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ABSTRACT

We present a method for collaborative augmented reality (AR) that
enables users from different viewpoints to interpret object refer-
ences specified via 2D on-screen circling gestures. Based on a
user’s 2D drawing annotation, the method segments out the user-
selected object using an incomplete or imperfect scene model and
the color image from the drawing viewpoint. Specifically, we pro-
pose a novel segmentation algorithm that utilizes both 2D and 3D
scene cues, structured into a three-layer graph of pixels, 3D points,
and volumes (supervoxels), solved via standard graph cut algo-
rithms. This segmentation enables an appropriate rendering of the
user’s 2D annotation from other viewpoints in 3D augmented re-
ality. Results demonstrate the superiority of the proposed method
over existing methods.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities;

1 INTRODUCTION

Identifying objects in a 3D environment is an important step in aug-
mented reality (AR) applications. In AR, virtual content must be
appropriately registered with the physical scene, and annotations
often refer to more than just a single 3D point. Annotations can
be made to an object in the physical scene or to a part of such an
object, and hence, such “spatially dependent components” of AR
annotations [28] need to be semantically identified.

One well-known simple example is identifying the ground plane
on which virtual characters in an AR game can interact [12]. An-
other example would be AR virtual characters finding a believable
place to sit, based on recognition of physical chairs in the real
scene [22].

In many scenarios, however, techniques such as plane detection
and object recognition are not sufficient if the physical object of
interest cannot be determined until the user specifies it during in-
teraction. For example, the user may be interested in a specific 3D
surface in the physical scene or an object that is not known by the
system a priori. This scenario is particularly relevant in multi-user,
interactive AR labeling applications such as AR-based remote as-
sistance and collaborative navigation. In these applications, the AR
task quite often depends on the context, which must be interactively
clarified during run time. Furthermore, the virtual annotations in-
serted by users can refer to objects of interest of many different
sizes and shapes that may not be known beforehand (e.g., a machine
part to be replaced or an arbitrary landmark to guide the navigation
in an unfamiliar environment).
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Therefore, a key question is: how can we identify the user-
specified object/part in real time to enable instant multi-party vi-
sual communication in an AR collaboration application? This is
particularly challenging because the users can explore a shared
reconstructed scene yet may have independent 2D views of the
scene [23], thus causing challenges for 3D referencing techniques
in collaboration scenarios [19].

Based on recent studies [4, 11, 18], we chose to focus the scope
of this paper on 3D object referencing via the assistance of a user-
drawn 2D circle annotation since (1) on-screen drawing is a simple
way to convey information, especially when directly accessing the
object is impossible (e.g., due to far distances, hazardous environ-
ments, or in remote assistance scenarios), (2) a single pointer (e.g.,
a red dot) has been shown to provide insufficient cues compared
with 2D drawing annotations [11], and (3) a circle has been shown
to be the most common 2D gesture annotation for referencing an
object in a scene [18]. Note that we use the term circle to loosely
include any kind of closed loop 2D drawing that roughly resembles
a circle, such as an ellipse [18].

In this paper, we propose a new method to locate the objects to
which the user-drawn on-screen circles refer in general multi-user
collaborative AR scenarios. Unlike existing techniques [4, 11, 18],
our method does not require the object of interest to be planar or
nicely isolated for a careful scan. Instead, our method combines
the merits of both plane determination and 3D structure inferencing
methods by simultaneously extracting the 2D image pixels as well
as the 3D scene points associated with the object in a unified three-
layer graph relating pixels, points, and volumes to each other. Our
system is called “PPV” in reference to these three spatial compo-
nents, but it also refers to the “paint-per-view” process of indicating
annotations in separate 2D input views. Our method is designed for
interactive real-time scenarios, such that it can work comfortably
with a room-sized AR scene reconstructed with a modern SLAM
algorithm [27].

We organize the remaining sections of the paper as follows. In
Section 2, we describe the challenges of using 2D circle annotations
for 3D object localization with respect to prior work in 3D AR an-
notation and object segmentation. Section 3 introduces the structure
of the proposed three-layer graph. Based on this graph, we describe
in Section 4 how an efficient, unified inference can be made to si-
multaneously locate the object both on the image plane and in 3D
space. Our implementation is described in Section 5, followed by
experiments in Section 6. Finally, discussion and future work are
described in Section 7, followed by a summary in Section 8.

2 CHALLENGES AND RELATED WORK

There are two major challenges a system needs to handle when us-
ing 2D circle annotations for locating 3D objects in AR scenes: (1)
2D input which cannot inherently directly describe something in 3D
without making certain inferences, and (2) a limited observation of
the scene simply due to working in unprepared environments for
augmented reality.
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2.1 Lower Dimensionality Input
First, 2D drawings inherently have limited representational power
to describe a 3D entity due to the lower dimensionality of the object
referencing input.

Consider a projection of the 2D drawn enclosure from the
drawer’s viewpoint to the 3D space—it can only provide a 3D cone
in which the 3D object of interest may reside. In other words, a 2D
circle can be seen as a projection of a 3D ring that is possible to re-
side anywhere on the cone surface. In line with this interpretation,
a number of plane fitting approaches have been proposed [4, 10]
to locate the 3D ring and, in some sense, the 3D object of inter-
est equivalently. This overall approach may be likened to a more
general version of flashlight selection [13].

Another popular interpretation to the 2D user-drawn annotations
is graffiti/spray-paint [6, 25], which assumes the drawing trajectory
is on those visible, nearest 3D points (from the drawer’s viewpoint)
associated to the painted pixels. It does not enforce the drawing
path to form a ring in 3D space, which gives more freedom to inter-
pret the drawing annotation in some sense. However, this method
is not directly applicable to using circle annotations for referencing
purposes. The reason is that, unlike pointers or scribble annotations
that have also been used for referencing purposes in AR [3,16], the
path of a casually drawn circle is not necessarily on the object to be
referred to (Figure 1). In a worst case, all of the trajectory points are
painted on some other nearby objects (in the view of the drawer’s
2D image plane), but none of them are on the object that the user
intends to refer to. As a result, neither these points in 3D nor their
projections to another viewpoint help achieve the goal of referenc-
ing the object of interest. Ultimately, both plane fitting and graffiti
methods are only suitable for referencing a planar object or a sur-
face of an object.

2.2 Limited Observation of the Scene
The second challenge of locating 3D objects given 2D circle an-
notations in AR applications is that only a limited observation of
the scene may be available. In addition to the limitations of having
two-dimensional drawing annotations as input, the color images on
which the user can draw are also two-dimensional. Note that there
exists a subtle difference between the challenges of referencing 3D
objects using 2D annotations and inferring scene geometry and se-
mantics from 2D images: a 2D annotation inherently requires dis-
ambiguation due to lower dimensionality input, while a 2D image
is a limited observation of a 3D world.

To overcome these challenges, the object localization algorithm
can be directly performed on the reconstructed 3D scene to take ad-
vantage of the accessible 3D geometric information; this is readily
available in many situations since modern scene reconstruction al-
gorithms [8, 17] allow an object to be efficiently scanned and mod-
eled in just a few seconds. A number of prior works fall in this
category: Tatzgern et al. [24] determine a ground plane in a 3D
point cloud. After removing the plane points, objects can be iden-
tified by clustering the remaining points. This method is limited
to simple scenes where objects are placed on the ground or on a
table. Golovinskiy and Funkhouser [5] propose to allow users to
specify the center and radius of an object to be interactively ex-
tracted from a 3D point cloud. Meyer and Do [15] propose a more
convenient GrabCut-style [21] user interface which projects a 2D
drawn bounding rectangle to be a 3D bounding box for 3D mesh
segmentation. However, none of these algorithms consider any rich
2D image cues but instead only rely on the underlying 3D model for
object segmentation. In addition, they overlook the drawing user’s
effort on recognizing objects from a sparse, and likely low quality,
3D model.

SemanticPaint [26] is another method that operates directly on
the 3D scene. It segments the scene via interactive touch gestures
and machine learning using a Conditional Random Field model.

Annotation Methods Planar Convex
Spray-paint [6, 25] 3
Planar interpretations [4, 10] 3
Convex 2D-3D co-segmentation [18] 3
Our method 3 3

Table 1: Annotation methods for object referencing in 3D aug-
mented reality via 2D on-screen gestures and whether or not they
appropriately can handle different types of object geometry.

Their method continuously learns scene labels from the online seg-
mentations and propagates such labels to newly seen areas of the
environment accordingly. Our method does not rely on pre-defined
scene knowledge such as ground plane or online learned seman-
tics, but we see our method as complementary to such approaches
(e.g., our method may be used as an input to guide online learning
algorithms and to guide the initial segmentation).

To avoid users directly operating on a reconstructed 3D model,
Nuernberger et al. [14,18] propose to look for a 3D convex hull that
a 2D image-plane segmentation result belongs to. However, their
convex object assumption, while inspired from cognitive science
research [7], is not always applicable in AR for identifying individ-
ual components on a carefully-scanned, human-made object. The
problem is that when we consider a general AR task in a cluttered
room, where objects can be stacked on each other or leaning on
a wall instead of being nicely isolated for scanning and modeling,
even a 3D convex object can appear to be a 2D plane as some sur-
faces of the object are never scanned, which breaks the convex hull
assumption. This degeneration of sensing a 3D convex object as
something that looks like a 2D plane also occurs in outdoor scenes
because an object can be far away such that only a face of it can be
scanned until we approach the object up close.

In summary, all these methods strongly rely on the qual-
ity/completeness of the underlying 3D model. In contrast, our pro-
posed method jointly optimizes the extractions of the 2D pixels and
the 3D scene points associated with the object in a unified graph-
based framework as described next. Table 1 shows how our method,
compared to previous approaches, can appropriately handle both
planar and convex objects of interest using a single framework.

(a) Original drawing viewpoint. (b) Spray-paint interpretation from a dif-
ferent viewpoint.

Figure 1: Illustration of a spray-paint interpretation of 2D circle
annotations in 3D augmented reality used in many prior works
(e.g., [6, 25]).

3 THE PROPOSED THREE-LAYER GRAPH

We formulate the object localization problem as an optimization
problem on a graph. We construct a graph G = {E,V} where the
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edges E describe how two vertices influence each other, and the
vertices V consist of all the 2D pixels Vx in the drawing frame, 3D
scene points Vy, and supervoxels Vz based on them. The optimiza-
tion goal is to label each vertex in this graph to be either belong-
ing to the target foreground object F or the background scene B,
given user assigned initial values, i.e., the drawn circle, on Vx. Note
that while the number of 3D scene points can keep growing as the
person holding the camera keeps exploring the scene in an online
setting, here the graph modeling and optimization are based on the
latest available 3D scene model when the drawing is made.

Three kinds of vertices in a single graph:

3D point2D pixel 3D volume

Figure 2: The proposed three-layer graph. Blue circles: image pix-
els; Orange triangles: 3D points; Green regions: supervoxels.

Figure 2 illustrates the structure of our three-layer graph. Three
kinds of vertices are marked as three different colors: the blue cir-
cles denote pixels on the 2D image plane, each connected with four
neighboring pixels; orange triangles denote 3D points associated
with some structural object in the scene; green regions represent su-
pervoxels, where each can be connected with multiple 2D and 3D
vertices. The main reason for constructing these supervoxels is that
we want to indirectly exchange information between the native 2D
and 3D layers with some tolerance of any imperfect 2D-3D regis-
tration (a 3D point is typically generated by triangulating or fusing
several 2D pixel observations from different views and is therefore
not necessarily perfectly aligned with the corresponding pixel in the
current image).

Specifically, we adopt Papon et al.’s VCCS algorithm [20] to ef-
ficiently over-segment the space in which the 3D points and the
back-projected 2D pixels reside. As a result, every 3D point is
covered by some supervoxel while some 2D pixels may not be as-
sociated with a supervoxel if they fall outside of the reconstructed
scene. In addition, each supervoxel region is associated with at least
one point, which can be a point in the scene model or a 2D pixel.
We further allow message passing between adjacent supervoxels, as
illustrated with the green edges connecting two supervoxel regions.
Compared with other graph-based methods which construct edges
directly on the 3D model [9, 15], this design enables significantly
faster graph construction since the number of supervoxels (also the
edges between them) is constantly hundreds of times smaller than
that of 3D points in our experiments.

As can be seen, this graph nicely connects the 2D image pixels
and 3D scene points, such that 2D and 3D information can be freely
passed to influence and benefit from each other, as the color image
typically has a higher resolution and the scene model can provide
more geometric cues. Moreover, the integration of image and scene
model into a single graph allows us performing an efficient, unified
global optimization to solve the object localization problem, as will
be detailed in the next section.

4 UNIFIED OPTIMIZATION

As briefly mentioned in the introduction, quite a few previous works
also try to interpret a user’s 2D drawing in 3D. However, they all
perform two-stage reasoning strategies, which first either determine
the object region or pre-process the drawn trajectory on the image
plane and then accordingly infer the object location in 3D based on
the scene model. This paper, in contrast, proposes a unified energy
minimization approach to simultaneously locate the user’s chosen
object in the image as well as in the scene model while taking into
account information from both domains. The energy function we
minimize is Equation (1):

Φ(G) = Φx +Φy +Φxx +Φxz +Φyz +Φzz (1)

where Φx and Φy codify the color likelihood and locality probabil-
ity of Vx and Vy based on the user drawn circle. Formally,

Φx = ∑
v∈Vx

ψx(v), (2)

where ψx(v) = − log p(Cv,Lv|αv) determines the cost of assigning
a vertex v to αv ∈ {F,B} based on its color Cv and locality Lv infor-
mation. Specifically, for a v inside the user drawn circle, the condi-
tional probability p is estimated by evaluating the foreground and
background color Gaussian Mixture Models (GMM) obtained by
collecting pixels inside and outside the drawn circle respectively1;
for pixels outside the circle, we assign a constant cost to penalize a
pixel being labeled as foreground. Similarly,

Φy = ∑
v∈Vy

ψy(v), (3)

where ψy(v) yields a constant penalty for a 3D point if it is outside
the 3D cone projected from the 2D circle yet is labeled as fore-
ground. For a 3D point inside the cone, it is not clear if the point
belongs to the target object or another object (e.g., occluding or be-
ing occluded by the target object). Therefore, we remain neutral,
i.e., let ψy = 0, in this case. ψy(v) only depends on locality since
the scene point cloud can be sparse and color models built on it can
be unreliable.

The remaining four terms in Equation (1) define how to pass
message among vertices. Φxx is a standard edge-sensitive term in
image processing [1] allowing two neighboring pixels similar in
color to influence each other. Formally,

Φxx = ∑
(i, j)∈Exx

1[αi 6=α j ](λ1 +λ2e−µ‖ci−c j‖2
), (4)

where Exx are edges at the pixel layer, and 1[... ] is an indicator func-
tion equal to one if two adjacent pixels are assigned different labels.
The last term scaled with λ2 adds larger cost in addition to the base
cost λ1, if the two pixels i and j have similar color ci and c j. The
constant parameter µ is defined to be:

µ =
1

2 ∑
(i, j)∈Exx

‖ci−c j‖2

|Exx|

, (5)

where the cardinality |Exx| denotes the number of edges between
2D vertices.

Φzz is where we implement the convexity constraint. We
encourage two neighboring supervoxels to get the same fore-
ground/background label:

Φzz = ∑
(i, j)∈Ezz

1[αi 6=α j ]ψzz(i, j), (6)

1Color GMMs are modeled only once, when a circle is drawn by the
user. We did not update color models during segmentation although it could
be done (e.g., [21]) in future work.
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where Ezz are edges at the supervoxel layer, and ψzz(i, j) =
Wzz1[θdihedral>(π/2−θtol)] is a weighted indicator function evaluating
if two neighboring clusters of points form an obtuse angle, i.e., geo-
metrically more likely to belong to the same object [7]. We apply a
weight Wzz =

|Vy|
|Vz| to balance this term with the others as the number

of Vz is typically much smaller than that of the native vertices.
Φxz and Φyz enable cross-layer information propagation as fol-

lows:

Φxz = Wxz ∑
(i, j)∈Exz

1[αi 6=α j ], (7)

Φyz = Wyz ∑
(i, j)∈Eyz

1[αi 6=α j ], (8)

where Exz and Eyz are cross-layer edges. The two energy terms Φxz
and Φyz penalize the points associated with the same supervoxels
yet receiving different labels during the optimization. Wxz and Wyz
are constant weights.

With the energy terms being defined as such, one can then apply
a graph cut algorithm [2] to determine an optimal labeling for V ,
equivalently, the location of the target object both in 2D and in 3D,
considering all information provided from all layers. In this unified
framework, each energy term contributes different hints from the
user, the 2D, or the 3D observations for a global optimization rather
than making its own hard decision and passing along it to the next
stage. In the following sections, we show how well the guaranteed
optimal solution outperforms prior work which can be trapped in a
local minimum.

5 IMPLEMENTATION

We created a working prototype of our method using a Microsoft
Kinect sensor and Elastic Fusion [27] for visual SLAM. Two vi-
sualizations of the referenced object were implemented: (1) a 2D
ellipse fitted to the 3D segmented points projected onto the render-
ing plane [18]; and (2) highlighted 3D points with periodic time-
varying opacity. See the right column of Figure 8 for an illustration
of the highlighted 3D points visualization.

In our unoptimized implementation, the method runs in about
1.93 seconds for a point cloud of over 300,000 points on an Intel
Core i7-4790 CPU with a Quadro K5000 GPU and 16GB of RAM.
To avoid any interruption to the interaction and visual SLAM pro-
cessing, we run our method in a background thread; a spray-paint
visualization of the annotation is shown until the segmentation is
completed, at which point either the 2D ellipse or highlighted 3D
points are shown.

In all experiments, the following parameters were used: λ1 = 4,
λ2 = 8, Wxz = 0.5 and Wyz = 10.

6 EXPERIMENT

We ran a qualitative experiment comparing against what we con-
sidered to be the most competitive related methods for object ref-
erencing in augmented reality via 2D on-screen gestures. Specif-
ically, we compared against a 3D planar annotation interpretation,
the median depth plane [4], and Nuernberger et al.’s convex 2D-3D
co-segmentation algorithm [18].

In order to evaluate the methods in general environmental set-
tings, we recorded both outside-in and inside-out scenes as datasets
used for the experiments. In the outside-in datasets, we let the cam-
era move around target objects to capture them from many perspec-
tives; in the inside-out datasets, the layout of the scene prohibits the
camera to make an orbital observation on the objects so only parts
of the objects are scanned. See two sample models in bird’s eye
views in Figure 3.

In the evaluation, each method was judged on how well it could
appropriately transfer a 2D on-screen circle gesture drawing to a

(a) Outside-in: scanning objects placed on a table.

(b) Inside-out: walking by a bookcase and scanning objects in it.

Figure 3: Two scenes modeled in the outside-in fashion and the
inside-out fashion, respectively. Black frusta illustrate the camera
trajectories; Magenta locates the latest position of a camera. Dark
blue indicates unmodeled regions.

novel viewpoint. Such a scenario may occur in AR collaboration
where users do not share the same view, such as in co-located, re-
mote, or asynchronous collaboration (e.g. [4,19,23]); we also imag-
ine that this scenario is useful in situations where reconstructed en-
vironments are explored and semantically labeled collaboratively
(e.g., exploring and labeling items of interest in real estate via Mat-
terport reconstructed scenes).

There were 4 objects of interest used per scene and 3 differ-
ent viewpoints for each object. For outside-in scenes, we used
viewpoints with approximately 0°, ±90°, and 180° differences in
viewing angle with respect to the object of interest. For inside-
out scenes, we used viewpoints with approximately 0°, ±45°, and
±90° differences in viewing angle with respect to the object of in-
terest.

To gather qualitative feedback from a wide range of users, we
conducted a survey using Amazon Mechanical Turk (AMT), asking
participants to compare between the three methods. Specifically,
similar to Nuernberger et al. [18], we showed the participants a set
of four images for a given object referenced via a 2D on-screen
gesture: (1) the original 2D on-screen gesture from the drawing
viewpoint; (2-4) a new viewpoint showing each of the three meth-
ods’ ellipse rendering results. Each AMT participant was asked,
“Which image (left, middle, or right) best conveys the same mean-
ing as the red drawing in the first picture?” The order of the images
was randomized to avoid any bias effects. We invited only partic-
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(a) Original drawing. (b) Median depth plane [4]. (c) 2D-3D co-segmentation [18]. (d) Proposed method.

Figure 4: An outside-in experiment result showing the annotation from a drastically different viewpoint. In general, 3D planar interpre-
tations of 2D on-screen gestures are unable to handle 3D convex objects. However, our proposed method as well as convex 2D-3D co-
segmentation [18] give decent results.

(a) Original drawing. (b) Median depth plane [4]. (c) 2D-3D co-segmentation [18]. (d) Proposed method.

Figure 5: An outside-in experiment result showing the annotation from a drastically different viewpoint. In general, 3D planar interpretations
of 2D on-screen gestures are unable to handle 3D convex objects. In this example, our proposed method gives the best results, as verified by
the AMT votes: 2 for median depth plane, 2 for 2D-3D co-segmentation, and 18 for the proposed method.

ipants in the United States who have good records in AMT user
studies (i.e., > 90% hit approval rate) to ensure that our questions
are clearly understood and carefully answered.

40 users participated in the study, 20 for the OutIn1 & InOut1
datasets (Figure 3a & Figure 3b) and 20 for the OutIn2 & InOut2
datasets. Results are summarized in Table 2 and shown in Figures 4
through 7. Figure 4 shows a case where the convex assumption
by Nuernberger et al. [18] works well and gives similar results to
our method. Figures 4 and 5 illustrate how the median depth plane
method [4] does not adequately transfer the annotation to new view-
points. Figure 7 illustrates a case where the convexity assumption
of Nuernberger et al. [18] causes an over-segmentation, whereas
our proposed method better conveys the meaning of the original
drawing.

Method OutIn1 OutIn2 InOut1 InOut2
Median depth [4] 20 36 39 25
2D-3D co-seg. [18] 35 50 58 71
Our method 104 74 63 64

Table 2: The number of times a specific method was chosen to
best convey the same meaning as the original drawing in the qual-
itative experiment using Amazon Mechanical Turk. Both outside-
in (OutIn1 and OutIn2) and inside-out (InOut1 and InOut2) scenes
were used. The proposed method had more votes than the other two
methods except in the InOut2 dataset.

In addition to the user study, we note that Nuernberger et al. [18]
also evaluated annotation transfer results by the Intersection-over-
Union (IoU) score – in a transfer view, calculating how well the
rendered circle overlaps the selected object rather than irrelevant
background. This may not be a good metric in a more complicated
test scene like what we present in this paper. Figure 4 is an example:

a tower occludes the middle of the target Arc de Triomphe in the
transfer view so a well rendered circle that can cover both the left
and the right parts of the Arc de Triomphe must inevitably overlay
the tower, thus resulting in a low IoU score.

7 DISCUSSION AND FUTURE WORK

The proposed method generally produced satisfactory segmenta-
tion and rendering circles of higher subjective quality. However,
as with most interactive segmentation methods, we observed that
many times both our method and Nuernberger et al.’s 2D-3D co-
segmentation method [18] struggle with filtering out the back-
ground scene whenever the user draws a contour that includes too
much background content (see Figure 8 for an example). In such
cases, the 2D ellipse, fitted to the projected 3D segmented points,
may become skewed due to the false positive 3D segmented points.
This inspired us to consider an alternative visualization method to
the 2D ellipse—a simple highlight of the object, using the seg-
mented 3D points. With such a visualization, the user may more
easily understand that several false positive segmented points are
actually outliers and are thus meaningless to the object reference.
Future work should explore what kind of visualizations are most
robust in these cases and in cases where the object of interest has
a complex shape. Furthermore, how to handle under- and over-
segmentation appropriately in an interactive way should be ex-
plored.

While this paper demonstrates an initial success of our approach
with Elastic Fusion [27], which yields a dense surfel-based repre-
sentation of the scene, future work may apply the proposed method
on semi-dense or sparse models. It could also be valuable to cre-
ate a dataset with many user drawn circles as well as manually la-
beled 3D ground-truth segmentations for a variety of models re-
constructed in different fashions. With such a dataset, a better set
of parameters of our algorithm could be automatically learned and
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cross-validated, and the sensitivity of the parameters to the model
density or other model properties could be quantitatively studied.

While our experiments in this paper focused on comparing to
previous methods [4, 18] in an object referencing scenario, we see
our method as being applicable to a wider set of AR applications
rather than only being used for transferring gesture annotations be-
tween viewpoints. Segmentation via 2D input may be used for lo-
calizing objects of interest for further interaction, such as for games,
labeling of objects [28], and more. Future work should explore how
segmentation methods such as ours affect the AR collaboration per-
formance in a variety of scenarios, including remote, asynchronous,
and co-located collaboration.

8 SUMMARY

We presented a novel three-layer graph-based segmentation method
for object referencing in collaborative augmented reality. First,
we discussed two major challenges of appropriately handling 2D
on-screen circle referencing gestures for 3D object referencing in
AR. Next, we introduced our novel unified framework that han-
dles both outside-in and inside-out scenes, both convex and planar
objects. Specifically, we minimize an energy function using graph-
cuts on a three-layer graph composed of pixel, 3D point, and su-
pervoxel energies. Experimental results with our prototype showed
that our method outperformed previous approaches in three out of
four datasets we captured, including both inside-out and outside-in
scenes.
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(a) Original drawing. (b) Median depth plane [4]. (c) 2D-3D co-segmentation [18]. (d) Proposed method.

Figure 6: An inside-out experiment result showing the annotation from a drastically different viewpoint. In general, 3D planar interpretations
of 2D on-screen gestures can work for mostly planar objects; in this case, however, the orientation of the 3D plane does not help with the
annotation rendering from a novel viewpoint. Convex 2D-3D co-segmentation also fails [18]. Only our proposed method gives decent results.

(a) Original drawing. (b) Median depth plane [4]. (c) 2D-3D co-segmentation [18]. (d) Proposed method.

Figure 7: An inside-out experiment result showing the annotation from a drastically different viewpoint. In this case, convex 2D-3D co-
segmentation [18] oversegments the region, whereas our proposed method correctly limits the segmentation to the desired area. The AMT
votes for this set of images were: 1 for median depth plane, 3 for 2D-3D co-segmentation, and 16 for the proposed method.

(a) Original drawing. (b) Background is correctly discarded.

(c) Original drawing. (d) Foreground is incorrectly kept.

Figure 8: Top row: example where our method can correctly discard the background in the distance. Bottom row: example where our method
incorrectly keeps foreground points in the segmentation.
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