3D User Interfaces for Games
and Virtual Reality

Lecture #4: Video Game Motion Controllers

Spring 2017
Joseph J. LaViola Jr.

Spring 2017 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

3D Spatial Input Hardware —
The Past

Polhemus Patriot 31 Tech Hi Ball
These Devices cost thousands of Dollars!!

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

3D Spatial Input Hardware — Today

PlayStation Move Nintendo Wiimote

Razer Hydra
Microsoft Kinect

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Lecture Outline

Discuss video game motion controller
hardware characteristics

- Nintendo Wiimote

- Microsoft Kinect

- PlayStation Move

Quick start guide for programming

Case Studies

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Devices

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality

The Wiimote Device

Wiimote features
uses Bluetooth for communication
senses acceleration along 3 axes

optical sensor for pointing (uses sensor
bar)

provides audio and rumble feedback
standard buttons and trigger
uses 2 AA batteries
Supports two handed interaction
= can use 2 Wiimotes simultaneously

Easily expandable

Spring 2017 CAP6121 — 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr.

©Joseph J. LaViola Jr.

Wiimote Attachments

Nunchuk Steering Wheel Zapper

Fishing Reel

Spring 2017 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

The Wiimote — Coordinates

Wiimote Coordinates

Spring 2017 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

The Wiimote — Optical Data

Data from optical sensor
= uses sensor bar
10 LED lights (5 of each side)
accurate up to 5 meters
= triangulation to determine depth
distance between two points on image sensor (variable)
distance between LEDs on sensor bar (fixed)
= roll (with respect to ground) angle can be calculated from angle of
two image sensor points
Advantages
= provides a pointing tool
= gives approximate depth
Disadvantages
= line of sight, infrared light problems
= only constrained rotation understanding

Sensor Bar

Spring 2017 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

The Wiimote — Motion Data

Data from 3-axis accelerometer
= senses instantaneous acceleration on device (i.e., force) along each axis
= arbitrary units (+/- 3g)
= always sensing gravity
at rest acceleration is g (upward)
freefall acceleration is 0
= finding position and orientation
at rest — roll and pitch can be calculated easily
in motion — math gets more complex
error accumulation causes problems
often not needed — gestures sufficient
Advantages
= easily detect course motions
= mimic many natural actions
Disadvantages
= ambiguity issues
= player cheating
= not precise (not a 6 DOF tracker)

Spring 2017 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

The Wii Motion Plus

Current Wiimote device
= gives user a lot of useful data

= not perfect
ambiguities
poor range
constrained input

= Wii Motion Plus
moving toward better device
finer control

uses dual axis “tuning fork” angular
rate gyroscope

true linear motion and orientation

Spring 2017 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Visualizing Wiimote Data

Important to see data to understand device

®

oooroonooooe R
G
Dﬂxn«)f Shbh
ot
i
JUJJUF

3

| mEE

0000000000

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Microsoft Kinect

3DIDEPTHISENSORS

Kinect features B CAVERA

- RGB camera

- depth sensors
multi-array mic
motorized tilt
connects via USB

Supports controllerless mterface

Full body tracking

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Kinect — Hardware Details

RGB Camera
— 640 x 480 resolution at 30Hz
Depth Sensor

- complimentary metal-oxide
semiconductor (CMOS) sensor
(30 Hz)

- infrared laser projector

- 850mm to 4000mm distance
range

Multi-array mic

- set of four microphones

- multi-channel echo cancellation
- sound position tracing
Motorized tilt

- 27° up or down

www.hardwaresphere.com

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Kinect — Extracting 3D Depth

Infrared laser projector emits
known dot pattern

CMOS sensor reads depth of
all pixels

- 2D array of active pixel sensors
photo detector
active amplifier

Finds location of dots
Computes depth information
using stereo triangulation

- normally needs two cameras

- laser projector acts as second
camera

Depth image generation

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Kinect — Skeleton Tracking

Combines depth
information with human
body kinematics

- 20 joint positions

Object recognition
approach

- per pixel classification

- decision forests (GPU)

- millions of training samples
See Shotton et al. (CVPR
2011)

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Kinect 2

RGB Camera

= HD resolution
Depth Sensor

= time of flight
microphone array

http://www.aud.ucla.edu/programs/m_arch_ii_deg
ree_1/studios/2013_2014/gehry/?p=786

ToF — illuminate it with a beam of pulsed
light and calculate time it takes for the light
to be detected on an imaging device

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Kinect 2 — Other Differences

Greater accuracy
= three times the fidelity over
Kinect
Can track without visible light
using an active IR sensor
Has a 60% wider field of view

= detect a user up to 3 feet from
the sensor compared to six feet
for the Kinect

= track up to 6 skeletons at once

Detect a player's and
facial expressions,

Position and orientation of 25
individual joints (including
thumbs),

Weight put on each limb and
speed of player movements

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

PlayStation Move

Consists of
- Playstation Eye
- 1 to 4 Motion controllers

Features

combines camera tracking with
motion sensing

6 DOF tracking (position and
orientation)

several buttons on front of
device

analog T button on back of
device

vibration feedback
wireless A

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

PlayStation Move — Hardware

PlayStation Eye
- 640 x 480 (60HZz)
- 320 x 240 (120Hz)
- microphone array
Move Controller
- 3 axis accelerometer
- 3 axis angular rate gyro
- magnetometer (helps to
calibrate and correct for drift)
44mm diameter sphere with
RGB LED www.hardwaresphere.com
used for position recovery
invariant to rotation
own light source

color ensures visual
uniqueness

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

10

PlayStation Move — 6 DOF Tracking

Image Analysis
- find sphere in image
segmentation
- label every pixel being tracked
- saturated colors more robust
pose recovery
- convert 2D image to 3D pose
- robust for certain shapes (e.g., sphere)
- fit model to sphere projection
size and location used as starting
point
2D perspective projection of sphere
is ellipse

given focal length and size of sphere,
3D position possible directly from 2D
ellipse parameters

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

PlayStation Move — 6 DOF Tracking

Sensor Fusion

- combines results from
image analysis with inertial
sensors (Unscented Kalman
Filter)

- contributions

camera — absolute 3D position

accelerometer

- pitch and roll angles (when
controller is stationary)

- controller acceleration (when
orientation is known)

- reduce noise in 3D position
and determine linear velocity

gyroscope
- angular velocity to 3D rotation
- angular acceleration

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

11

Programming

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Programming with the Wiimote

Connect to computer
= does not work for every bluetooth
device
Obtain Wiimote software
= many variations and APIs (C,C++, C#,
Java, Flash)
Brian Peek’s API (www.coding4fun.com)

= low level API

Paul Varcholik’s XNA 3DUI Framework
(www.bespokesoftware.org)

= contained within larger framework
= include gesture recognizer

Unity 3D
Write code and enjoy (Wingrave et
al. 2010)

= integration
= heuristics
= gesture analysis and recognition

Spring 2017 CAP6121 - 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

12

Kinect Programming

- Microsoft Kinect SDK

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Kinect — Microsoft SDK

Uses subset of technology from Xbox 360 dev
version

Access to microphone array

Sound source localization (beamforming)
- connection with Microsoft Speech SDK

Kinect depth data

Raw audio and video data

Access to tilt motor

Skeleton tracking for up to two people
Examples and documentation

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Kinect SDK — Joints

Two users can be tracked at once
<X,Y,z> joints in meters

Each joint has a state

— tracked, not tracked, inferred

Inferred — occluded, clipped, or no
confidence

Not tracked — rare but needed for
robustness

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Kinect 2 JointServer — VS2013

Gathers joint data from the Kinect 2
Encodes data into a string and sends it over UDP socket

Run from the VisualStudio or
JointServer\bin\Debug\JointServer.exe

Requires Kinect SDK 2.0

This needs to be started before you press Play in Unity3D

Can be left running, i.e. do not need to restart each time to
press Play in Unity3D

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

14

JointUnity

Main script — KinectSkeleton.cs
= Recieves data from UDP socket
= Decodes it and updates joint values

= This script has to be attached to some object
in your scene to work

Demo use script — SkeletonEmulator.cs
= Example use of KinectSkeleton API

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

JointUnity AP

KinectSkeleton kinect
= main object

Dictionary<int, PlayerSkeleton>
kinect.players

= Dictionary of players

= Access with player ID in range [0,5]
= kinect.players[0] to get first player

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

15

JointUnity AP

PlayerSkeleton player = kinect.players[0]

= Single player data

bool player.isTracked

= True if Kinect is currently tracking this player

int player.id

= Player ID

Dictionary<JointType, SkeletonJoint> player.joints
= Dictionary of joints

= Access joint data with JointType enum

= player.joints[JointType.Head] to get access to Head
joint data

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

JointUnity AP

Skeletondoint joint = player.joints[JointType.Head]
= Single joint data

bool joint.isTracked

= True if Kinect is actively tracking the joint

= False if the joint position is inferred

= Inferred position can be very close to the truth or
completely wrong.

Vector3 joint.position

n Current position of the joint in space relative to the
Kinect

JointType joint.type
= Joint type

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

16

Notes

Kinect 2 randomly assigns ID to players it sees.

If you step out of the frame and back you will likely
get a new ID.

Due to this even with a single player in frame you
will have to look through all 6 players in API to find
one that isTracked.

At times Kinect cannot see certain joints and it will
guess their position.

In KinectServer joints that are inferred will have
thin lines drawn to the instead of thick color ones.

Color of the skeleton displayed in KinectServer
represents player ID.

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

PlayStation Move — Programming

Move.Me

Uses PS3 as device
server
Up to four controllers at
once
Controller state info

3D position and orientation

3D velocity and
acceleration

3D angular velocity and
acceleration

button and tracking status

Set color of sphere and
initiate rumble feedback

‘ _

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Move.Me Code Snippets

Connecting to Move.Me Server

public void Connect(String server, int port)

_tcpClient = new TcpClient();

_tcpClient.Connect(server, port);

_udpClient = new UdpClient(0);

Console.WriteLine("Initial recieve buffer size: {0}",
_udpClient.Client.ReceiveBufferSize);

_udpClient.Client.ReceiveBufferSize = 655360; // 640 KB

Console.WriteLine("Expanded recieve buffer size: {0}",
_udpClient.Client.ReceiveBuffersSize);

uint udpport = (uint)((IPEndPoint)_udpClient.Client.LocalEndPoint).Port;

SendRequestPacket(ClientRequest.PSMoveClientRequestInit, udpport);

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality oseph J. LaViola Jr.

Move.Me Code Snippets

class PSMoveSharpGemState

public struct PSMoveSharpGemState

public Float4 pos;

public Float4 vel;

public Float4 accel;

public Float4 quat;

public Float4 angvel;

public Float4 angaccel;

public Float4 handle_pos;

public Float4 handle_vel;
public Float4 handle_accel;
public PSMoveSharpPadData pad; // 4 bytes
public Int64 timestamp;

public float temperature;

public float camera_pitch_angle;
public UInt32 tracking_flags;

PSMoveSharpState state = moveClient.GetLatestState();
PSMoveSharpCameraFrameState camera_frame_state = moveClient.GetlLatestCameraFrameState();

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality oseph J. LaViola Jr.

Spring 2016

Spring 2016

Case Studies

CAP6121 — 3D User Interfaces for Games and Virtual Reality

One Man Band

GUSTITY 6)

©Joseph J. LaViola Jr.

DA VA B
Ay
Bott et al., 2009

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr.

19

Real Dance

—— r

Charbonneau et al., 2009 Charbonneau et al., 2010 .-Charbonneau etal, 2011

Spring 2016 CAP6121 - 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Football

Williamson et al., 2010 Kinect Football by Andrew Devine

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

20

Spring 2016

Spring 2016

RealEdge — FPS

Williamson et al., 2011

CAP6121 — 3D User Interfaces for Games and Virtual Reality

Pfeil et al., 2013

CAP6121 — 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr.

©Joseph J. LaViola Jr.

21

Conclusions — Which to Choose?

Wiimote
Positives
- cost ~$40
- buttons

- something to hold in
hand

Negatives
not true 6 DOF
challenging to program
reasonable accuracy
no company support

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Conclusions — Which to Choose?

Microsoft Kinect
Positives
- cost~$130
- full body tracking
joint position
joint orientation (Kinect 2)
- multimodal input
- good SDK and support
Negatives
- no buttons (temporal
segmentation problem)
more data to process
not really designed with physical
props in mind
latency issues (gesture
recognition)

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

22

Conclusions — Which to Choose?

PlayStation Move
Positives

accurate and fast 6
DOF tracking

buttons
- multimodal input
- good SDK and support
Negatives
- cost ~ $400 to $500

- requires PS3 (positive
as well)

- does not track full
body (more restrictive)

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Next Class

Visual displays
Readings

= Siggraph 2010, 2011 course notes on 3D Ul and Video Game Hardware

Spring 2016 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

23

