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Abstract

This paper addresses the problem of free gaze estima-
tion under unrestricted head motion. More precisely, unlike
previous approaches that mainly focus on estimating gaze
towards a small planar screen, we propose a method to es-
timate the gaze direction in the 3D space. In this context
the paper makes the following contributions: (i) leverag-
ing on Kinect device, we propose a multimodal method that
rely on depth sensing to obtain robust and accurate head
pose tracking even under large head pose, and on the visual
data to obtain the remaining eye-in-head gaze directional
information from the eye image; (ii) a rectification scheme
of the image that exploits the 3D mesh tracking, allowing to
conduct a head pose free eye-in-head gaze directional esti-
mation; (iii) a simple way of collecting ground truth data
thanks to the Kinect device. Results on three users demon-
strate the great potential of our approach.

1. Introduction

Understanding human behaviour or intentions is a cen-
tral issue in numerous applications. At the heart of this is-
sue lies, amongst others, the difficulty of sensing human be-
haviours in an accurate way, i.e. the challenge of developing
algorithms that can reliably extract subtle human character-
istics -e.g. body gestures, facial expressions, emotion- that
allow a fine analysis of behaviour.

One such characteristic of interest is the gaze. It in-
dicates where and what a person is looking at, and con-
veys a wealth of information about that person: what is
he interested in, what is he doing, how does he explore a
new environment or react to different visual stimuli. Gaze
plays also an important role in face-to-face conversations
and more generally group interaction, as shown in a large
body of social psychology studies [8], with functions such
as establishing relationships, regulate the course of interac-
tion, expressing intimacy, or exercising social control [7].
Thus, automatic gaze tracking tools are or would be useful
in numerous applications: facilitating the annotation work

of psychologists, communication experts and sociologists
allowing them to study larger corpus; marketing analysis
through the retrieval of user’s reaction to a product; assist-
ing tools for disabled people lacking certain ways of com-
munication; focused object dependent video coding [10];
and finally, intuitive interfaces for Human-Computer Inter-
action (HCI) and Human Robotic Interactions (HRI).

Over the last 30 years, researchers have proposed gaze
estimation strategies for diverse setups [5], from which
commercial systems have emerged. However most of these
methods involve specialized hardware whose high cost re-
duces the availability to the general public, or involve con-
trolled scenarios, like fixed head pose, restricted head mo-
tion, or looking at a planar screen. Therefore there is still
the need for a gaze estimation system with minimal intru-
sion, hardware, user cooperation, calibration and cost.

This paper addresses some of these issues by leveraging
on the multimodal Microsoft Kinect sensor. More precisely,
we exploit the depth sensor to perform an accurate tracking
of a 3D mesh model and robustly estimate a person head
pose. In a second step, thanks to the use of the image modal-
ity, a simple eye region rectification step, and training data
easily collected via the Kinect, we compute a person’s eye-
in-head gaze direction, which can in turn simply be added
to the head pose to generate the final gaze estimate.

In this way, despite the current lack of certain processing
steps that could certainly improve the results, like better eye
stabilization, we obtain a gaze tracking algorithm that can
be used with unrestricted head motion and in more open
conditions than in previous works. This paves the way to
gaze estimation systems working in more open spaces.

In the rest of the paper, Section 2 describes related
works, Section 3 introduces our method, Section 4 our strat-
egy to easily obtain training data using the Kinect. Results
are given in Section 5 and Section 6 concludes the work.

2. Related work

A plethora of methods have been proposed for gaze es-
timation [5]. Its analysis has been dominantly investigated
for Human-Computer Interfaces (HCI) applications, due to

4321



its potential in the development of intuitive interfaces.
Recently there has been an increased interest in appear-

ance based methods that learn a direct mapping from the
high dimensional eye images to the low dimensional space
of gaze coordinates without the need to explicitly extract
features (pupil, eye corners) which are difficult to obtain
from low-resolution images. Such mapping can be mod-
eled using regression support vector machines [11], local-
ized linear regression [3, 4, 13] or gaussian processes [15].

One of their main challenges is the variation of eye ap-
pearance due to head-pose. This has been addressed by re-
questing a fixed head position [3] or using specialized head
mounted hardware [11]. Few works address head pose in-
variance. For the method described in [13] a large quan-
tity of data was collected to have samples with head pose-
gaze coordinates variability, but this implies a time consum-
ing training step. Learning a gaze model for a fixed given
head pose and then correcting the infered gaze vector for the
head-pose estimated online was proposed in [4]. However,
the method is constrained to estimate gaze in a 2D planar
surface and the addressed range of head poses is still low.

Due to the dependency of the eye image appearance to
head-pose, estimating this pose becomes critical for gaze
tracking. To this end, many methods have been proposed
[9], some of which benefit from multimodal data, and in
particular depth imaging combined with standard video.
Regression methods have been proposed to infer head pose
parameters directly from the depth image [2]. Even though
good generalization across individuals has been achieved,
semantic information, such as the location of the eyes, is
lost.

If both modalities are calibrated, 3D representations of
the scene can be obtained from depth imaging. With this ex-
plicit representation, the Iterative Closest Points (ICP)[16]
method can be used to infer the pose change between suc-
cessive frames. Either the previous frame is registered to
the current one, or a template mesh is created off-line, and
registered to each frame [14]. The advantage of using a tem-
plate mesh is its predefined semantic interpretation. This
characteristic is exploited by our method which is now ex-
plained in more detail.

3. Proposed method
The different steps of our method are shown in Fig. 1.

Given a learned person-specific 3D mesh model (Section
3.1), the method works by first estimating the head pose
from the depth data, as explained in Section 3.2. Then, us-
ing the estimated head pose and the 3D mesh, we map back
the head image into a frontal pose and crop the resulting
image around each eye. In this way we are able to estimate
the gaze vectors from the eye-in-head images (Section 3.4),
that is, estimate the eye gaze in the reference system of the
head. Finally we transform back the gaze direction to the

world coordinate system. The following sections describe
in detail each one of the steps.

3.1. Face model learning

We decided to rely on a 3D Morphable Model (3DMM)
to generate person specific 3D face templates. These mod-
els (3DMM) span a large set of facial shapes using a small
set of coefficients. For our task we used the Basel Face
Model (BFM) [12], which is a rich 3DMM for human faces,
built from a large group of individuals. It has a high mesh
density (53,490 vertices) and includes the face, frontal neck
and ears. The 3DMM shape can deform according to Eq. 1,
where x (the model instance) denotes the set of 3D vertices
coordinates {vi} stacked as a large column vector, µ is the
mean shape and M is the shape basis. The model parameter
is the vector α.

x(α) = µ+Mα (1)

The topology is kept fixed for all the head instances. This is
a main advantage of using 3DMMs to generate face models,
as semantic information is predefined in the topology, and
is kept across individuals.

To generate person-specific 3D meshes, we fit the
3DMM to depth data. This is done by registering the
3DMM, whose shape deformations are constrained by α,
to the reconstructed mesh from the Kinect. To solve this
problem we used the method from [1], and minimize the
following cost function:

E(X) = Ed(X) + γEl(X) + λEs(X) (2)

where the parameters X = {R, t, α} to optimize are those
of a rigid transformation (R, t) and of the 3DMM coeffi-
cients α, and the different terms are given as follows:

Ed(X) :=
∑
i

wi‖R(µi +Miα) + t− ui‖2

El(X) :=
∑

(i,l)∈L

‖R(µi +Miα) + t− l‖2

Es(X) := ‖α‖2 (3)

in which µi and Mi represent the rows corresponding to
the vertex i in µ and M. The data term Ed represents the
distance of each deformed and rigidly transformed vertex,
vi, to its closest correspondent ui1 in the target mesh. Each
individual term is weighted by a weight wi deduced from
a robust function and which reduces the influence of pairs
with a large distance (outliers). Additionally the weights
are set to zero for pairs whose corresponding points are in
the border of the target mesh or have a large angle between
surface normals. The term El models the same quantity but
for a set of known corresponding landmarks L. Finally, the

1The corresponding points are computed at each iteration as the closest
point with constraints, see the head tracking section
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Figure 1: Proposed method pipeline. a) Offline step. From multiple 3D face instances the 3DMM is fit to obtain a person
specific 3D model. b)-d) Online steps. b) The person model is registered at each instant to multimodal data to retrieve the
head pose. In the figure, the model is rendered with a horizontal spacing for visualization. The region used for tracking is
rendered in purple. c) Head stabilization computed from the inverse head pose parameters and 3D mesh, creating a frontal
pose face image. Further steps show the gaze estimation in the head coordinate system. The final gaze vector is corrected
according to the estimated head pose. d) Obtained gaze vectors (in red our estimation and in green the ground truth).

regularization term Es foster the estimation of small values
for α. This term is weighted by the stiffness parameter λ
in Eq.2, which controls how much the template mesh can
deform. The algorithm works as follows:
• Initialize X0. Then, for each stiffness value λi ∈
{λ1, . . . , λn}, λi > λi+1, do:

– Until ‖Xj −Xj−1‖ < ε:

∗ Find correspondences uk in the target sur-
face for each point vk in the template.
∗ Determine Xj minimizing Eq. 2 using λi.

Multi-instance 3DMM fitting. We want to build person-
alized head templates from Kinect data. However these de-
vices present high levels of noise and missing information
due to occlusions and a large field of view. To address this
we fitted the 3DMM to a set of instances of the target face,
with different head poses. We extended the 3DMM fitting
method by having sets of equations for each of the target
instances. Each instance had its own rotation and transla-
tion parameters but all were sharing the α parameters. The
advantage is to obtain a template in a single step.

A current drawback is the need for a manual placement
of landmarks, although this can take less than 30s per in-
stance. Our implementation takes≈2 minutes for the model
fitting. This can be much faster as our implementation is
not optimized and we use the (unnecessary) full resolution
of the BFM. An example is shown in Fig. 1a.

3.2. Head pose tracking

During the online part, the first step of our system is to
estimate the head pose. Inspired by the work from [14] we

built a 3D face tracker based on video and depth data from
the Kinect. The algorithm is based on the Iterative Clos-
est Points (ICP) algorithm using point-to-plane constraints
and the personalized template. It re-estimates the pose pa-
rameters at a given frame initializing ICP from the inferred
values in the previous frame. Tracking is obtained by re-
peating this process frame by frame. At each time t we
obtain the head pose parameters as pt = {Rt, tt}, i.e. the
head rotation and translation.

The overall initialization is done with a standard frontal
face detector in the visual image. From depth data, the set
of 3D points, within the detection bounding box, are used to
initialize the translation. The head orientation is assumed to
be frontal. A smaller segment of the personalized 3D model
is used by ICP to avoid mismatches due to non-rigid defor-
mations as done in [14]. This step is illustrated in Fig. 1b.

3.3. Head stabilization

Given that we represent the Kinect data as a textured
3D mesh, we can render the scene using the inverse rigid
transformation of the head pose parameters, i.e. p−1t =
{R>t ,−R>t tt}. In this manner we obtain, at each frame, a
frontal image of the face as shown in Fig. 1c.

The localization of the eyes is predefined in the mesh
topology. We use this information to crop eye-images in the
rendered face image. These eye images will be the input to
the gaze estimation method.

3.4. Eye-in-Head Gaze estimation

Our main objective is to estimate the gaze direction un-
der free-head motions. However, due to the head stabiliza-
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tion approach, we reduced this problem to a frontal head
pose gaze estimation. Thus, our task consist in building an
eye appearance model from which we can estimate gaze.

In this section we assume we have a set of pairs of eye
images and gaze vectors {(Ii,gh

i )} covering the gaze space
(in Section 4 we describe a simple method to collect these
samples). In the reference system of the head, the gaze is
parametrized by the angles gh

i = (φi, θi). Where θ is the
gaze elevation, and φ is the gaze yaw.

The image descriptor ei is computed by dividing the eye
image in a grid of r × c. At each bin j = (r, c) of the grid,
the sum of pixel intensity Sj is computed. The descriptor
is then the concatenation of all the Sj , and it is normalized
such that

∑
j e

j
i = 1. Thus, the appearance model consist

of the set {(ei,gh
i )}. We used r = 3 and c = 5, following

the approach from [3].
Given a test image Î, with descriptor ê, we want to infer

its gaze direction ĝh. We followed the method in [3]. The
goal is to obtain the weights wi which reconstruct best the
test image from the convex combination of the samples in
the appearance model. We then use these weights to com-
bine the gaze parameters as ĝh =

∑
i wig

h
i . Denoting byE

the matrix whose column i correspond to ei, this problem
is formulated in Eq. 4 as

ŵ = argmin
w

||w||1 s.t. ||Ew − ê||2 < ε (4)

This method, that will be referred to as adaptive linear re-
gression (ALR), imposes sparsity over the solution of wi.
Its success depends on {ei} being sparse enough [3].

3.5. 3D gaze estimation

The estimated gaze direction ĝh in the pose-corrected
frontal head reference can be tranformed into a gaze direc-
tion v̂w ∈ R3 in the world coordinate system as follows.
Note that the angular gaze parameters ĝh can be represented
by the unit vector v̂h ∈ R3 pointing in the direction indi-
cated by (φ, θ). Thus, v̂w can be computed using the esti-
mated head pose parameters pt = (Rt, tt) as v̂w = Rtv̂

h.
The predefined center of the eye is transformed by the same
pt.

4. Gaze ground-truth collection
4.1. Proposed setup and methodology

Here we propose a method to collect ground truth data
from a Kinect device. Under free-head movements the gaze
vector vw was defined as the visual axis, i.e. the vector
which points from the eye fovea to the visual target.

Fig. 2 shows the proposed setup. The system includes a
Microsoft Kinect device and a discriminative small object.
In our experiments we used a 4cm orange ball. The partic-
ipant is requested to follow the target with the eyes while

Gaze vector
Visual
target

Figure 2: Proposed experimental setup.

the target is moving. Given that the gaze target is discrimi-
native, in both color and depth, we can reliably track its 3D
position at each moment.

Using the head pose tracker, we approximate the visual
axis as the vector from the eye-ball center, predefined in the
topology, to the estimated location of the visual target. This
is done for both eyes. The drawback of this method is that
it inherits errors from the head pose tracker, there is uncer-
tainty introduced by the size of the target, and the eye cen-
ters is defined approximately. However, it is clearly advan-
tageous as it provides a simple way to collect a large corpus
of labeled data from which to train and test our methods.

4.2. Recorded data

Using the proposed setup we collected videos of 3 par-
ticipants following a target with the eyes. For each of them
a personalized head 3D head template was learn using the
method described in Section 3.1. In addition, in order to re-
construct the scene as a textured 3D mesh we first calibrated
the Kinect sensor using [6].

Each recording was divided in two parts. In the first part
the participant was asked to keep a frontal head pose while
following the target. It was not necessary for the participant
to keep a strict frontal head pose, as we assume the head
pose stabilization is accurate for near frontal head poses.
The purpose is to gather frontal eye images without occlu-
sions to build appearance based gaze models.

In the second part of the recording the participant was
asked to perform free head rotations and translations while
keeping track of the visual target with the eyes. The partic-
ipants went through highly challenging head poses ranging
yaw angles of up to ±60◦ and pitch values up to ±50◦.

For the creation of the appearance model, we used the
first half of the part where the participant had a frontal
head pose. Instead of taking all the samples to build the
appearance model, we defined a grid of 42 points in the
gaze space by dividing the intervals of [−40◦, 40◦] for θ
and [−50◦, 50◦] for φ into 6 θ values and 7 φ values.

We can automatically select samples from the record-
ing with gaze directions close to the grid points. In our
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experiments, although the fixed head session recordings is
of about 1.5 minutes, the appearance model can be created
fast as only a few samples are needed. Fig. 3a) shows the
computed gaze parameters for a complete recording session
(frontal head pose), while Fig. 3b) shows a grid obtained
from this recording session.

5. Experiments
We conducted a series of experiments to validate our

method. The head pose tracker was validated using the
BIWI head pose database [2] and we found deviations of
around 1◦ with respect to their reported ground truth (which
is obtained using a similar head pose tracker).

As it was mentioned in Section 4, the gaze appearance
model is created from the first half of the session for a
frontal head pose. We used the second half as test samples,
together with all the samples for the free head pose session.

The error measure is given by the angle κ, which lies be-
tween the estimated gaze vector v̂ and the ground truth vg .
The origin point for these vectors is common: the prede-
fined eye center. This measure is independent of the head
pose.

Besides the method described in Section 3.4 (ALR) to es-
timate gaze, we also compared to a nearest neighbors (NN)
and k-Nearest Neighbors (kNN) approach. The search for
NN and kNN is done within the appearance model.

Result discussion. Table 1 shows the obtained results. For
the frontal session it is clear that kNN and ALR are more
accurate than a simple NN approach. The results given by
kNN and ALR are similar. The obtained results are satis-
factory for the frontal case.

We argue that the main sources of these errors are var-
ied: low-resolution eye images, the uncertainty introduced
by the target object, the current eye image representation
(cf. Section 3.4) and some jitter introduced by our head
tracker. Remember that the only rectification step that is
applied comes from the head shape model estimated glob-
ally. We expect a fine local stabilization of the eye rectified
image as done in other works [3] to greatly improve accu-
racy.

Interestingly, for the free head movements session, al-

a) b)

Figure 3: a) Distribution of the gaze points obtained for
a recording session (frontal head pose) b) The appearance
model constructed from it.

Table 1: Gaze estimation error κ for both test sessions. Re-
porting mean/median error in degrees.

Method
Participant eye NN kNN (k=5) ALR

1 left 8.0/7.1 7.6/6.0 7.6/6.9
(frontal) right 8.0/7.0 6.9/5.8 7.6/6.3

2 left 14.4/9.9 12.3/9.1 11.1/7.8
(frontal) right 12.6/9.2 10.8/7.5 12.6/7.9

3 left 12.7/11.0 10.8/9.5 10.5/9.0
(frontal) right 12.3/10.0 11.0/9.3 11.3/9.6

1 left - 12.8/10.9 10.8/8.5
(free) right - 11.0/8.8 11.2/8.0

2 left - 24.8/19.4 25.1/18.0
(free) right - 22.0/16.6 22.8/16.3

3 left - 16.3/14.1 10.8/8.7
(free) right - 10.9/9.0 8.6/6.8
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Figure 4: Estimated gaze vs. time for the right eye of par-
ticipant number 3. Showing both gaze yaw and elevation
together with the head yaw and pitch values. a) Frontal ses-
sion interval; b) Free head pose session interval.

though the participants go through large head poses, the er-
rors are only slightly above those of the frontal head pose,
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except for participant 2. In this case, however, the person
goes through extreme head poses (> 40◦) during more than
half of the session. This induce self occlusions, drastic il-
lumination changes and missing data. If we remove these
samples, the error drops to ≈ 9.9◦ (median of left eye).
Here we stress that our method is indeed providing a mean
to acquire head pose independence for gaze estimation.

In Fig. 4 we show the evolution of the estimated parame-
ters as a function of time. There we observe that even under
changes of the head pose, the estimated gaze follows closely
the precomputed ground truth.

6. Conclusion

In this paper we have shown a novel approach to esti-
mate gaze under free-head movements. The system com-
bines depth and visual data, from a Microsoft Kinect sen-
sor, to create a textured 3D mesh of the scene. We rigidly
register a person-specific 3D face model, such that we are
able to reliably track the head under challenging poses.

The estimated head-pose parameters are used to stabilize
the 3D scene, and to generate eye images as if the camera
was frontal to the head. This has the advantage of largely
reducing the complexity of the gaze estimation problem.
From the head-stabilized images, the gaze parameters are
estimated from an appearance model and then transformed
back according to the estimated head pose.

We have also shown a simple method to collect ground
truth data using a Microsoft Kinect sensor. It uses a dis-
criminative object that we can track in both the visual and
depth domain. This method gives us an approximation of
the visual gaze axis which we can use for training.

Experimental results show that our method successfully
estimates the gaze direction under challenging head poses,
and low resolution eye images. Even though our system
does not achieve state-of-the-art results (which are as low
as 1◦ in the HCI literature) we address a much less con-
strained problem, and the results show our approach is very
promising. Moreover, this system is adequate to address
tasks such as visual focus of attention, or studying gaze pat-
terns for human behavior analysis.

Our future work will consist in a fine stabilization of the
rectified eye-images, combined with a better representation
of the image appearance. We expect this to increase the
accuracy of the frontal gaze estimation thus improving the
accuracy under free head movements.
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