X̂, Ŷ , Ẑ) is
projected onto the image plane at the pixel coordinates u(u, v, 1). The distance
between the unit sphere center Cs and the shifted camera center Cc is defined
as ξ, which maps the radial distortion on the image. According to [29], the
projection ~(X) of a 3D point onto the normalized image coordinates x(x, y, 1)
can be expressed as follows:

x = K−1u = ~(X) =

X/(Z + ||X||ξ)
Y/(Z + ||X||ξ)

1

 , (1)
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(a) Averaged images of video clip (b) Panorama image (c) Spherical image

(d) Side view (e) Frontal view (f) Top view

Fig. 4. The 3D point cloud and camera poses from our bundle adjustment

where K is the intrinsic matrix that contains the focal lengths fx, fy, the skew
parameter α and the principal point coordinates cx, cy. The back-projection from
the normalized image coordinates to the world coordinates is also an essential
relationship which can be written as:

X = ~−1(x, w) =
1

w

ξ +
√

1 + (1− ξ2)(x2 + y2)

x2 + y2 + 1

xy
1

−
0

0
ξ

 , (2)

where w is the inverse depth such that w = 1
‖X‖ .

3.2 Bundle Adjustment

In this section, we introduce our bundle adjustment tailored for a SPC consisting
of two fisheye cameras looking at opposite directions. The input of our approach
is a short video clip where each frame is a concatenated image of the two simul-
taneous fisheye camera images, the average image of an input clip is shown in
Figure 4-(a). For the sake of convenience, we consider the left and right images
separately, and name them, respectively, frontal and rear camera.

As explored in the prior works, the use of the inverse depth representation
is known to be effective in regularizing the scales of the variables in the op-
timization. To utilize it in our case, we design a cost function (re-projection
error) for the bundle adjustment to be computed on the unit sphere instead of
in the image domain. This particularity is motivated by two major observations.
Firstly, the spherical model takes into account the non-linear resolution induced
by the fisheye lenses (the re-projection error is uniformly mapped on the sphere,
which is not the case in the image domain). Secondly, the transformation from
the unit sphere to the image coordinates yields strong non-linearity in the cost
function which is not recommended for small motion bundle adjustment (hardly
converges with a high-order model).

The j-th feature point lying on the sphere of the first camera is noted X̂1j .
Its corresponding 3D coordinates can be computed by back-projection using the
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inverse depth (wj ∈ W): Xj =
X̂1j

wj
. Then, the projection of this 3D point

onto the unit sphere of the i-th camera is calculated using the extrinsic camera
matrix parameterized by a rotation vector ri and a translation vector ti. This
rigid transformation is followed by a normalization on the sphere: 〈X〉 = X

‖X‖ .

By considering the frontal camera (F) and the rear camera (R) are fixed in a
rigid body, our bundle adjustment is designed to refine the extrinsic parameters
for the frontal camera images and the 3D coordinates of both features captured
in the frontal and rear camera images by minimizing all the re-projection errors
as:

argmin
r,t,WF ,WR

NI∑
i=1

NF∑
j=1

‖X̂F
ij − 〈PF

i

[
XF

j

1

]
〉‖H +

NR∑
j=1

‖X̂R
ij − 〈PR

i

[
XR

j

1

]
〉‖H

 , (3)

where i and j stand for the image index and the feature index, NI the number
of frames, NF and NR the numbers of features in the frontal and rear camera
images, X̂F

ij and X̂R
ij the unit sphere coordinates of the j-th feature for the i-

th image, and ‖ · ‖H the Huber loss function with a scaling factor set as the
focal length. The rigid motion matrices PF

i and PR
i are all expressed in a single

referential coordinates system thanks to the 3× 4 extrinsic calibration matrix P
(between the frontal camera to the rear camera):

PFi = [R(ri)|ti], PRi = P

[
PFi
m

] [
P
m

]−1
, m =

[
0 0 0 1

]
, (4)

where the function R transforms the Rodrigues rotation angles into their
rotation matrix. For the initialization of the bundle adjustment parameters, all
the rotation and translation vectors are set to zero which is a reasonable as-
sumption for small motion 3D reconstruction [13–15]. The metric-scale extrinsic
matrix P are pre-calibrated and our bundle adjustment takes advantage of the
sensor parameters. This helps to estimate the rigid transformation between the
frontal and the rear camera. Consequently, our BA is designed to embrace all
inter-frame poses of both cameras in one optimization framework. Therefore, the
reconstructed 3D structure and poses are estimated with an approximate metric
scale (the scale may not be perfectly metric, but close to it). Thus, we can set
the initial depth for all features as 10 m or 100 m for indoor or outdoor scene,
respectively.

To find the feature correspondences for the frontal camera, we extract Har-
ris corner features [30] from the first image. We filter out the features on the
boundary pixels which has low image resolution and can cause inaccurate fea-
ture matching. By using a Kanade-Lucas-Tomashi (KLT) algorithm [31], these
features are then tracked in the other images to find their correspondences, and
tracked back to the first image to filter outliers by their bidirectional error. The
points having an error larger than 0.1 pixel are discarded. The same process is
done for the rear camera images. To solve the minimization problem, we use
the Ceres solver [32] to optimize our bundle adjustment which use Huber loss
function to be robust to outliers.
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Unit sphere

𝑳𝒕𝒉 virtual sphere

𝒍𝒕𝒉 virtual sphere
𝒊𝒕𝒉 view (Frontal)

unit sphere

𝟏𝒔𝒕 view (Frontal) 

Reference view

Unit sphere

𝒍𝒕𝒉 virtual sphere

𝑳𝒕𝒉 virtual sphere

𝟏𝒔𝒕 view (Rear)

Reference view

𝒊𝒕𝒉 view (Rear)

unit sphere

Fig. 5. Illustration on the sphere sweeping algorithm

3.3 Sphere Sweeping Algorithm

With the camera extrinsic parameters estimated from the previous section, our
goal is to estimate dense depth maps for both fisheye images. The plane sweeping
algorithm [18] is a powerful method for dense matching between multiview im-
ages. The main idea is to back-project the images onto successive virtual planes,
perpendicular to the z-axis, and find the depth of the plane that has the high-
est photo consistency for each pixel. Hane et al. [12] adapt the plane sweeping
algorithm to the fisheye camera model. Their idea is to adapt the planar homog-
raphy on the unit sphere, which involves a systematic transformation between
the sphere and the image plane.

Though the plane sweeping approach using fisheye camera can estimate a
large field of view depth map, the accuracy can be lower especially for image
boundary pixels due to their low spatial resolution [12]. A SPC can compensate
this resolution issue by using the overlapping region between the rear and the
frontal camera. To achieve this goal, we propose a new dense matching algorithm
suitable for SPCs, called sphere sweeping (Fig. 5). Instead of using virtual planes,
we utilize virtual spheres centered at the reference camera. it lets us utilize the
color consistency of the overlapping region, which ensures a better estimation of
the boundary depths.

Basically, our sphere sweeping algorithm back-projects the image pixel u in
the reference image onto a virtual sphere S, and then projects them onto the
other images to obtain color intensity profiles I. An important idea is that we can
use two simultaneous virtual spheres centered at the frontal and rear cameras,
respectively, and utilize them together for dense matching. When the l-th virtual
spheres have an inverse radius (depth) wl, the back-projections of uF and uR

onto the frontal and rear camera’s virtual spheres are described respectively as:

SFl = ~−1(K−1F uF , wl), SRl = ~−1(K−1R uR, wl) (5)

Now, we can consider four possible cases of projections: frontal-to-frontal
(FF), frontal-to-rear (FR), rear-to-frontal (RF), and rear-to-rear (RR). The pro-
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(a) IFi (uFFli ) (b) (θFFli < θFOV
2

) (c) IRi (uFRli ) (d) (θFRli < θFOV
2

)

Fig. 6. Examples of warped image and visibility (i = 1, l = 0). (a) Warped image
from frontal to frontal. (b) Visibility mask of (a). (c) Warped image from rear to
frontal image. (d) Visibility mask of (c).

jections of the frontal and rear camera’s spheres onto an i-th frontal camera
image are computed by:

uFFli = KF~(PFi
[
SFl
1

]
), uRFli = KF~(PFi

[
P
m

]−1 [
SRl
1

]
) (6)

And the projections onto the i-th rear camera image are computed by:

uFRli = KR~(P

[
PFi
m

] [
SFl
1

]
), uRRli = KR~(P

[
PFi
m

] [
P
m

]−1 [
SRl
1

]
) (7)

Since each camera has a certain Field-Of-View (FOV), the projected image
coordinates should be selectively used depending on whether they are in the
field of view or not. For this reason, we measure the angle between the cam-
era’s principal axis and the ray direction for each projection using the following
formulations:

θFFli = cos−1(
[
0 0 1

]
〈PFi

[
SFl
1

]
〉), θFRli = cos−1(

[
0 0 1

]
〈P

[
PFi
m

] [
SFl
1

]
〉), (8)

θRFli = cos−1(
[
0 0 1

]
〈PFi

[
P
m

]−1 [
SRl
1

]
〉), θRRli = cos−1(

[
0 0 1

]
〈P

[
PFi
m

] [
P
m

]−1 [
SRl
1

]
〉).

(9)

Finally, the intensity profiles for the j-th pixel in the reference frontal and rear
images w.r.t. the l-th inverse depth can be obtained by collecting the image
intensities for all the corresponding visible projected points:

IFFlj = {IFi (uFFlij )|θFFlij <
θFOV

2
}, IFRlj = {IRi (uFRlij )|θFRlij <

θFOV
2
}, (10)

IRFlj = {IFi (uRFlij )|θRFlij <
θFOV

2
}, IRRlj = {IRi (uRRlij )|θRRlij <

θFOV
2
}. (11)

where i = {1, · · · , Ni} and θFOV is the field-of-view angle (200◦ in our paper).
A Bicubic interpolation is used for calculating the sub-pixel intensities. Fig. 6
shows the examples of warped image and masks of reference image.

Our matching cost is formulated as a weighted sum of variances of two in-
tensity profiles. The effectiveness of the variance as a matching cost for small
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motion case has been demonstrated in [15]. For the frontal and rear cameras,
our matching costs are respectively:

VF
lj = Var(IFFlj ) + λVar(IFRlj ), (12)

VR
lj = Var(IRRlj ) + λVar(IRFlj ), (13)

where Var(·) is the variance function and λ is a weight for balancing the two
variance values from the opposite side images. These costs are stacked over all
the inverse depth candidates w1, · · · , wL to build cost volumes VF and VR for
the frontal and rear camera, respectively.

Initial depth maps are extracted from VF and VR via Winner-Takes-All(WTA)
method. For each of the frontal and rear camera’s cost volumes, we compute a
confidence map as C = 1 −min(V)/median(V) to remove outliers having con-
fidence values under a certain threshold (< 0.01). Finally, the depth maps are
refined via a tree-based aggregation method proposed in [33]. It helps improving
the quality of the results without masking out any depth on the un-textured
region.

4 Experimental Results

We assess our method with both synthetic and real-world datasets. In Sec. 4.2,
a large series of synthetic experiments is conducted with both to quantitatively
measure the accuracy of our method with respect to the baseline magnitude and
the number of images. A comparison of our method against the conventional
plane sweeping with real images is provided in Sec. 4.3. These tests underline
the high versatility of the proposed method with real-world data. We imple-
mented our method using both MATLAB and C++. A computer equipped with
an Intel i7 3.4GHz and 16GB was used for the computations. The proposed algo-
rithm takes about 10 minutes for a 30 frames (540×960) sequence. Among all the
computation steps, the dense matching is clearly the most time-consuming. But,
it is expected that a GPU parallelization could significantly increase the speed
of the overall algorithm [12, 34]. The algorithm for feature extraction, track-
ing and bundle adjustment takes about one minute. The intrinsic and extrinsic
parameters are pre-calibrated by using [35–37].

4.1 Validation for the convergence and scale estimation

To demonstrate the effectiveness of the proposed BA in terms of convergence, we
conduct multiple experiments against its conventional counter-part (BA on the

Table 1. Re-projection error percentage w.r.t the number of iteration.

# of iteration Initial 1 2 3 4
Proposed 100 % 48.7 % 7.9 % 4.4 % 3.8 %
Standard 100 % 74.3 % 67.8 % 64.4 % 61.6 %
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Table 2. The average reconstructed scale value

Checkerboard size 10cm 5cm 2cm
1st trial 13.9cm 5.1cm 3.3cm
2nd trial 10.9cm 7.7cm 1.9cm
3rd trial 9.5cm 6.1cm 2.5cm

image domain). Specifically, we measure the re-projection errors of both tech-
nique at every iteration. Table 1 shows re-projection error percentage (average
over 20 datasets) with respect to the number of iteration. It is clear that the stan-
dard BA on the image domain does not converge at all, whereas, the proposed
BA always converges well. It is because the double projection process (world to
sphere and sphere to image) tends to generate singularities which induces many
local minimum in the cost function.

As the proposed bundle adjustment is designed to approximately estimate
the metric scale, we conduct a quantitative evaluation method to estimate the
accuracy of the reconstructed scale obtained by our approach. To measure the
scale, we use 3 types of calibration checkerboard (2, 5, 10cm) with 3 different
backgrounds and average the scale of the squares on the checkerboard. The re-
constructed scale may not be perfectly metric scale since the baseline between
two fisheye cameras is very small, but it is close to the metric as shown in Ta-
ble 2, which could not be accomplished using previous pinhole-based SfSM meth-
ods [13–15]. We also measure the reconstructed scale values in Fig. 10-(f), the
height of the reconstructed bookshelf is 2m, which in reality is 2.1m.

4.2 Synthetic datasets

For quantitative evaluation, we rendered synthetic image sequences for both
frontal and rear camera (with ground-truth depth maps) via BlenderTM. The
synthetic dataset consists of a pair of 30 images with a resolution of 480×960
and a 200◦ field of view. The two cameras are oriented at opposite directions
in order to imitate the image sequences acquired from our spherical panoramic
camera. We use the depth map robustness measure (R3) [38, 14, 15], which is
the percentage of pixels that have less than 3 label differences from the depth
map ground-truth1 (see Fig. 8).

We performed experiments to evaluate the effect of the baseline magnitude
and the number of images on the resulting depth maps. We firstly compute the
R measures for baselines over the minimum depth value of the scene (Baseline
= Min.depth×10b) where b = −3.5,−3.3, ...,−1.1. In Fig. 8(a), the R measure
underlines that the proposed method achieves stable performances when the
baseline b is larger than -1.5.

Next, Fig. 8(b) reports the performances of the proposed method according
to the number of images used with a fixed baseline b = −1.5. We can observe

1 We convert ground-truth depth to the quantized sweeping labels.
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(a) Averaged image of video clip (b) Ground truth depth map
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(c) Error map of (d) (d) Our depth map

Fig. 7. Our depth map and error map. (128 labels, 480×960, FOV : 200)
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Fig. 8. Quantitative evaluation on the magnitude of baseline (left) and the number of
images used (right).

that better performances are achieved with a greater number of images, how-
ever, the performance gain ratio is reduced as the number of images increases.
The experiment shows that utilizing 20 images is a good trade-off between the
performance gain and the burden of dense depth reconstruction for the proposed
method. The example result and error map are shown in Fig. 7.

4.3 Real-world datasets

In this subsection, we demonstrate the performances of the proposed algorithm
on various indoor and outdoor scenes captured by a Ricoh Theta S with video
mode. For the real-world experiments, we use 1 second video clips for indoor
scenes and uniformly sampled 30 images from 3 seconds video clips for outdoor
datasets since the minimum depth in outdoor is usually larger than indoor scenes.
The datasets were captured from various users with different motions.

To generate our panoramic images, we do not apply the standard approach
which consists in the back-projection of both images on a common unit sphere.
This approach is prone to parallax errors since the translation between the cam-
eras is neglected. Instead, we project our dense 3D reconstruction on a unique
sphere (located in between the two cameras) in order to create a synthetic spher-
ical view which ensures a perfect stitching. This method preserves the structure
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(a) Input reference image (b) Depth from plane sweeping

(c) Depth from sphere sweeping (d) Depth from sphere sweeping

with single-side view with dual-side view

Fig. 9. Comparison on dense matching method.

of the scene by using all the intrinsic and extrinsic parameters (Fig. 10, 2nd row).
Panorama depth maps are obtained by applying the similar process. As shown
in Fig. 10 (4th row), the proposed method shows promising results regardless of
the environment.

We also compare our sphere sweeping method with the conventional plane
sweeping method using our hardware setup. The warped images via conventional
homography-based method [12] are flipped on the boundary region where the
FOV is larger than 180◦, so the depth maps estimated with these flipped images
in Fig. 9-(b) contain significant artifacts on the image boundary. Fig. 9-(c) and
(d) show that the sphere sweeping method outperforms the competing method.
Especially, the depth map (Fig. 9-(d)) obtained with our strategy using overlap-
ping regions shows better performance than that of single-side view.

4.4 Applications

Since our method can reconstruct accurate 3D of the surrounding environment,
it can deliver a 360 degree 3D visual experience using a head-mounted display [1–
3]. Many approaches propose to generate anaglyph panoramas [39] and stereo-
scopic images [40, 41], to produce VR contents in a cost effective way. In this
subsection, we show the anaglyph panorama and the 360◦ stereoscopic images
as applications.

In order to create a convincing 3D effect, we generate two synthetic views
with the desired baseline (typically 5 to 7.5cm to mimic the human binocular
vision). The computation of such synthetic images is one again based on the
dense 3D structure of the scene (as discussed in the previous section). The re-
sulting anaglyphs and stereoscopic panoramas are available in Fig. 11. The 3D
effect obtained with our method is realistic thanks to our accurate depth map
computation approach.
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(a) (b) (c)

(d) (e) (f)

Fig. 10. The input images are captured by Ricoh Theta S video mode for one second
(30 frames). (a)-(d) Outdoor scene. (e)-(f) Indoor scene. First row : Averaged image
of video clip. Second row : Panorama images. Third row : Our depth map from small
motion. Fourth row : Sparse 3D and Camera poses.
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(a) (b) (c) (d)

Fig. 11. VR applications. Top : Averaged images of video clip, Middle : Anaglyph
panoramic images(red-cyan), Bottom : Stereoscopic VR images.

5 Conclusion & Discussion

Discussion In contrast to the prior SfSM BA methods [13–15] designed for pin-
hole cameras, our BA uses usual rotation representation, instead of the small-
angle approximated matrix. Indeed, it has been demonstrated that spherical
sensors are particularly robust to motion ambiguity while small magnitude mo-
tions are performed [42]. With this observation, the proposed BA may have the
potential to be generalized to any type of motion. However, our method cannot
handle large rotations due to the limitation of the feature tracking algorithm.
This could be an interesting direction to pursue this work further.

Furthermore, we have noticed some degenerated cases throughout the course
of the study. First, the estimated camera poses and the 3D points cannot be
matched with the camera extrinsic parameters between frontal and rear cameras
(metric scale) when the motion is only pure translation or only z-axis rotation. In
this case, the estimated depth map on the fisheye cannot produce a well-aligned
panorama depth. If the two cameras have zero baseline, the reconstruction is up
to a scale factor, which may require an additional user input for adjusting the
scale for stereoscopic rendering.
Conclusion We have proposed a practical 3D reconstruction method for stereo-
scopic panorama from small motion with SPC. We achieved this by utilizing our
bundle adjustment whose residuals are computed on unit sphere domain, and
the estimated camera pose and 3D points are approximately metric. Our sphere
sweeping algorithm enables to compute all-around dense depth maps, minimizing
the loss of spatial resolution. With the estimated all-around image and depth
map, we have shown practical utilities by introducing 360◦ stereoscopic and
anaglyph images as VR contents.
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