Instructor: Dr. Joseph J. LaViola Jr.
Website: www.eecs.ucf.edu/courses/cap6121/spr17/
Office Hours: T: 4:00pm-5:30pm Office: ENGR III – 321, phone: x2285
W: 6:00pm-7:00pm jjl@eecs.ucf.edu

READINGS:

Chapters from 3D User Interfaces: Theory and Practice, 2nd Edition, March 2017

Papers: student/professor selected research papers

Catalog Description: 3D user interaction, spatial user interfaces, selection and manipulation, 3D navigation, system control, evaluation methodologies, augmented and mixed reality, input and output hardware

Course Objectives: 3D User Interfaces for Games and Virtual Reality is a course designed to give students a rigorous introduction to the design, implementation, and evaluation of the fundamental techniques in spatial 3D interaction.

Student Requirements:
1. Star Wars Game -- Students will create a lightsaber game where they control the saber with and use the force using the Microsoft Kinect 2.

2. Fruit Ninja -- Students will create a Fruit Ninja game where they will travel through a maze and fend off attacking fruit using the using the Microsoft Kinect 2.

3. Survey paper -- Students will write a paper on a 3D UI topic of their choice, focusing on summarizing and aggregating work done in the last decade.

4. Paper Presentations -- Students will have to present at least one paper on a topic in 3DUIs.

5. Final Project -- Students will do a final project of their choice that explores a particular concept in 3D user interfaces, augmented reality, or virtual reality. They must first write a short proposal and get it approved by the professor.

Tentative Grading Scheme:
- Assignment 1 15%
- Assignment 2 15%
- Survey Paper 15%
- Paper presentations 5%
- Final Project 50%
The instructor reserves the right to use plus/minus grading in this course.

Syllabus

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Readings</th>
<th>Assignments</th>
</tr>
</thead>
</table>
| 1 | Introduction to 3D User Interfaces
-- What are 3DUIs?
-- Application areas
-- 3DUI history
-- Games and 3DUIs | Bowman – Chapters 1,2
LaViola (2008)
Bowman et al. (2006,2008) | |
| 2 | Intro to Unity 3D
Nintendo Wii Remotes, the Microsoft Kinect, PlayStation Move | Creighton
LaViola and Marks (2010) | Assignment 1 – Star Wars out |
| 3 | 3DUI Output Hardware
-- Visual displays
-- Auditory displays
-- Haptic displays | Bowman – Chapter 3 | |
| 4 | 3DUI Input Hardware
-- Desktop input devices
-- Gaming devices
-- Tracking devices
-- Direct human input (e.g., brain, speech, bioelectric)
-- Building custom input devices | Bowman – Chapter 4 | |
| 5 | Selection and Manipulation
-- 3D manipulation tasks
-- Interaction techniques for 3D manipulation
-- Design guidelines | Bowman – Chapter 5 | Assignment 1 due
Assignment 2 – Fruit Ninja out |
| 6 | Travel Techniques
-- 3D travel tasks
-- Travel techniques
-- Design guidelines
Wayfinding
-- Theoretical foundations
-- User-centered wayfinding support
-- Environment-centered wayfinding support | Bowman – Chapters 6,7 | |
| 7 | System Control
-- Graphical menus
-- Voice commands
-- Gestural commands
-- Tools | Bowman – Chapter 8 | Assignment 2 due |
<table>
<thead>
<tr>
<th></th>
<th>-- Multimodal interaction</th>
<th>Bowman—Chapter 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Symbolic Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-- Symbolic input tasks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-- Symbolic input techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-- Beyond text and number entry</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Designing and Developing 3DUIs</td>
<td>Bowman—Chapter 10</td>
</tr>
<tr>
<td></td>
<td>-- Designing for humans</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-- Inventing 3D user interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-- Borrowing from the real world</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-- Magical techniques</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Evaluation of 3DUIs</td>
<td>Bowman—Chapter 11</td>
</tr>
<tr>
<td></td>
<td>-- Tools for Evaluation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-- Evaluation metrics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-- 3D UI evaluation characteristics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-- Testbed evaluation</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3DUIs in the Real World</td>
<td>Bowman—Chapter 12</td>
</tr>
<tr>
<td></td>
<td>-- Augmented Reality interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-- Augmented surfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-- Tangible augmented reality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-- Mixed Reality</td>
<td></td>
</tr>
<tr>
<td>11-16</td>
<td>In the last 4-6 weeks of the semester one class will be for updates from students on their final projects. The second class will be for students to present papers. Each student must do at least one 15 to 20 minute presentation of a paper of their choice.</td>
<td></td>
</tr>
</tbody>
</table>