
Differential Instant Radiosity for Mixed Reality
Martin Knecht∗ Christoph Traxler† Oliver Mattausch‡ Werner Purgathofer§ Michael Wimmer¶

Institute of Computer Graphics and Algorithms
Vienna University of Technology

ABSTRACT

In this paper we present a novel plausible realistic rendering method
for mixed reality systems, which is useful for many real life appli-
cation scenarios, like architecture, product visualization or edutain-
ment. To allow virtual objects to seamlessly blend into the real en-
vironment, the real lighting conditions and the mutual illumination
effects between real and virtual objects must be considered, while
maintaining interactive frame rates (20-30fps). The most important
such effects are indirect illumination and shadows cast between real
and virtual objects.

Our approach combines Instant Radiosity and Differential Ren-
dering. In contrast to some previous solutions, we only need to
render the scene once in order to find the mutual effects of vir-
tual and real scenes. The dynamic real illumination is derived
from the image stream of a fish-eye lens camera. We describe a
new method to assign virtual point lights to multiple primary light
sources, which can be real or virtual. We use imperfect shadow
maps for calculating illumination from virtual point lights and have
significantly improved their accuracy by taking the surface normal
of a shadow caster into account. Temporal coherence is exploited
to reduce flickering artifacts. Our results show that the presented
method highly improves the illusion in mixed reality applications
and significantly diminishes the artificial look of virtual objects su-
perimposed onto real scenes.

Keywords: Mixed Reality, Real-time Global Illumination, Differ-
ential Rendering, Instant Radiosity

Index Terms: I.1.3 [COMPUTER GRAPHICS]: Three-
Dimensional Graphics and Realism—Radiosity; H.5.1 [INFOR-
MATION INTERFACES AND PRESENTATION]: Multimedia In-
formation Systems—Artificial, augmented, and virtual realities

1 INTRODUCTION

Mixed reality is an attractive and exciting way to present virtual
content in a real context for various application domains, like ar-
chitectural visualizations, virtual prototyping, marketing and sales
of not yet existing products and edutainment systems. These kinds
of application scenarios demand a believable realistic appearance
of virtual objects, providing a perfect illusion for human visual
perception. Unfortunately this requirement is not met in com-
mon mixed reality systems, where the composed images look dis-
turbingly artificial. One major reason for this is that real illumina-
tion conditions and the mutual shading effects between virtual and
real objects are completely ignored.

In this paper we present a new global illumination (GI) rendering
system that is designed to calculate the mutual influence between

∗e-mail: knecht@cg.tuwien.ac.at
†e-mail: traxler@cg.tuwien.ac.at
‡e-mail: matt@cg.tuwien.ac.at
§e-mail: wp@cg.tuwien.ac.at
¶e-mail: wimmer@cg.tuwien.ac.at

Figure 1: This figure shows a mixed reality scenario where a real
spotlight illuminates the Stanford dragon, causing green color bleed-
ing on the real teapot. Rendered at 22 fps.

real and virtual objects. The aim of the GI solution is to be per-
ceptually plausible without the ambition to be physically accurate.
Jacobs and Loscos [14] give a very comprehensive overview and
classification of different illumination methods for mixed reality. In
their classification our approach would be placed in the “Common
Illumination and Relighting” category. Besides calculating the in-
fluence between real and virtual objects, we are also able to relight
the scene by virtual light sources.

Our method is based on Debevec’s [5] extension of Differential
Rendering, which was originally introduced by Fournier et al. [8].
Furthermore it is based on the Instant Radiosity approach [16] com-
bined with imperfect shadow maps [27].

There are some previous methods [9, 10] which are able to take
indirect illumination into account. However they need a computa-
tionally expensive preprocessing step or are not feasible for real-
time applications. An important aspect of our work is an extension
of Instant Radiosity to handle real-world objects. Instant Radiosity
has the advantage that it does not need any pre-computation and
therefore can be easily used for dynamic scenes where object posi-
tions change or the illumination is varied through user interaction.

To capture the surrounding environment, we use a fish-eye cam-
era and for now our system uses a pre-modeled representation of
the real scene. Figure 1 gives an impression on how our method
handles indirect illumination in mixed reality scenarios.

The main contributions presented in this paper are:

• A modified Instant Radiosity approach that is usable for Dif-
ferential Rendering, while shading is performed only once.

• New higher quality imperfect shadow maps by aligning the
splats to the surface normal.

• A novel method to assign virtual point lights to multiple pri-
mary light sources.

99

IEEE International Symposium on Mixed and Augmented Reality 2010
Science and Technolgy Proceedings
13 -16 October, Seoul, Korea
978-1-4244-9346-3/10/$26.00 ©2010 IEEE

• Reduced temporal flickering artifacts by exploiting temporal
coherence.

2 RELATED WORK

Our approach is based on several areas of computer graphics: Im-
age based lighting, real-time global illumination and the composit-
ing of real and rendered image data.

Image Based Lighting Most approaches that deal with illu-
mination in mixed reality applications use an environment map to
simulate the incident illumination. There are basically two types
of methods to acquire the environment map: outside-in and inside-
out methods. Outside-in methods use a camera to take photos or a
video stream of a chrome sphere. This chrome sphere reflects the
surrounding scene and can be used as an environment map. The
inside-out methods use a camera to capture the illumination at the
center of the scene.

Debevec [5] as well as Agusanto et al. [1] captured a high dy-
namic range (HDR) environment map from a chrome sphere. Hey-
mann et al. [13] use a real-time outside-in approach. They place a
chrome sphere in the scene and use a marker to find it in the cap-
tured video stream. However, all methods need a preprocessing step
before the environment map is usable for rendering, either by tak-
ing photographs [5], [1] or by extracting the environment map out
of the video stream [13].

Ritschel and Grosch [26] used a HDR video camera to capture
the surrounding illumination using a standard inversion technique
[11]. Sato et al. [29] introduced a stereo vision inside-out approach
to calculate the environmental radiance distribution. Furthermore
they used the stereo image pair to get a reconstruction of the sur-
rounding scene. While the reconstruction was performed with user
interaction, Korn et al. [17] introduced a method which was able to
do that at interactive frame rates.

Once the environment is captured, a fast method is needed to
extract light sources from the environment map. Dachuri et al. [4]
propose a method to efficiently find positions of light sources in
an environment map by segmenting it and finding the bright spots.
Havran et al. [11], Debevec [6] and Clarberg et al. [2] take the
luminance of the environment map as a probability function and
distribute samples on it. Havran et al. [11] use their own inverse
transform method, while Debevec uses a median cut method to find
positions for light sources. To our knowledge [4], [6] and [11] use
the CPU to generate the samples. We use hierarchical warping from
Clarberg et al. [2], since the algorithm works with mipmap levels
of the luminance probability map and thus allows us to perform
importance sampling directly on the GPU.

A completely different solution was developed by Madsen and
Nielson [19]. They detect shadows in an image and use the date of
capture and position of the camera to determine the ratio between
direct light from the sun and the sky. This way they are able to sim-
ulate the actual lighting conditions without requiring a light probe.

Real-time Global Illumination Algorithms Real-time
global illumination (RTGI) is a very active area of research. This
section will give a brief overview on current developments.

Instant Radiosity was introduced by Keller [16] in 1997. The
idea is to place so-called virtual point lights (VPLs) in the scene to
approximate global illumination. This method is particularly suit-
able for RTGI on current graphics hardware, as it does not need any
complex pre-computations of the scene. Dachsbacher and Stam-
minger [3] extended standard shadow maps to so-called reflective
shadow maps, where every pixel was treated as a light source. By
adaptively sampling the shadow map to create VPLs, they were
able to calculate indirect illumination. However, the indirect il-
lumination computation did not contain any visibility calculation
since generating shadow maps for each VPL is too costly. Laine et
al. [18] developed a real-time Instant Radiosity method that caches
the shadow map for each VPL over several frames. This way only a

few shadow maps need to be recreated every frame, thus achieving
real-time frame rates. However, moving objects cannot influence
indirect visibility calculation. In 2008, Ritschel et al. [27] intro-
duced the concept of imperfect shadow maps (ISMs). The idea is to
represent the scene as a sparse point cloud and use this point cloud
to generate a shadow map for every VPL. Using this approach it is
possible to create hundreds of shadow maps per frame, allowing for
completely dynamic scenes.

A recent method introduced by Ritschel [25] uses CUDA to
perform fast final gathering on a hierarchical scene representa-
tion of splats. The images look very impressive but currently the
frame rates are too low for mixed reality applications. Kaplanyan
[15] uses a light propagating volume where radiance is propagated
from source voxels based on spherical harmonics coefficients. The
method does not include visibility but delivers a good GI approxi-
mation at very low costs. McGuire and Luebke [20] extend photon
mapping in a way that photon volumes are splat in screen-space to
compute indirect illumination. Wang et al. [31] are able to sim-
ulate several illumination effects by clustering the scene into co-
herent shading clusters on the GPU. Final gathering is then per-
formed only on those clusters that result in a significant speedup.
However, performance is still too low for mixed reality applica-
tions. Nichols et al. [22] perform screen-space hierarchical radios-
ity using the multi-resolution splatting technique from Nichols et
al. [23], which greatly reduces shading costs. Ritschel et al. [28] in-
troduce a method similar to screen-space ambient occlusion called
screen-space directional occlusion (SSDO). It samples the neigh-
boring screen-space pixels and uses these to calculate indirect illu-
mination.

Merging Real and Virtual Scenes Nakamae et al. [21]
were the first to concentrate on merging real and virtual scenes.
They had a simple geometry for the real scene and information
about the date and time when the background picture was taken.
From this information, they could place the sun to calculate shad-
ows cast from virtual objects. Fournier et al. [8] used a progressive
radiosity algorithm to compute global illumination. Depending on
whether the object of a patch belongs to a virtual or real object they
changed the calculation behavior. For virtual objects, the full global
illumination solution is used. For real objects only the additional ra-
diosity caused by virtual objects or light sources is added. Drettakis
et al. [7] extended this method to dynamic virtual objects. They
were able to render new images every 2.8 seconds. Debevec [5]
introduced Differential Rendering, which is based on the work of
Fournier et al. [8]. Differential Rendering greatly reduces the er-
ror that is introduced by BRDF estimation, at the cost of having to
compute the global illumination solution twice.

Grosch [9] used a variation of photon mapping in combination
with Differential Rendering to merge virtual and real scenes. How-
ever, the proposed method does not achieve real-time frame rates.
Pessoa et al. [24] use an environment map for each object in an
augmented reality scene to simulate mutual light interaction. While
performance scaling is an issue when more objects are placed in
the scene, they get very impressive results for simple scenes and
are able to simulate many illumination effects.

3 DIFFERENTIAL INSTANT RADIOSITY

3.1 Differential Rendering

Mixing real with virtual objects requires the calculation of a global
illumination solution that takes both virtual and real objects into ac-
count. In our approach, we assume that a geometric model of the
real scene is available, and correctly registered to the virtual scene.
We also assume that basic material properties of real objects are
known. However, BRDF estimations for the real scene are usually
not accurate, which leads to strong artifacts in the display of real
objects. The idea of Differential Rendering [8, 5] is to minimize

100

this error by calculating only the “differential” effect of virtual ob-
jects, leaving the effect of the original BRDFs in the scene intact.
This requires calculating two global illumination solutions: one us-
ing both virtual and real objects (Lrv), and one using only the real
objects (Lr). The final image is created by adding the difference ∆L
between these two solutions to the captured camera image.

One might be inclined to calculate the difference between Lrv
and Lr directly and add it to the captured real image. However,
since the captured image has only low dynamic range, we first need
to apply tone mapping (performed by function T M), which requires
a complete image as input. Therefore two complete images, includ-
ing both direct and indirect illumination, need to be tone mapped
before calculating the difference:

∆L = T M(Lvr)−T M(Lr)

We first focus on one-bounce global illumination, which in
terms of Heckbert’s [12] classification of light paths corresponds
to LDDE-paths, where L is the light source, D is a (potentially)
glossy reflection at an object in the scene, and E is the eye.

For a mixed reality setting, the idea is that the illumination of
the real scene Lr is calculated by only considering the (outgoing)
contribution Lo of those paths where all elements are real, i.e.,
LrDrDrE paths. The contributions of all other paths, including
those with a virtual light source (LvDDE), a bounce on a virtual
object (LDvDE) or a virtual object to be shaded (LDDvE), only
count for the combined solution Lrv.

3.2 “Single-Pass” Differential Rendering
The solutions Lr and Lrv could be calculated separately using
LrDrDrE and general LDDE paths respectively. However, depend-
ing on how paths are generated, this might be very inefficient, and
might also lead to artifacts if different paths are chosen for the two
solutions. Instead, we assume that the paths are already given, and
for each path, we decide whether it should count for Lr or Lrv or
both.

Furthermore, depending on which paths the used global illumi-
nation algorithm considers, we need to take visibility into account:
some LrDrDrE paths that are valid for Lr might be blocked by vir-
tual objects, so that they should not be added to Lrv. This can hap-
pen for the segments LrDr or DrDr. In our approach, we can handle
the cases when a DrDr segment in an LrDrDrE path, or an LrDr
segment in an LrDrE path, is blocked by virtual blockers bv (only).
The latter corresponds to shadows cast by a virtual object. Figure 2
illustrates the different cases.

Figure 2: a) Illustrates a virtual blocker in the LrDr segment. The
virtual blocker casts a shadow from direct illumination. b) Illustrates
a path that has a virtual blocker between the DrDr segment. Here
the shadow results from one-bounce indirect illumination.

3.3 Instant Radiosity
In order to achieve real-time performance, we use Instant Radiosity
to approximate global illumination. Instant Radiosity uses virtual
point lights (VPLs) to propagate light from the light sources. VPLs
are created as endpoints of LD (for the first bounce) or DD (for
subsequent bounces) path segments. The VPLs are used to shade
every visible pixel on screen using a DD path, so the paths creating
them are reused multiple times.

Figure 3: This figure shows the algorithm outline. A G-Buffer is cre-
ated and afterwards split to reduce shading costs. The primary light
sources generate VPLs from which ISMs are created. The VR- and
R-Buffers are created in parallel, while the shading computation is
performed only once. After some finishing steps like merging, adding
direct illumination and tone mapping, the video frame is added to the
difference between the VR- and R-Buffers.

Figure 3 shows the main steps of an instant radiosity rendering
system. The first step is to render the scene from the camera and
store all necessary information like position and normals in the so-
called geometry buffer (G-buffer). The G-Buffer is then split to save
shading costs (see Segovia et al. [30] for more details). The next
step is to create VPLs and store them in a so-called VPL-Buffer.
Depending on the primary light source type, the VPLs are created
in different ways (see Section 5.2). For example, the spotlight uses
reflective shadow maps (RSM) [3]. An RSM is a shadow map that
also stores the light intensity propagated to the hit surface. From
this RSM, a number of virtual point lights (VPL) are sampled using
importance sampling.

In order to be able to calculate visibility, for each VPL an imper-
fect shadow map is created, which is a low-resolution shadow map
created from a point-based representation of the scene. The last
steps are to perform tone mapping and add the result to the video
frame using differential rendering.

3.4 Differential Instant Radiosity
In our differential rendering method, we modify instant radiosity so
that we can keep track where real and virtual objects are involved.
We create reflective shadow maps (RSM) considering the combined
real and virtual scene, but note the type of object for each pixel of
the RSM.

Afterwards lighting is calculated from each VPL and the primary
light source. The light contribution from a VPL corresponds to a
DD path segment, whereas the light contribution from the primary
light source corresponds to an LD path segment in an LDE path.

In Differential Instant Radiosity, visibility is handled in the fol-
lowing way: for the LD-segment in LDDE-paths, there can be no
blockers because virtual point lights are sampled directly from the
RSM, which already takes visibility into account. For the LD-
segment in LDE-paths, visibility can be determined using a shadow
lookup into the RSM. The visibility for DD-segments in LDDE-
paths is calculated using a shadow map created for each individual
virtual point light.

101

Suppose we have a real spot light that illuminates a virtual green
cube placed on a real desk as shown in Figure 4.

Figure 4: Illustration of an augmented scene with a real desk, a vir-
tual green cube and a real spot light illuminating the scene. VPL 1
will cause color bleeding from the desk onto the green cube - VPL 2
from the green cube onto the desk. Ray R illustrates the shadowing
caused by the virtual green cube.

Here the inserted virtual green cube causes three types of light
interaction. First, light that hits the real desk causes color bleeding
on the virtual green cube (VPL 1, LrDrDvE). Second, light that hits
the virtual green cube causes color bleeding on the real desk (VPL
2, LrDvDrE). Third, the virtual green cube casts a shadow on the
desk illustrated by ray R (LrbvDrE).

Suppose we shade a point on the virtual green cube, illuminated
by VPL 1. We have to decide if the path contribution Lo should be
added to Lrv and/or to Lr. The spotlight is real, VPL 1 is placed on
the real desk and the shaded point corresponds to a virtual object
(LrDrDvE). In this case the result gets added to Lrv but not to Lr
as there is a virtual object in the light path. When shading a point
on the real desk, which gets illuminated by VPL 2, the result must
be again added to Lrv but not to Lr. This time, because VPL 2 is
placed on a virtual object (LrDvDrE).

On the other hand when a point on the real desk is shadowed by
the virtual green cube (LrbvDrE), the outgoing radiance must be
added to Lr but not to Lrv.

3.5 Single Bounce Computation
Let r(x) be a function that returns 1 if element x is associated to
a real object and 0 if not, where x can be one of the following: a
primary light source, a VPL, a surface point, blocking geometry, or
a light path (see Section 3.8). During creation of the RSM and for
each shadow map of a VPL we store a flag r(x) denoting whether
the texel corresponds to a real object. We compute r(x) for other
elements of the renderer in the following way:

• For a primary light source pl, r(pl) is stored with the light
source.

• For a VPL, r(VPL) is taken from the RSM during sampling
and stored with the VPL.

• For the point to be shaded p, r(p) is taken from the object
definition.

• For blockers b, r(b) is taken from the RSM or the VPL
shadow map depending on which path b blocks.

We want to calculate Lr and Lrv for LDDE paths, i.e, for a point
p illuminated by the ith VPL. For resolving visibility, we define the
shadow st(VPL, p) as a shadow map lookup into the shadow map
associated with the VPL, while Lo is the unobstructed radiance, i.e.,

without taking visibility for the VPL into account. Then, for the ith
VPL,

Li
rv = Li

ost(VPLi, p) (1)

Li
r = Li

or(pl)r(VPLi)r(p)rB(b) (2)

rB(b) =

{
st(VPLi, p) if r(b) is 1
1 otherwise (3)

The function rB(b) ensures that only real blockers are taken
into account when calculating the real scene. The GI solutions for
LDDE paths are simply summed up as follows:

Lrv =
N

∑
i=0

Li
rv (4)

Lr =
N

∑
i=0

Li
r (5)

where N is the total number of VPLs.

3.6 Direct and Environment Lights
The direct lighting contribution (LDE paths) is basically calculated
in the same way as single bounce illumination, with the following
differences: r(VPLi) = 1, as no VPL is involved, and the shadow
term is calculated from the RSM as st(RSM, p).

We can also handle environment lights: these can be thought of
as virtual point lights generated by a “virtual” primary light source
that only sees an environment map, which in our framework di-
rectly comes from a camera with a fish-eye lens attached. The envi-
ronment acts as RSM with no depth information, since the environ-
ment is infinitely far away. Sampling VPLs from the environment
is done exactly the same way as sampling the RSM.

3.7 Limitations
There are three cases which cannot be handled by this approach,
which are shown in Figure 5. Case a) and b) suffer from the fact
that only the front-most objects are stored either in the RSM or
VPL shadow map. The real blocker br behind the virtual one bv is
not considered in the algorithm and thus wrong double shadowing
occurs. This is because the contribution of the path counts for Lr
but not for Lrv, and thus is subtracted from the final image. On
the other hand, in case c), if there is a virtual blocker between the
segment LrDr, the subsequent segment DrDr cannot be canceled
out, since no VPL will be created for the first segment. This leads
to inconsistent color bleeding.

Figure 6 graphically illustrates these problems. The spot light is
real, the green box is virtual and the blue one is real, casting a real
shadow onto the desk. The blue box also causes indirect illumina-
tion onto the desk. Since we use reflective shadow maps to create
new VPLs no VPLs will be created on the blue box as they are not
visible in the reflective shadow map. Double shadowing happens
because the desk is already shadowed and the virtual green box
should not cast another shadow from the same light source. How-
ever, in practical situations these artifacts are often not noticeable
and we will address them in our future work.

3.8 Multiple Bounces
Extending Differential Instant Radiosity to multiple bounces is
straightforward. Imagine that light bounces off several times from
real surfaces coming from a real primary light source illuminating
a real object. In this case nothing has to be changed. However, if
there is only one bounce on a virtual object, the final illumination
must be changed. In Instant Radiosity, each bounce is simulated
by one VPL. This way we are able to forward the information from
one VPL to the next.

102

Figure 5: Illustration a) and b) are both responsible for wrong double
shadowing since the real occluder br is not considered in the compu-
tation. In c) our system is not able to cancel out the segment DrDr
which leads to inconsistent color bleeding.

Figure 6: The spotlight and the blue box are real objects and there-
fore a real shadow is cast onto the desk. Furthermore indirect illumi-
nation causes blue color bleeding. However, in the reflective shadow
map of the light source we only have information about the front most
object – the green virtual cube, which results in wrong indirect illumi-
nation and double shadowing.

The flag about the primary light source pl will be substituted by a
flag that indicates if the previous path x̄ included any virtual objects
or a virtual primary light source. When a new VPL is created from
a previous one the flag is calculated as follows:

x̄ = r(x̄prev)r(pVPL) (6)
x̄0 = r(pl) (7)

where x̄prev indicates if the path to the preceding VPL only be-
longed to real objects. Once a virtual object was in the light path,
the path flag will always be 0. The new illumination equation just
uses x̄ instead of pl. Figure 7 shows the difference between a single
bounce and multiple bounces. Note that the back plane gets brighter
due to multiple light bounces.

4 IMPROVING INSTANT RADIOSITY

The Instant Radiosity approach we use is based on imperfect
shadow maps (ISM) introduced by Ritschel et al. [27]. The idea
of imperfect shadow maps is to use very low resolution shadow
maps for each virtual point light, and use a sub-sampled version
of the scene, represented as a point cloud, to create these shadow

Figure 7: The image on the left shows a scene illuminated via an
environment light and spot light using a single light bounce. The right
image shows the same scene using multiple bounces enabled. Note
the brighter back plane when using multiple bounces.

maps. Here we describe a number of improvements to the Instant
Radiosity solver that improve quality and performance.

4.1 Geometry-Aligned Point Splats for ISMs
In the original ISM approach, the point sprites were splatted into
ISMs as billboards. Their size was scaled by the inverse squared
distance, so that a splat nearer to the view point would have a larger
area of influence. However, this is not a good geometrical approx-
imation of the original geometry and may lead to self-shadowing
artifacts. We propose a method where the point splats are aligned
to the corresponding surface normal and thus greatly reduce wrong
self occlusion.

Instead of using screen-space splats, we define the splat in tan-
gent space of the point sample, and transform all four corner ver-
tices of the splat into the ISM coordinate system. To cover the com-
plete upper hemisphere of a VPL for shadow mapping, Ritschel et
al. use parabolic mapping. In the original method only the center
point was subjected to parabolic mapping. Since we perform this
step for each corner vertex, the size of the point splat is implic-
itly increased or decreased depending on the relative position of the
point splat to the VPL. Figure 8 shows a comparison of the shad-
owing results. In this scene 256 VPLs, shown in red, are all placed
at the same position on top of the Cornell box. In cases where the
VPL direction is normal to the surface normal, a lot of self occlu-
sion occurs with the standard method (left). With our approach,
the depth values in the ISM are more accurate and thus less self
occlusion occurs (right).

Figure 8: The image on the left shows the result with standard im-
perfect shadow maps, when 256 VPLs, shown in red, are placed at
the same position on top of the Cornell box. Here, point splats are
rendered as billboards into the ISM resulting in a lot of wrong self
occlusions (rendered at 24 fps). As shown in the right image, our
new method, which splats the points aligned to the surface normal
into the ISM, removes most of the self shadowing artifacts (rendered
at 22 fps).

4.2 VPL Assignment
One of our contributions is an adaptive way to assign VPLs to a
given primary light source. The framework is capable of handling

103

multiple primary light sources, without reducing the indirect illu-
mination computation performance. This is achieved by keeping
a constant number of VPLs in a so-called VPL-Buffer. For each
primary light source, an appropriate number of VPLs must be as-
signed. Our idea is to take into account the intensity that is emitted
by the VPLs generated by that light source. This intensity depends
on the material properties of the point a VPL is placed on. Thus,
more VPLs will be generated for primary light sources that shine
into more reflective areas. We use the VPL-Buffer of the last frame
to calculate the new amount of VPLs to be assigned. Each primary
light source sums up the radiant flux for the previously assigned
VPLs stored in the old VPL-Buffer and divides it through the area
of the primary light source. The renderer distributes the number
of VPLs accordingly. In this way, primary lights that do not con-
tribute much to the illumination get fewer VPLs. Note that in the
first frame, all primary light sources get assigned the same amount
of VPLs. A special case is the primary bounce light source de-
scribed in Section 5.2. Here we do not have any information about
the area of the light source. For this case we just set the percentage
of VPLs that should be assigned to it.

4.3 Multiple Bounce Optimization
For multiple bounces, we developed a new method to calculate
secondary VPLs, which greatly reduces fill rate compared to the
method proposed by Ritschel et al. [27]. Their approach was to ex-
tend imperfect shadow maps to reflective shadow maps and after-
wards use importance sampling to sample the RSM for each VPL.
However, this method has a very large fill rate, while only very little
information is finally used.

Our method instead renders the point cloud representing the
scene directly into the VPL-Buffer and thus largely reduces the fill
rate. The idea is to assign each point of the point cloud to a given
VPL slot in the new VPL-Buffer. Then for every slot a so-called
source VPL is selected from the previous VPL-Buffer. Every as-
signed point will be illuminated by this source VPL and the maxi-
mum outgoing radiance from that point is used to decide if a new
VPL should be placed. All assigned points compete against each
other, but only the strongest one will survive. Note that the selec-
tion of the source VPL is importance driven and dependent on the
VPL slot. Furthermore it would be better to select the new position
according to a probability that depends on the outgoing radiance
instead of just selecting the best position. However, by reusing the
VPLs from the previous buffer, several consecutive light bounces
are possible in an efficient way.

4.4 Reducing Temporal Flickering
To get high frame rates, we are forced to keep the number of VPLs
as low as possible, while at the same time the image quality should
not be decreased too much. For this reason we temporally smooth
the illumination results caused by the VPLs, exploiting the tem-
poral coherence between adjacent frames. We do this by storing
the illumination buffer from the last frame and reuse the calculated
illumination. However, since the objects are moving, and the il-
lumination and the camera may change, we have to calculate how
confident an indirect illumination value from the previous frame is.
We therefore take three different parameters into account.

1. The relative position change from one frame to the next. For
performance reasons we divide the position change into two
parts. The difference in depth per screen-pixel and the differ-
ence in 2d screen space.

2. The difference between the surface normals. If the normal
changes, illumination will also change and hence, the previ-
ous values are not as confident as the new ones. We calculate
the difference using the dot product between the normals.

3. Global illumination is a global process. So it may happen that
a point at a given pixel does not move (no change in position
and normal) but the confidence should still be low, because
due to other moving objects, the illumination changes a lot.
Therefore the difference of the previously calculated illumina-
tion and the current illumination also reduces the confidence.
We use the cubed difference, so that low differences have little
impact and higher differences have more.

The confidence for each pixel is calculated as follows:

εpos = ||(xs− xprev,ys− yprev,ds−dprev)wp|| (8)
εnormal = (1− (n ·nprev))wn (9)

εill = saturate(||Inew− Iprev||3)wi (10)
con f idence = saturate(1−max(εpos,εnormal ,εill))cB (11)

where [∗]prev always directs to values from the previous frame,
(xs,ys) is the screen position, ds the screen depth, n the normal of
the screen pixel and cB is the base confidence. Inew is the indirect
illumination calculated in this frame. The weighting factors w∗ de-
pend heavily on the scene characteristics. For the Cornell box, we
have chosen the following weights: wp = (10,10,10000), wn = 1.0
and wi = 0.025.

Note that wp is a vector so that we are able to weight depth move-
ment independent of screen space movement. If wp and wn have
smaller values, ghosting artifacts start to show up. Parameter wi is
a little bit more difficult to choose. If it is too high, the indirect illu-
mination difference between adjacent frames tends to be too high,
so the confidence will be low and thus flickering artifacts start to
show up again. On the other hand if it is too low, illumination up-
dates may take too long.

We also tested the confidence value computation using different
equations like multiplication of εpos, εnormal and εill . However, we
got best results when using the maximum of these values. Further-
more, the saturation function ensures that the confidence value is
between zero and one.

The final per-pixel indirect illumination for the current frame is:

I = con f idenceIprev +(1− con f idence)Inew (12)

5 IMPLEMENTATION

The framework is designed as a deferred rendering system, which
enables us to decouple scene complexity from illumination com-
putation by using a so called G-Buffer. The diagram in Figure 3
shows an overview of the necessary steps that are performed every
frame. We also use single-pass interleaved shading from Segovia et
al. [30] to reduce shading costs.

5.1 System Overview
The first step is to copy the VPL-Buffer of the previous frame to
mappable textures. This is necessary because the VPL-Buffer itself
is used as a render target (during VPL creation) and current graph-
ics hardware does not allow for CPU read back of those kind of
textures.

The G-Buffer is created afterwards. It stores the color, diffuse in-
tensity, specular intensity and specular power. Furthermore it stores
the normal at a screen pixel and the movement in screen-space com-
pared to the last frame (see Section 4.4). To calculate the world
space position in every pixel the depth is also stored. The G-Buffer
also needs an indicator if the current pixel belongs to a real or vir-
tual object. In our implementation the sign of the depth value is
used for this. For real objects, the depth value is positive and for
virtual ones it is negative.

Ritschel et al. [27] as well as Laine et al. [18] use interleaved
shading by Segovia et al. [30] to only assign a subset of VPLs to a
given pixel. We therefore split the G-Buffer. After splitting, the data

104

in the textures which were copied in the first step must be copied
to system memory. Then, for each primary light source, the radiant
flux of the assigned VPLs is estimated using the copied data, and the
number of VPLs, which get assigned to each primary light source,
is calculated. Each primary light source is responsible for creating
VPLs on its own by directly rendering into the VPL-Buffer.

After the new VPLs have been created, the imperfect shadow
maps introduced by Ritschel et al. [27] are rendered. Each object
in the scene has a corresponding point cloud, and these point clouds
are used to create the ISMs. The point clouds itself are created at
loading time by simply distributing a given number of points over
the total surface area of all objects. Each point gets a unique id
which is used to assign the point to a VPL.

During ISM creation, the information whether the depth value
belongs to a real or virtual object is again stored using the sign of
the depth.

Once the VPL-Buffer is created and the imperfect shadow maps
are available, illumination computation can start. In Figure 3, these
steps are surrounded by a grey box. The output of the grey box
is a difference image that will be applied to the video frame. All
other steps in the grey box render into two buffers simultaneously,
the VR-Buffer and the R-Buffer. The VR-Buffer stores the complete
GI solution including real and virtual objects. The R-Buffer only
stores the GI solution computed from the real objects. Note that
these buffers are double buffered because simultaneous read and
write operations are not possible.

First indirect illumination is computed for both buffers. This is
done by drawing a mesh consisting of quads that corresponds to
the split G-Buffer in screen space. The mesh has the same amount
of quads as there are VPLs in the VPL-Buffer. Each quad has a
unique id attached that is used to lookup the corresponding VPL in
the VPL-Buffer. Note that both buffers are manipulated in parallel,
and indirect illumination is accumulated in one single draw call. In
this shading process the flags are used to determine how to calculate
the illumination on a per-pixel basis (see Section 3).

Afterwards the split buffers are merged. During the merging
step, the results from the previous frames are reused to temporally
smooth the indirect illumination calculation (see Section 4.4) and
filtered. Then for each primary light source direct illumination is
added. The resulting buffers must be tone mapped and for that the
tone mapper calculates the average world luminance based on the
VR-Buffer. Then both buffers are mapped to low dynamic range.
The resulting VR-Buffer and R-Buffer contain illumination caused
by the VPLs and primary light sources as shown in Figure 3. In the
last step the background image is added to the difference between
the tone mapped VR- and R-Buffers. Note that the background im-
age is masked and only added where there are no virtual objects.

5.2 Primary Light Sources
The rendering system currently supports three types of primary
light sources. A spotlight, an environment light and a special pri-
mary light source that performs one light bounce.

Spot Light The spot light source behaves like a standard spot
light except that it can be set to be a real or virtual light source.
It stores a reflective shadow map that is rendered from the point
of view of the light source. Beside the depth, which is used for
standard shadow mapping, it stores the surface color, the material
parameter, the normal of the surface and an importance factor simi-
lar to the reflective shadow maps from Dachsbacher et al. [3]. When
VPLs are created, the importance factor is used to perform impor-
tance sampling as proposed by Clarberg et al. [2] on the RSM. After
a proper sample position has been found, the information from the
RSM is used to create a new VPL in the VPL-Buffer.

Environment Light The environment light source uses the
input image from a fish-eye lens camera to capture the surrounding

illumination. It does this by placing virtual point lights on a hemi-
sphere around the scene center. Figure 9 shows the virtual point
lights placed on the hemisphere. To get a better approximation, the
VPLs are first importance sampled according to the illumination in-
tensity. This is again done using the method from Clarberg et al. [2].
Since the environment light source uses the image from the camera,
it is set to be a real light source. Note that the environment light is
different to the spot light as it uses the VPLs for direct illumination.

Figure 9: Illustrates incident illumination from the surrounding envi-
ronment captured with the fish-eye lens camera. The red dots show
the positions of the VPLs

Multiple Bounces The multiple bounce light is a special
kind of primary light source. The idea behind it is to see the geome-
try as light source itself. The sources of light are the already placed
virtual point lights and from that new ones can be created (see Sec-
tion 3.8). All VPLs in the VPL-Buffer of the previous frame are
used to generate new VPLs, but importance sampling ensures that
stronger VPLs are used more often than weaker ones. In the first
step, each sample point is assigned to a VPL slot. Then a source
VPL dependent on the VPL slot is selected via a lookup texture.
Afterwards a glossy light bounce from the source VPL is calcu-
lated. For visibility testing the ISM texture from the last frame is
used. In the last step we use the depth buffer to find the most impor-
tant sample point. This is simply done by writing out a depth value
for each sample point that is related to the maximum outgoing ra-
diance from the new VPL candidate. The compare function of the
depth buffer must be reversed and the final VPL slot will contain
only the VPL which has the highest contribution to the scene.

6 RESULTS

All the results were rendered at a resolution of 1024x768 pixels on
an Intel Core2 Quad CPU Q9550 at 2.8GHz with 8GB of memory.
As graphics card we used an NVIDIA Geforce GTX 285 with 1GB
video memory. The operating system is Microsoft Windows 7 64-
bit and the rendering framework is developed in C#. As graphics
API we use DirectX 10 in conjunction with the SlimDX library.
Our system uses a standard webcam from Logitech for see-through
video and a Stingray F-125 camera with a fish-eye lens from Allied
Vision to acquire the environment map. Our tests took place in an
office with some incident light through the window and one spot
light illuminating the scene directly. The surrounding illumination
is captured using the fish-eye camera. Furthermore we have a small
pocket lamp to simulate some direct incident light. We use Studier-
stube Tracker for tracking the camera and the position of the pocket
lamp. Unless otherwise mentioned, we use 256 virtual point lights
and represent the scene using 1024 points per VPL. The imperfect

105

(a) (b)

(c) (d)

Figure 10: (a) Virtual object shadows a real one. (b) The pocket lamp points towards the virtual Cornell box causing red color bleeding through
indirect illumination towards the desk and the cardboard box. (c) The pocket lamp illuminates the real cardboard box. Indirect illumination via
VPLs causes the green wall of the Cornell box to appear brighter. (d) The pocket lamp illuminates parts of the Cornell box and our system tries
to cancel out the highlight on the cardboard box.

shadow map size for one VPL is 128x128 and we split the G-Buffer
into 4x4 tiles.

Figure 10(a) shows a virtual Cornell box and a real cardboard
box illuminated by the captured environment. The Cornell box
shadows the real box. The image is rendered at 24 fps with multiple
bounces enabled.

Figure 10(b) shows the same scene with additional light of a real
pocket lamp. It points towards the virtual Cornell box causing indi-
rect illumination towards the real box. Note the red color bleeding
on the box and the desk. The same illumination effect but reversed
is shown in Figure 10(c). Here the pocket lamp partly illuminates
the real desk and the real cardboard box, again causing indirect il-
lumination. Our system is capable of handling these different cases
in a general way. Both images are rendered at 22 fps.

Figure 10(d) shows the scenario when the pocket lamp shines
into the virtual Cornell box. In this image some artifacts are visible.
The real spot light actually illuminates the area behind the virtual
Cornell box. Our system tries to cancel out this highlight. How-
ever, our current method is insufficient, because the pocket lamp
approximation is not accurate enough and tone mapping does not
correspond with the response curves of the webcam.

We have also implemented a small game to test our method in an
interactive environment. It consists of a UFO and several goodies
that must be collected so that the UFO is able to land on top of the

tower. Figure 11 shows the game environment and the UFO. Please
note the illuminated area on the desk caused by the virtual spotlight
of the UFO. Furthermore the UFO circles around the tower and our
method is able to handle occlusions correctly.

Figure 11: The UFO has its own spot light which illuminates the real
desk.

106

7 CONCLUSION AND FUTURE WORK

We introduced a novel method to render mixed reality scenarios
with global illumination at real-time frame rates. The main con-
tribution is a combination of the Instant Radiosity algorithm with
Differential Rendering. By adding information in various locations
of the rendering pipeline it is possible to distinguish between shad-
ing contributions from the real scene and from the combined real
and virtual scene. Thus, our method is capable of relighting the
real scene and illuminating the virtual objects in a general way by
either using real or virtual light sources.

To enhance image quality we have introduced a number of new
techniques. First, we proposed a new way to align the point splats,
used for imperfect shadow map creation, along the surface nor-
mal. This greatly reduces artifacts caused by wrong self occlusions.
Second, to remove temporal flickering artifacts between adjacent
frames, we reuse the information from the last frame and smooth
indirect illumination computation over time. The results show that
our method is able to simulate the mutual influence between real
and virtual objects.

In the future, we intend to improve placement of the VPLs for
multiple light bounces and address the limitations mentioned in
Section 3.7. Furthermore we want to increase the image quality
by using a shading method similar to Nichols et al. [23].

ACKNOWLEDGEMENTS

The authors wish to thank Ralf Habel, Reinhold Preiner and Wolf-
gang Knecht. This work was supported by a grant from the FFG-
Austrian Research Promotion Agency under the program “FIT-IT
Visual Computing” (project nr. 820916). Studierstube Tracker is
kindly provided by Imagination Computer Services.

REFERENCES

[1] K. Agusanto, L. Li, Z. Chuangui, and N. W. Sing. Photorealistic ren-
dering for augmented reality using environment illumination. In IS-
MAR ’03: Proceedings of the 2nd IEEE/ACM International Sympo-
sium on Mixed and Augmented Reality, page 208, 2003.

[2] P. Clarberg, W. Jarosz, T. Akenine-Möller, and H. W. Jensen. Wavelet
importance sampling: efficiently evaluating products of complex func-
tions. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages
1166–1175, 2005.

[3] C. Dachsbacher and M. Stamminger. Reflective shadow maps. In I3D
’05: Proceedings of the 2005 symposium on Interactive 3D graphics
and games, pages 203–231, 2005.

[4] N. Dachuri, S. M. Kim, and K. H. Lee. Estimation of few light sources
from environment maps for fast realistic rendering. In ICAT ’05:
Proceedings of the 2005 international conference on Augmented tele-
existence, pages 265–266, 2005.

[5] P. Debevec. Rendering synthetic objects into real scenes: bridging tra-
ditional and image-based graphics with global illumination and high
dynamic range photography. In SIGGRAPH ’98: Proceedings of the
25th annual conference on Computer graphics and interactive tech-
niques, pages 189–198, 1998.

[6] P. Debevec. A median cut algorithm for light probe sampling. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Posters, page 66, 2005.

[7] G. Drettakis, L. Robert, and S. Bugnoux. Interactive common illumi-
nation for computer augmented reality. In 8th Eurographics workshop
on Rendering, June 1997.

[8] A. Fournier, A. S. Gunawan, and C. Romanzin. Common illumina-
tion between real and computer generated scenes. In Proceedings of
Graphics Interface ’93, pages 254–262, May 1993.

[9] T. Grosch. Differential photon mapping: Consistent augmentation of
photographs with correction of all light paths. In Eurographics 2005
Short Papers, Trinity College, 2005.

[10] T. Grosch, T. Eble, and S. Mueller. Consistent interactive augmen-
tation of live camera images with correct near-field illumination. In
VRST ’07: Proceedings of the 2007 ACM symposium on Virtual reality
software and technology, pages 125–132, 2007.

[11] V. Havran, M. Smyk, G. Krawczyk, K. Myszkowski, and H.-P. Seidel.
Importance sampling for video environment maps. In SIGGRAPH
’05: ACM SIGGRAPH 2005 Sketches, page 109, 2005.

[12] P. S. Heckbert. Simulating Global Illumination Using Adaptive Mesh-
ing. PhD thesis, EECS Department, University of California, June
1991.

[13] S. Heymann, A. Smolic, K. Müller, and B. Froehlich. Illumination re-
construction from real-time video for interactive augmented reality. In
International Workshop on Image Analysis for Multimedia Interactive
Services (WIAMIS’05), pages 1–4, Montreux, 2005.

[14] K. Jacobs and C. Loscos. Classification of illumination methods for
mixed-reality. Computer Graphics Forum, 25:29–51, March 2006.

[15] A. Kaplanyan. Light propagation volumes in cryengine 3. In SIG-
GRAPH 2009 Course, 2009.

[16] A. Keller. Instant radiosity. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and interactive tech-
niques, pages 49–56, 1997.

[17] M. Korn, M. Stange, A. von Arb, L. Blum, M. Kreil, K.-J. Kunze,
J. Anhenn, T. Wallrath, and T. Grosch. Interactive augmentation of
live images using a hdr stereo camera. Journal of Virtual Reality and
Broadcasting, 4(12), January 2007.

[18] S. Laine, H. Saransaari, J. Kontkanen, J. Lehtinen, and T. Aila. In-
cremental instant radiosity for real-time indirect illumination. In Pro-
ceedings of Eurographics Symposium on Rendering 2007, pages 277–
286, 2007.

[19] C. B. Madsen and M. Nielsen. Towards probe-less augmented reality
- a position paper. In GRAPP, pages 255–261, 2008.

[20] M. McGuire and D. Luebke. Hardware-accelerated global illumina-
tion by image space photon mapping. In HPG ’09: Proceedings of the
Conference on High Performance Graphics 2009, pages 77–89, 2009.

[21] E. Nakamae, K. Harada, T. Ishizaki, and T. Nishita. A montage
method: the overlaying of the computer generated images onto a back-
ground photograph. In SIGGRAPH ’86: Proceedings of the 13th
annual conference on Computer graphics and interactive techniques,
pages 207–214, 1986.

[22] G. Nichols, J. Shopf, and C. Wyman. Hierarchical image-space ra-
diosity for interactive global illumination. Computer Graphics Forum,
28:1141–1149, June 2009.

[23] G. Nichols and C. Wyman. Multiresolution splatting for indirect illu-
mination. In I3D ’09: Proceedings of the 2009 symposium on Inter-
active 3D graphics and games, pages 83–90, 2009.

[24] S. Pessoa, G. Moura, J. Lima, V. Teichrieb, and J. Kelner. Photoreal-
istic rendering for augmented reality: A global illumination and brdf
solution. In 2010 IEEE Virtual Reality Conference (VR), pages 3–10.
IEEE, March 2010.

[25] T. Ritschel, T. Engelhardt, T. Grosch, H.-P. Seidel, J. Kautz, and
C. Dachsbacher. Micro-rendering for scalable, parallel final gather-
ing. In SIGGRAPH Asia ’09: ACM SIGGRAPH Asia 2009 papers,
pages 1–8, 2009.

[26] T. Ritschel and T. Grosch. On-line estimation of diffuse materi-
als. In Dritter Workshop Virtuelle und Erweiterte Realitaet der GI-
Fachgruppe VR/AR, volume 3, pages 95–106, 2006.

[27] T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, and
J. Kautz. Imperfect shadow maps for efficient computation of indirect
illumination. In SIGGRAPH Asia ’08: ACM SIGGRAPH Asia 2008
papers, pages 1–8, 2008.

[28] T. Ritschel, T. Grosch, and H.-P. Seidel. Approximating dynamic
global illumination in image space. In I3D ’09: Proceedings of the
2009 symposium on Interactive 3D graphics and games, pages 75–82,
2009.

[29] I. Sato, Y. Sato, and K. Ikeuchi. Acquiring a radiance distribution to
superimpose virtual objects onto a real scene. IEEE Transactions on
Visualization and Computer Graphics, 5(1):1–12, 1999.

[30] B. Segovia, J. C. Iehl, R. Mitanchey, and B. Péroche. Non-interleaved
deferred shading of interleaved sample patterns. In GH ’06: Proceed-
ings of the 21st ACM SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware, pages 53–60, 2006.

[31] R. Wang, R. Wang, K. Zhou, M. Pan, and H. Bao. An efficient gpu-
based approach for interactive global illumination. In SIGGRAPH ’09:
ACM SIGGRAPH 2009 papers, pages 1–8, 2009.

107

