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Software Platform to Design,
Test, and Use Brain–Computer
Interfaces in Real and Virtual
Environments

Abstract

This paper describes the OpenViBE software platform which enables researchers to
design, test, and use brain–computer interfaces (BCIs). BCIs are communication
systems that enable users to send commands to computers solely by means of
brain activity. BCIs are gaining interest among the virtual reality (VR) community
since they have appeared as promising interaction devices for virtual environments
(VEs). The key features of the platform are (1) high modularity, (2) embedded
tools for visualization and feedback based on VR and 3D displays, (3) BCI design
made available to non-programmers thanks to visual programming, and (4) various
tools offered to the different types of users. The platform features are illustrated in
this paper with two entertaining VR applications based on a BCI. In the first one,
users can move a virtual ball by imagining hand movements, while in the second
one, they can control a virtual spaceship using real or imagined foot movements.
Online experiments with these applications together with the evaluation of the plat-
form computational performances showed its suitability for the design of VR appli-
cations controlled with a BCI. OpenViBE is a free software distributed under an
open-source license.

1 Introduction

One of the keys to a great immersion feeling with virtual reality (VR) is
the ease of interaction with virtual environments (VE). Recently, a new method
has emerged: interacting through cerebral activity, using a brain–computer inter-
face (BCI; Leeb et al., 2007, 2006; Lécuyer et al., 2008). Such an interface is
a communication system that enables a user to send commands to a computer
by means of variations of brain activity, which is in turn measured and pro-
cessed by the system (Wolpaw, Birbaumer, McFarland, Pfurtscheller, &
Vaughan, 2002). BCI are currently following the path laid down by haptic
devices a few years ago (Burdea, 1996) by providing a completely new way of
conceiving interaction with computers and electronic devices through the
“interaction by thought” concept. The BCI technology is rapidly improving,
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and several interesting applications using BCI have al-
ready been developed for navigating or interacting with
virtual environments (Leeb et al., 2007; Lécuyer et al.;
Friedman et al., 2007), or for video games (Krepki,
Blankertz, Curio, & Müller, 2007; Nijholt, 2009).

However, designing BCI-based interaction devices
requires expertise in a broad range of domains, ranging
from neurophysiology, signal processing, and interac-
tion, to computer graphics or computer programming
which represents a challenging multidisciplinary task. A
general purpose software platform that provides the
necessary functionalities to easily design BCI and con-
nect them with VR would foster research in the domain
and democratize the use of BCI in real and virtual envi-
ronments.

In this paper, we present the OpenViBE platform, a
novel, free, and open source platform to design and
tune BCI systems and connect them with real and vir-
tual environments. This paper is organized as follows.
Section 2 covers a short state of the art of existing BCI
platforms, and Section 3 describes the features of our
platform. Section 4 presents the range of users our sys-
tem targets. Sections 5 and 6 detail respectively the de-
sign of a BCI with OpenViBE and the tools we provide.
Section 7 is dedicated to the connection with VR, and
Section 8 details the platform internals. Finally, some
examples of BCI implementations, performance, and
the current state of the platform are presented respec-
tively in Sections 9, 10, and 11. The paper ends with a
general conclusion.

2 Related Work: Existing BCI Software

Several software programs for off-line and online
analysis of EEG and biomedical signals are available.
They are briefly reviewed in Schlögl, Brunner, Scherer,
and Glatz (2007). However, these programs do not
include all the necessary functionalities for designing a
BCI.

In the freeware community, only three programs en-
close the necessary functionalities for real-time BCI de-
signs: BioSig (Schlögl et al., 2007; thanks to the “rts-
BCI” package), BCI2000 (Mellinger & Schalk, 2007),

and BCI�� (Maggi, Parini, Perego, & Andreoni,
2008).

BioSig is an open-source software library for biomedi-
cal signal processing and more specifically for BCI re-
search (Schlögl et al., 2007). It is a toolbox for Octave
and MATLAB that offers several data management
modules, data import and export, artifact processing,
quality control, feature extraction algorithms, classifica-
tion methods, and so on. It also offers rapid prototyping
of online and real-time BCI with the rtsBCI package
using MATLAB/Simulink.

BCI2000 is a general purpose system for BCI re-
search (Mellinger & Schalk, 2007). This software is not
open source, but its source code and executables are
available for free for nonprofit research and educational
purposes. BCI2000 is a C�� software program that
proposes to build an online and real-time BCI by assem-
bling four modules: the source module, for data acquisi-
tion and storage; the signal processing module, that en-
compasses the preprocessing, feature extraction, and
classification of brain activity; the user application mod-
ule, with which the user interacts; and finally, the op-
erator interface for data visualization and system con-
figuration. Interestingly, BCI2000 also provides tools
for off-line analysis of data within the MARIO soft-
ware. Recently, another BCI software platform has
been proposed: BCI�� (Maggi et al., 2008). This soft-
ware is a C/C�� framework for designing BCI systems
and experiments. BCI�� also includes some 2D/3D
features for BCI feedback. However, it should be noted
that this platform is not completely open source.

A comparison of these software programs with Open-
ViBE is provided in Section 3.1.

3 OpenViBE Features

OpenViBE is a free and open source software plat-
form for the design, test and use of BCIs. The platform
consists of a set of software modules that can be easily
and efficiently integrated to design BCI for both real
and VR applications. Key features of the platform are:
modularity and reusability, applicability for different
types of users, portability, and connection with VR.
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Modularity and Reusability Our platform is a set of
software modules devoted to the acquisition, prepro-
cessing, processing, and visualization of cerebral data,
as well as to interaction with VR displays. OpenViBE,
being general purpose software, implies that users are
able to easily add new software modules in order to fit
their needs. This is ensured thanks to the box con-
cept, an elementary component in charge of a fraction
of the whole processing pipeline, that allows users to
develop reusable components, reduces development
time, and helps to quickly extend functionalities.

Different Types of Users OpenViBE is designed for
different types of users: VR developers, clinicians,
BCI researchers, and so on. Their various needs are
addressed and different tools are proposed for each of
them, depending on their programming skills and
their knowledge of brain processes.

Portability The platform operates independently from
the different software targets and hardware devices. It
includes an abstract level of representation, allowing it
to run with various input devices, such as EEG or
MEG. It can run on Windows and Linux operating
systems and also includes different data visualization
techniques. Finally, it is based on free and portable
software (e.g., GTK�,1 IT��,2 GSL,3 VRPN,4

GCC5).
Connection with VR Our software can be integrated

with high-end VR applications. OpenViBE acts as an
external peripheral to any kind of real and virtual en-

vironment. It also takes advantage of VR displays
thanks to a light abstraction of a scenegraph manage-
ment library, allowing users to visualize cerebral activ-
ity in an understandable way or to provide incentive
training environments (e.g., for neurofeedback).

3.1 Comparison with Other BCI
Platforms

In comparison to other BCI software, the Open-
ViBE platform is highly modular. It addresses the needs
of different types of users (should they be programmers
or nonprogrammers) and proposes a user-friendly
graphical language that allows nonprogrammers to de-
sign a BCI without writing a single line of code. In con-
trast, all other BCI platforms require some degree of
programming skills to design a new real-time BCI from
scratch. Furthermore, their modularity is coarser (except
for BioSig), hence restricting the range of possible de-
signs.

OpenViBE is also portable, independent of the hard-
ware or software, and is entirely based on free and open
source software. In comparison, among other real-time
BCI platforms, only BioSig is fully open source but the
rtsBCI package needed for online and real-time BCI
requires MATLAB/Simulink, which is non-free and
proprietary software.

OpenViBE proposes to generate online scenarios
(step 3 in Figure 1) automatically from off-line analysis
(step 2 in Figure 1). Finally, in contrast to other plat-
forms, OpenViBE is well suited for VR applications as it
provides several embedded tools to design innovative
VR displays and feedback as well as to perform 3D visu-
alization of brain activity in real time. Furthermore, Open-
ViBE can also be used as a device for any VR application.

4 Different Types of Users

OpenViBE has been designed for four types of
users. The first two types, the developer and the applica-
tion developer, are both programmers; the last two
types, the author and the operator, do not need any
programming skills.

1. The Gnome ToolKit is a highly usable, feature rich toolkit for
creating graphical user interfaces which boasts cross platform compati-
bility and offers an easy to use API. More information can be found at
http://www.gtk.org .

2. IT�� is a C�� library of mathematical, signal processing, and
communication routines. More information can be found at http://
sourceforge.net/apps/wordpress/itpp .

3. The GNU Scientific Library is a numerical library for C and
C�� programmers. More information can be found at http://www.
gnu.org/software/gsl .

4. The Virtual-Reality Peripheral Network is a set of classes within
a library designed to implement an interface between application pro-
grams and the set of physical devices used in a virtual reality system.
More information can be found at http://www.cs.unc.edu/Research/
vrpn .

5. The GNU Compiler Collection is a compiler that supports a
wide range of architectures. More information can be found at
http://gcc.gnu.org .
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The Developer (Programmer): The developer has
the possibility to add new functionalities and test
original pieces of software in OpenViBE. To that end,
OpenViBE is delivered with a complete software de-
velopment kit (SDK). This SDK provides access to
functionalities at different levels depending on the
task at hand. There are two main categories of devel-
opers: first, the kernel developers who enhance and
modify kernel functionalities (see Section 8.2); sec-
ond, plug-in developers who create new additional
modules (see Section 8.3).

The Application Developer (Programmer): The
application developer uses the SDK to create stand-
alone applications, using OpenViBE as a library. Such
applications range from new tools such as the visual
scenario editor described in Section 6, to external VR
applications with which the BCI user can interact.
Such VR applications are presented in Section 7.

The Author (Non-programmer): The author uses
the visual scenario editor (see Figure 2) to arrange
existing boxes to form a scenario. The author con-
figures these boxes and the scenario in order to
produce a complete, ready-to-use BCI system. The
author is aware of the internals of our platform as
well as of BCI systems and is familiar with basic
signal processing. The author is also aware of the

interaction paradigm to use. However, he or she
does not need strong computer programming skills
because there are dedicated tools to perform the
tasks (see Section 6).

The Operator (Non-programmer): The operator

Figure 2. The OpenViBE designer with a sample scenario. The tool

enables the graphical design of a BCI system by adding and

connecting boxes representing processing modules without writing a

single line of code.

Figure 1. Designing a BCI with OpenViBE.
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generally would be a clinician or a practitioner, and is
neither a computer expert nor an OpenViBE expert.
The operator is in charge of using and running the
prebuilt scenarios of the author. The operator then
simply runs the scenario. The operator is aware of
how the BCI system should and can work, and moni-
tors the execution of the BCI system thanks to dedi-
cated visualization components. He or she has an un-
derstanding of neurophysiological signals and can
help the BCI user to improve control over the BCI
system.

Finally, another role should be considered: the BCI
user. The BCI user generally wears the brain activity
acquisition hardware (e.g., an EEG cap) and interacts
with an application by means of mental activity. The
application could be, for instance, a neurofeedback
training program, a video game in virtual reality, a re-
mote operation in augmented reality, and so on. While
the user does not directly use the OpenViBE platform,
he or she implicitly takes advantage of its features.

5 How to Design a BCI with OpenViBE

Designing and operating an online BCI with
our software follows a rather universal way of doing
so (Wolpaw et al., 2002). Three distinct steps are re-
quired (see Figure 1). In the first step, a training data
set must be recorded for a given subject who per-
forms specific mental tasks. The second step consists
of an off-line analysis of these records with the goal
of finding the best calibration parameters (e.g., opti-
mal features, relevant channels, etc.) for this subject.
The last step consists of using the BCI online in a
closed loop process. Optionally, iterations can be
done on data acquisition and off-line training in or-
der to refine the parameters.

The online loop (third step) is common to any BCI
and it is composed of six phases: brain activity mea-
surements, preprocessing, feature extraction, classifi-
cation, translation into a command, and feedback (see
Figure 1).

Brain Activity Measurements: This step consists of
measuring the brain activity of the BCI user. To
date, about half a dozen different kinds of brain
signals have been identified as suitable for a BCI,
that is, they are easily observable and controllable
(Wolpaw et al., 2002). Measuring the brain activity
for a BCI system is mainly performed using electro-
encephalography (EEG) since it is a cost-effective
and noninvasive method which provides high tem-
poral resolution (Wolpaw et al., 2002). Our soft-
ware already supports various EEG acquisition de-
vices but also magnetoencephalography (MEG)
machines (see Section 11 for a list of supported
devices).

Preprocessing: The preprocessing step aims at re-
moving the noise from the acquired signals and/or
at enhancing a specific brain signal (Bashashati, Fa-
tourechi, Ward, & Birch, 2007). For example, our
software proposes different kinds of preprocessing
algorithms such as temporal filters and spatial filters
(independent component analysis, surface Lapla-
cian, etc.).

Feature Extraction: Once signals have been pre-
processed, features can be extracted. These features
consist of a few values that describe the relevant
information embedded in the signals (Bashashati et
al., 2007) such as the power of the signals in spe-
cific frequency bands (Pfurtscheller & Neuper,
2001). These features are then gathered into a vec-
tor called the feature vector. Examples of features
available in OpenViBE include band power features
or power spectral densities.

Classification: The feature vector is fed into an al-
gorithm known as the classifier. A classifier assigns
a class to each feature vector, this class being an
identifier of the brain signal that has been recog-
nized. In general, the classifier is trained before-
hand using a set of feature vectors from each class.
An example of classifier used for BCI would be lin-
ear discriminant analysis (Lotte, Congedo, Lécuyer,
Lamarche, & Arnaldi, 2007). It should be noted
that, due to the high variability and noisiness of
EEG signals, classification rates of 100% are very
rarely attained, even for a BCI using only two men-
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tal states. OpenViBE proposes several classifiers
such as linear discriminant analysis (Lotte, Con-
gedo, et al.) or fuzzy inference systems (Lotte,
Lécuyer, Lamarche, & Arnaldi, 2007).

Translation into a Command: Once the class of the
signal has been identified, it can be associated to a
command that is sent to a computer in order to con-
trol, for instance, a robot (Millán, 2008) or a prosthe-
sis (Wolpaw et al., 2002). The number of possible
commands in current EEG-based BCI systems typi-
cally varies between one and four.

Feedback: Finally, feedback should be provided to the
user so that he or she can determine whether the
brain signal was performed correctly. This is an im-
portant step as it helps the user to control his or her
brain activity (Lotte, Renard, & Lécuyer, 2008; Neu-
per, Scherer, Wriessnegger, & Pfurtscheller, 2009).
Feedback can be simple visual or audio cues, for ex-
ample, gauges. To this aim, our software proposes
classical raw signal, spectra, time/frequency visualiza-
tion modules. Alternatively, more advanced feedback
can be provided such as the modification of a virtual
environment (Leeb et al., 2007) to which OpenViBE
sends commands.

6 Tools

Our system includes a number of useful tools for
its various users: the acquisition server, the designer, 2D
visualization tools, and sample scenarios of BCI or neu-
rofeedback.

The acquisition server provides a generic interface
to various kinds of acquisition machines, for example,
EEG or MEG systems. Such an abstraction allows the
author to create hardware independent scenarios,
thanks to the use of a generic acquisition box. This
box receives the data via the network from the acqui-
sition server, which is actually connected to the hard-
ware and transforms these data in a generic way. The
way the acquisition server gets connected to the device
mostly depends on the hardware manufacturer’s way
to access the device. Some devices will be shipped
with a specific SDK, while others will propose a com-

munication protocol over a network/serial/USB con-
nection. Finally, some devices will need proprietary
acquisition software that delivers the measures to the
acquisition server.

The designer is mainly dedicated to the author and
enables the author to build complete scenarios based
on existing software modules using a dedicated
graphical language and a simple graphical user inter-
face (GUI) as shown in Figure 2. The author has ac-
cess to a list of existing modules in a panel, and can
drag and drop them in the scenario window. Each
module appears as a rectangular box with inputs (on
top) and outputs (at the bottom). Double-clicking on
a box displays its configuration panel. Boxes are man-
ually connectable through their inputs and outputs.
The designer also allows the author to configure the
arrangement of visualization windows (i.e., visualiza-
tion modules included in the scenario). An embedded
player engine allows the author to test and debug a
scenario in real time. In doing so, the author can re-
ceive continuous feedback on box status and process-
ing times. Such feedback may be useful to balance the
computational load.

The 2D visualization features of the platform are
available as specific boxes and include brain activity
related visualizations. These boxes can access all the
platform functionalities, and particularly the whole
stream content for the connected inputs. Most 2D
visualization boxes display input data in a widget and
do not produce output. Our system offers a wide
range of visualization paradigms such as raw signal
display, gauges, power spectrum, time-frequency
map, and 2D topography in which EEG activity is
projected on the scalp surface in two dimensions (see
Figure 3). OpenViBE also provides a visualization
tool that displays instructions to a user according to
the protocol of the famous Graz motor imagery-
based BCI (Pfurtscheller & Neuper, 2001).

Existing and preconfigured ready-to-use scenarios are
proposed to assist the author. As the creation of new
scenarios has gotten faster and easier, the number of
available scenarios is expected to rapidly increase. Cur-
rently, five complete scenarios are available.
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● Hand Motor Imagery-Based BCI: This scenario
allows the use of OpenViBE as an interaction pe-
ripheral using imagined movements of the left and
right hand. This scenario is inspired from the well-
known Graz-BCI of the Graz University
(Pfurtscheller & Neuper, 2001; see Section 9).

● Self-Paced BCI Based on Foot Movements: This
scenario represents a BCI based on real or imagined
foot movements that can be used in a self-paced
way. This means the subject can interact with the
application at any time, contrary to most existing
BCIs (see Section 9).

● Neurofeedback: This scenario shows the power
of the brain activity in a specific frequency band,
and helps a subject in the task of self-training to
control that power.

● Real-Time Visualization of Brain Activity in
2D/3D: This scenario enables the user to visual-
ize his or her own brain activity evolving in real-
time on a 2D or 3D head model. This scenario can
be used together with inverse solution methods
(Baillet, Mosher, & Leahy, 2001), in order to visu-
alize the brain activity in the whole brain volume,
not only on the scalp surface, as in Arrouët et al.
(2005; see Figure 6 to be discussed later).

● P300 Speller: This scenario implements the fa-
mous P300 speller (Farwell & Donchin, 1988;
Donchin, Spencer, & Wijesinghe, 2000), an appli-
cation that enables a user to spell letters by using
only brain activity, and more precisely the event

related potential known as the P300 (Wolpaw et al.,
2002; see Figure 4 and Figure 6 later in this paper). It
should be noted that OpenViBE can also be used to
design other P300-based BCI, and not only the P300
speller. Interested readers may refer to Sauvan,
Lécuyer, Lotte, and Casiez (2009) for another exam-
ple of a P300-based BCI designed with OpenViBE.

Figure 5 summarizes how users interact with software
and hardware components. For example, the operator uses
both the acquisition server and the designer; the brain ac-
tivity acquisition device feeds the acquisition server and the
analysis is performed on the computer hosting the de-
signer. This results in a dedicated embedded visualization
that monitors the user’s brain activity.

7 Connection with Virtual Reality

The platform includes a number of embedded 3D
visualization widgets and is able to interact with external
VR applications thanks to standard communication pro-
tocols. However, OpenViBE does not aim at offering a
complete set of scenegraph managing capabilities, nor at
embedding a VR application builder. Consequently,
OpenViBE users should be aware of what the platform
is in charge of, and what is left to external applications
communicating with OpenViBE.

7.1 OpenViBE as an Interaction Device
for External Virtual Reality
Applications

Our platform can be used as an interaction periph-
eral for any general purpose application in real and vir-
tual environments. As such, some of the data processed
by the scenario need to be exposed to the outside
world. There are two ways this goal can be achieved.

One way to meet this goal is to propose specific boxes
that can expose parameters in a “considered as stan-
dard” way. For example, the platform includes a VRPN
module (Taylor et al., 2001) that acts as a server and
sends analogic and button values. This is a convenient
way to interact with existing VR applications. The ad-

Figure 3. Examples of 2D displays: raw signals and time-frequency

map display widgets.
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vantage stands in that VR application developers do not
have to perform major modifications on their applica-
tion to have it controlled by a BCI user. Examples of
VR applications using OpenViBE and the VRPN
plug-in are given in Section 9.

The other way to meet the goal is to build an applica-
tion using the platform as a third-party peripheral man-
agement library. The developer has access to the whole
exposed data and is able to process and display it in his
or her own application.

7.2 OpenViBE for Direct Visualization
and Interaction with 3D Models

In order to perform 3D visualization, with or
without VR displays, the OpenViBE kernel hides a
scenegraph manager and exposes a number of func-
tionalities such as color, position, transparency and
scale settings for 3D objects, as well as mesh manage-
ment capabilities. This allows developers to easily and
quickly develop 3D plug-ins using a simplified 3D

Figure 4. Examples of visualization widgets available in OpenViBE. Left: The P300 speller. Right: 2D visualization of brain activity in real time,

on the scalp.

z

Figure 5. Relations between users, hardware, and software components.
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Application Programming Interface (API). This API
offers the required functionalities to load and dynam-
ically modify a 3D scene based on the input data and
allows direct visualization and interaction with 3D
models.

7.3 OpenViBE for Real-Time
Visualization of Brain Activity

OpenViBE is also used to visualize brain activity
in real time or to get immersive neurofeedback. In
order to achieve this, the scenegraph manager is used
by several visualization widgets. Figure 6 shows two
examples of what our platform offers in terms of em-
bedded 3D widgets for real-time visualization of
brain activity: a 3D topographic map which displays
the recorded potentials mapped onto a 3D head, and

a voxelized reconstruction of the inside brain activity,
based on scalp measures.

8 OpenViBE Internals

This section describes the software architecture of
the platform. In order to design an extensible software,
we followed the approach of already existing and widely
used VR software such as Virtools (http://www.virtools.
com). In this software package, the classical kernel and
plug-in architecture ensures maximum extensibility. A
new plug-in can be dynamically added and used by the
kernel for the applications’ benefit, without the need to
rebuild the application or the kernel itself. Additionally,
composing scenarios based on elementary components
ensures maximum flexibility and reusability.

Figure 6. 3D display of brain activity. Left: 3D topographic display of brain activity in real time, on the scalp. Right: Voxel reconstruction of

brain activity inside the brain, based on scalp measures.
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Therefore, each application of our platform relies on a
common kernel that delegates tasks to a number of ded-
icated plug-ins as shown in Figure 7. Moreover, the ker-
nel offers the concept of the box, allowing for the cre-
ation of powerful tools such as the designer authoring
tool. Each of these components is presented in the fol-
lowing sections.

8.1 The Box Concept

The box is a key component of the platform. It
consists of an elementary component in charge of a frac-
tion of the whole processing pipeline. It exposes inputs
and outputs to other boxes. Each box can be notified
on clock ticks and upon input data arrival. The behavior
of a box can be adapted to the needs of each algorithm
(e.g., acquisition algorithms typically react to clock sig-
nals whereas processing algorithms typically react to
input arrival). The characteristics and constraints that
are common to all boxes include reasonable granularity
to allow quick software components rearrangement.
Newly developed boxes are immediately available to the
user thanks to the plug-in system (see Section 8.3).

8.2 The Kernel

The kernel provides global services to applications
through several managers, each of them providing a set
of specialized services.

For example, the plug-in manager makes the platform
extensible. This manager is able to dynamically load
plug-in modules (e.g., .dll files under Windows, or .so
files under Linux) and collect extensions from them,
such as scenario serializers, algorithms, and boxes (see
Section 8.3). The plug-in system allows for the quick
and efficient expansion of functionalities. The commu-
nication interface between these extensions and the ker-
nel itself is defined so that they can easily be shared,
used, and replaced when needed.

Another example is the scenario manager, which
helps creating and configuring scenarios. For instance,
the manager can add or remove boxes, change their set-
tings, and connect them together. The scenario man-
ager can handle multiple scenarios simultaneously. The
designer authoring tool takes advantage of this in order
to edit them in multiple tabs.

Finally, the visualization manager is responsible for
displaying 2D or 3D graphical information and set-
ting the position and size of the displays in a window.
Indeed, multiple visualization windows may be used.
The windows arrangement in space is done by the
visualization manager at editing time, thanks to the
designer application, and saved to a file. Basic signal
display windows are provided with a 2D rendering
context (see Figure 3), while more advanced render-
ing is performed thanks to the encapsulated 3D li-
brary (see Section 7).

Several other managers exist, such as the player man-
ager for an easy setup of a runtime session, the configu-
ration manager for a convenient way to configure the
whole platform with text files, and the type manager
which ensures coherency and possibly conversions of all
data types (e.g., box settings or connectors). Interested
readers will find more information about those manag-
ers in the software documentation (INRIA, 2010).

8.3 Plug-ins

Our platform includes three different families of
plug-in: driver plug-ins, algorithm plug-ins, and box
plug-ins.

The driver plug-ins allow the user to add acquisition
devices to the acquisition server. A driver basically reads

- - -

Figure 7. Software architecture.
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the signal from the device through a specific SDK or a
physical connection, and injects this signal into Open-
ViBE in a generic way. The rest of the processing pipe-
line is therefore independent of the acquisition hard-
ware.

The algorithm plug-ins are a generic abstraction for
any extension that could be added to the platform (e.g.,
add new feature extraction or signal processing meth-
ods). Algorithms are the developer’s atomic objects.
The developer may compose several algorithms in order
to achieve a complex task. This kind of plug-in allows
the user to massively share and reuse software compo-
nents, even in an off-line context where time is handled
at a different scale (e.g., EEG file reading or signal visu-
alization widgets).

The box plug-ins are the software components each
box relies on. Boxes are the author’s atomic objects.
The developer describes them in a simple structure that
notably contains the box prototype (its name, input/
output connectors and settings). The box is responsible
for the actual processing, that is, it reads from inputs,
computes data to produce a result, and writes to out-
puts. The box generally combines several algorithm
plug-ins together to perform its processing. This ensures
fast development thanks to the reusability of compo-
nents.

Additionally, it should be stressed that a specific box
is available to developers: a box that accepts MATLAB
code. This box aims at providing a tool to quickly de-
velop and test some algorithms using the MATLAB lan-
guage. As soon as the prototype is functional, it can be
implemented in C�� for better performance.

9 Examples of Implementation

In this section, we illustrate the capabilities of our
software and the way to use it as an interaction device
with two immersive applications: the “handball” and the
“use-the-force” applications. The description of the
handball application includes a special emphasis on the
way OpenViBE is used to design the BCI and its associ-
ated scenarios.

9.1 The Handball Application

The handball VR application is an immersive 3D
game in which the user can control a virtual ball by us-
ing a BCI based on imagined hand movements. The
objective of the game is to move the ball into a goal
cage. As such, this application enables the researcher to
illustrate the use of OpenViBE for the design of a very
popular kind of BCI, namely a motor imagery-based
BCI (Pfurtscheller & Neuper, 2001), and its use for
interaction with a VR application. This section briefly
describes the BCI system and the VR game, then it de-
tails how OpenViBE is used in the implementation of
this application and reports on an online experiment
with real subjects.

9.1.1 BCI System. For this application, we used
a motor imagery-based BCI which is inspired by the
well-known Graz BCI (Pfurtscheller & Neuper, 2001).
Such BCI have been used successfully with several VR
applications (Friedman et al., 2007; Leeb et al., 2006).
With this system, the user has to perform imagined
movements of the left or right hand to generate the
brain signals expected by the BCI. It is established that
performing an imagined hand movement triggers EEG
power variations in the � (�8–13 Hz) and � (�13–30
Hz) frequency bands, over the motor cortices
(Pfurtscheller & Neuper, 2001). Consequently, to iden-
tify these specific variations, the BCI uses logarithmic
band power (BP) for feature extraction. Such features
are simply computed by band-pass filtering the signal in
subject-specific frequency bands (roughly in the � and �

bands), squaring it, averaging it over a given time-
window, and computing its logarithm. Such features are
extracted from the EEG channels located over the mo-
tor cortex. The generated feature vector is then passed
to an efficient and widely used classifier, the linear dis-
criminant analysis (LDA), which will identify the signal
class, that is, either left or right, depending on the hand
chosen for the imagined movement. In order to im-
prove the performance of the BCI, we also used tempo-
ral and spatial filtering as preprocessing (see Section
9.1.3 for details).
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9.1.2 Virtual Reality Game. The VE for this
application was a virtual gymnasium equipped with a
handball playing court and its two goal cages. The two
goals were located on each side of the screen (see Figure
8); a virtual ball was also located in this VE and could
be controlled by the user as part of the game. Each time
the BCI system recognized an imagined left hand move-
ment in the brain activity, an event was sent to the VE,
and the ball rolled toward the left goal. By symmetry,
the detection of an imagined right hand movement trig-
gered the ball to roll toward the right goal. It should be
noted that this application operated in a synchronous
mode, which means the user could move the ball only
during specific time periods, instructed by the system.
As part of this game, the player’s objective was to
bring the ball into one of these two goals, as in-
structed by the application. More precisely, a game
session was composed of 40 trials, among which 20
instructed the user to score in the left goal and 20 in
the right goal. The order of the trials was randomized
within a session. A trial was arranged as follows: at
the beginning of the trial (t � 0 s), the ball was lo-
cated at the center of the playing ground, that is, at
the center of the screen. At t � 2 s, the ball color
changed from red to green to indicate that the user

should get ready to perform motor imagery to move
the ball. At t � 3.25 s, a downward pointing arrow
appeared above one of the two goals to indicate the
target goal. From t � 4 s to t � 8 s, the user can
move the ball continuously by using motor imagery
and should try to reach the target goal. At the end of
the trial, the ball automatically goes back to the
screen center. The user scores a point if, at the end of
the trial, the ball is closer to the target goal than to
the other. A trial is followed by a short rest period of
random duration. It should be noted that the experi-
mental paradigm used in this application is equivalent
to that of the Graz BCI protocol (Pfurtscheller &
Neuper, 2001).

9.1.3 Implementation with OpenViBE. As
mentioned previously, before using a BCI, an off-line
training phase is required in order to calibrate the sys-
tem. This training phase needs a set of sample EEG sig-
nals. Consequently, the implementation of the BCI of
this application is divided into four OpenViBE scenar-
ios: three scenarios for the calibration of the BCI (ac-
quisition of training data, selection of subject-specific
frequency bands, and classifier training) and one sce-
nario for the online use of the BCI.

Step 1: Acquisition of Training Data This phase
aims at collecting training EEG data recorded while
the subject performs imagined left or right hand
movements. The scenario corresponding to this phase
simply consists of the assembly of four boxes. The
first one is a generic network acquisition box which
acquires the recorded EEG signals. The second is a
file writer box, which writes these EEG signals into a
file using the general data format (GDF) (Schlögl,
2006). The next box is a visualization box which dis-
plays the instructions that the user will have to follow.
These instructions can be to perform an imagined
movement of the left or right hand, rest, or other
mental actions. Finally, a stimulation box is used. This
box generates events according to an XML file passed
as a parameter. These events are sent to the visualiza-
tion box, which will display the corresponding in-
structions, and to the file writer box, which will store

Figure 8. The handball VR application. The user can move the

virtual ball toward the left or right by imagining left or right hand

movements.
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the events in order to know when the subject was
asked to perform imagined movements. These events
are generated according to the Graz BCI protocol
(Pfurtscheller & Neuper, 2001).

Step 2: Off-line Training This phase consists of de-
termining the optimal BCI parameters for the subject,
that is, the optimal frequency bands for discriminat-
ing the two brain states using BP features, and the
parameters of the LDA classifier. The optimal fre-
quency bands are obtained using a statistical analysis
on the training EEG signals, as in Zhong, Lotte, Gi-
rolami, and Lécuyer (2008) and Lotte, Lécuyer, et al.
(2007). The LDA classifier is then trained on the BP
features extracted from the EEG training data. This
off-line training phase is decomposed into two scenar-
ios: one for selecting the optimal frequency bands,
and one for training the classifier. For these two sce-
narios, three specific boxes are necessary: a GDF file
reader, in charge of reading the data recorded during
the previous phase; a statistical analysis box that will
estimate the best frequency bands in which to extract
the BP features; and an LDA training box to train the
classifier on these features. All obtained parameters
are saved for further use, that is, during the online
phase. It is worth noting that once the training is
achieved, two pieces of scenario are generated: one
contains the assembly of boxes that are necessary to
extract BP features in the selected frequency bands
and the other contains the trained LDA classifier.

Step 3: Online Use of the BCI The last phase is the
online use of the BCI. The OpenViBE scenario corre-
sponding to this phase is displayed in Figure 9.

In this scenario, we can observe the classical steps
of a BCI which are represented as boxes. The mea-
surement of cerebral activity is represented by the
generic network acquisition box. The preprocessing
step corresponds to two boxes: (1) the temporal filter
box, which filters the data in the 3–45 Hz frequency
band (here using a Butterworth filter), and (2) the
spatial filter box, which applies a discrete surface
Laplacian filter to the data (Wolpaw et al., 2002) in
order to build two Laplacian channels over the left
and right motor cortices. The feature extraction step

is represented by the time based epoching box, which
builds an EEG segment representing the last second
of data, refreshing each 1⁄16 s, and by the temporal
filter, simple DSP, and signal average boxes, which
are used to compute the BP features in the frequency
bands identified in the previous phase. Here, the sim-
ple DSP box allows us to apply any mathematical for-
mula (such as log-transform or squaring) to the in-
coming data. These features are then aggregated into
a feature vector (feature aggregator box). Note that
all these boxes for feature extraction are generated
and assembled automatically when running the off-
line training scenarios, and as such do not need to be
assembled by hand. The LDA classifier box is the
classification step and uses the LDA that was trained
during the previous phase. Finally, the output of this
classifier is sent through the VRPN server (analog
VRPN server box) to the VR application, which
translates it into a command used to interact with the
VE and to provide feedback to the subject. The XML
stimulation player box is used here to generate the
instructions, that is, which movement (left or right)
the subject has to imagine. Instructions are used here
in order to measure the subject performance. This
box sends events to the VR application, using the
button VRPN server box that will then provide the
corresponding stimuli to the subject. It should be
noted that, as with most existing BCI, this BCI is
synchronous, which means that the user can interact
with the application only during specific time periods
that are imposed by the system.

9.1.4 An Online Experiment with the Hand-
ball Application. In order to illustrate the use of our
BCI platform and its suitability to design BCI-based
interaction devices for VR, we performed a pilot study
with two male subjects (23 and 25 years old). They par-
ticipated in an online experiment with the handball ap-
plication in order to assess whether BCI implemented
with OpenViBE could be used to interact with a VR
application. The two subjects had previously partici-
pated in a few motor imagery BCI experiments. It was,
however, the first time they used this specific BCI-based
VR application. The subjects’ brain activity was re-
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corded using 10 EEG channels (FC3, FC4, C5, C3,
C1, C2, C4, C6, CP3, CP4) located over the left and
right motor cortices, using a NeXus32B EEG machine
from the MindMedia company. The experiment took
place in an immersive virtual reality room equipped with
a 3 m curved wall on which the VE was projected. The
subjects were equipped with stereoscopic glasses. The
VE was displayed at a frame rate of 96 Hz.

The two subjects first participated in sessions dur-
ing which the EEG signals were recorded and stored
(step 1 above). These EEG signals were then used to
train the LDA classifier (step 2 above). Once a suit-

able classifier was obtained, the two subjects partici-
pated in two game sessions each, as described in Sec-
tion 9.1.2 (step 3 above). Subject 1 reached a score
of 82.5% (33/40) in his two game sessions, whereas
subject 2 reached a performance of 70% (28/40) for
the first session and 87.5% (35/40) for the second
session. By comparison, the score expected by a ran-
domly performing system would be 50% (20/40).
These performance scores suggest that the subjects
actually had control over the VR application thanks
to the BCI. Both subjects also reported that they
found the application really entertaining and motivat-

Figure 9. OpenViBE scenario for the handball application. This scenario performs the online processing of the recorded EEG data in order to

identify left or right imagined hand movements. The output of this processing is sent to the VR application by using VRPN.
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ing, which is in line with results from the literature
reporting that VR can increase the motivation during
BCI experiments (Friedman et al., 2007). Naturally,
these results should be moderated by the small num-
ber of subjects involved, but they still suggest that
OpenViBE can be used to design a BCI system for
interaction with VE. Further evaluations of this appli-
cation with more subjects is part of ongoing work.

9.2 The Use-the-Force Application

In addition to the handball VR application, we
have developed another VR application based on Open-
ViBE. This application is known as the use-the-force
application, and is an entertaining VR application in-
spired by the famous “Star Wars” movie. The aim of
this application was to explore the design of self-paced
BCI (discussed below) and to further validate the Open-
ViBE platform with many users and in real-life conditions,
outside of laboratories. In the use-the-force application,
subjects could lift a virtual spaceship (a TIE fighter) by
performing real or imagined foot movements. Indeed, it is
well known that, briefly after a real or imagined foot move-
ment, a specific brain signal is generated in the user’s brain:
an event related synchronization (ERS) in the � rhythm,
that is, a brisk increase of EEG amplitude in the 16–24 Hz
frequency band (Pfurtscheller, 1999). Interestingly, this
brain signal is mainly located in the central area of the
brain, and is therefore potentially detectable with a single
electrode (electrode Cz).

Using OpenViBE, we have designed a BCI system
that can detect this � ERS in electrode Cz, in a self-
paced way, that is, at any time and not only during spe-
cific periods. This BCI simply consists of the estimation
of a band power feature in the 16–24 Hz band, fol-
lowed by a comparison of this feature value with a
threshold in order to detect whether an ERS occurred.
In the VR application, each time an ERS was detected,
the virtual spaceship was lifted up at a speed propor-
tional to the amplitude of the ERS. Figure 10 illustrates
this application in action in an immersive VR room.

We have evaluated this application with 21 subjects
who had no previous BCI experience, during a VR exhi-
bition, that is, in real-life conditions, with a very noisy

environment. Our results showed that despite the use of
a single electrode and a simple BCI, and despite the fact
that the subjects were naive, untrained, and in a very
noisy environment, more than half of them were able to
control the virtual spaceship using real foot movement
from the very first time, and similarly a quarter of them
could control it using imagined movement, from the
very first time. More details about this experiment can
be found in Lotte et al. (2008). In summary, the con-
ducted experiments with this second VR application
showed the capability of the OpenViBE platform to de-
sign BCI and to use them in real-life conditions. More-
over, regarding the challenging conditions of the experi-
ment (a single EEG channel, no subject training, very
noisy environment, etc.), the results obtained appeared
to be very promising.

10 Performance Tests

In order to evaluate OpenViBE performances dur-
ing online operation, we used two different scenarios
that were run on three different hardware configura-
tions. Configuration A is an Intel(R) Xeon(TM) CPU
3.80 GHz computer with 4 GB of RAM and was run-
ning GNU/Linux Fedora Core 6. Configuration B is an

Figure 10. The use-the-force application. In this application, the

user can lift a virtual spaceship by performing real or imagined foot

movements. (©CNRS Photothèque/Hubert Raguet)
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IntelR Core™ 2 CPU T7400 2.16 GHz laptop with 2
GB of RAM and was running GNU/Linux Fedora
Core 5. Configuration C is an IntelR Core™ 2 DUO
CPU E6850 3 GHz computer with 4 GB of RAM and
was running GNU/Linux Ubuntu 9.04 Jaunty.

The first scenario is the handball VR application
scenario, which represents a realistic implementation
of a BCI. Indeed, the BCI used in the handball VR
application consists of frequency and spatial filtering
as preprocessing, followed by feature extraction with
band-power estimation, and completed by an LDA as
the classifier. This design corresponds to well-known
BCI systems such as the Graz BCI (Ramoser, Müller-
Gerking, & Pfurtscheller, 2000; Pfurtscheller & Neu-
per, 2001) or the Berlin BCI (Blankertz et al., 2006).
The main difference between these two BCI and the
handball application BCI lies in the spatial filter used:
the Graz-BCI uses bipolar and Laplacian derivations,
while our BCI uses a Laplacian derivation and the
Berlin BCI uses the Common Spatial Patterns (CSP)
algorithm. However, these three spatial filters are all
simple linear spatial filters and, as such, require simi-
lar computation times. Further differences between
these three BCI exist in the machine learning algo-
rithms employed to calibrate these BCI. However, as
machine learning for BCI calibration is an off-line
operation, it is not of concern here. The OpenViBE
scenario for the BCI of the handball application is
composed of 34 OpenViBE boxes. It consists of pro-
cessing 11 channels (10 EEG channels � a reference
channel) sampled at 512 Hz and acquired in blocks
of 32 samples. The signal processing pipeline is iden-
tical to the one described in Section 9.1.1. The aver-
age processor load was computed every second over
the course of 5 min (300 measures). The global aver-
age over the 5 min is presented in Table 1, for each
configuration.

In the second scenario, we tried to reach the limits of
the platform. The scenario consisted of reading a 512
channel EEG file followed by multiple Butterworth
band pass filters. We added as many band pass filters as
possible while still keeping the processor load below
100%. Such a scenario could be used when analyzing
multiple frequency bands for a large number of chan-

nels, for example, to design a magnetoencephalography-
based BCI (Mellinger et al., 2007). Indeed, MEG sys-
tems are generally composed of hundreds of channels.
As in the first scenario, the average processor load was
computed every second over the course of 5 min. The
number of filters we were able to process in real time
and the associated global processor load average are dis-
played in Table 1.

Taken together, our results suggest that our system
is able to address realistic use cases such as a motor
imagery-based BCI. They also show that our system
is able to apply a large number of signal processing
algorithms (e.g., band pass filters) while still keeping
the real-time constraints.

11 Current State of the Platform

The OpenViBE software can be downloaded for
free at http://openvibe.inria.fr under the terms of
L-GPL.6 The software currently runs on Microsoft
Windows 2000/XP/Vista/7 and GNU/Linux. Several
acquisition devices are already supported. Those in-
clude, for instance, Brainamp Standard, g.Tec g.US-
Bamp, MindMedia NeXus32B, MicroMed IntraEEG,

6. Plug-ins relying on GPL are available separately under GPL
terms.

Table 1. Performance Tests: Processor Load of Scenario 1 and
Maximum Number of Filters of Scenario 2 with Corresponding
Processor Load Under Different Hardware Configurations

Computer
configuration

Processor
load on
Scenario
1 (%)

Maximum
number
of filters
on
Scenario
2

Processor
load on
Scenario
2 (%)

A 7.17 6,144 98.26
B 6.80 7,680 88.13
C 3.45 19,896 97.93
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and CTF/VSF MEG.7 Existing boxes include generic
network acquisition, file reading and writing, signal pro-
cessing and filtering, feature extraction, and basic classi-
fications, in addition to most common visualization par-
adigms (e.g., raw signals, spectra, time frequency
analysis, 2D/3D topography). OpenViBE also provides
the necessary tools to easily use 3D objects in immersive
VE, within the platform, in order to design advanced
feedback or visualizations. The software is delivered
with ready-to-use scenarios. For instance, it proposes a
scenario of a BCI based on imagined hand movements
that could immediately be used as an interaction device
for various applications in real and virtual environments.

12 Conclusion

In this paper, we have presented the OpenViBE
platform, a free and open source platform to design,
test, and use BCIs in real or virtual environments.
Our platform provides the necessary tools for real-
time data acquisition, processing, and display of brain
signals. The key features of the platform are (1) high
modularity, (2) embedded tools for visualization and
feedback based on VR and 3D displays, (3) BCI de-
sign made available to non-programmers thanks to
the OpenViBE designer that enables users to set up a
complete BCI without writing a single line of code,
and (4) various tools offered to the different types of
user, such as the acquisition server or the preconfig-
ured scenarios. OpenViBE also offers the possibility
of easy use as an interaction device with any real or
virtual environment. The platform capabilities were
illustrated on two entertaining VR applications based
on a BCI. In the first application, users could move a
virtual ball by imagining hand movements, while in
the second one, they could lift a virtual spaceship by
using real or imagined foot movements. The evalua-
tion of the platform performance demonstrated the
suitability of OpenViBE for real-time applications.
We believe that OpenViBE could prove a valuable

and useful tool to design innovative BCI-based inter-
action devices for both VR and real-life applications.
This could include applications such as video games
and assistive devices. Interested readers can refer to
the OpenViBE website to follow the evolution of the
platform and download it for free (INRIA, 2010).

12.1 Future Work

The OpenViBE platform being open source soft-
ware is aimed at being continuously improved and ex-
tended, hopefully by contributors from many different
institutions. Currently, our labs are working to propose
new functionalities for the authoring tools in order to
increase the productivity of end users (both for authors
and for operators). Effort will also be dedicated to the
growth of the platform by adding, for example, new
algorithms for more efficiently detecting a higher num-
ber of signals or new visualization techniques of brain
activity in VR. Lastly, distributed computing over dedi-
cated hardware will be implemented in the kernel
thanks to the box concept.
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