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ABSTRACT 
Although Data Gloves allow for the modeling of the human hand, 
they can lead to a reduction in usability as they cover the entire 
hand and limit the sense of touch as well as reducing hand 
feasibility. As modeling the whole hand has many advantages 
(e.g. for complex gesture detection) we aim for modeling the 
whole hand while at the same time keeping the hand’s natural 
degrees of freedom (DOF) and the tactile sensibility as high as 
possible while allowing for manual tasks like grasping tools and 
devices. Therefore, we attach motion sensor boards 
(accelerometer, magnetometer and gyroscope) to the human hand. 
We conducted a user study and found the biomechanical 
dependence of the joint angles between the fingertip close joint 
(DIP) and the palm close joint (PIP) in a relation of DIP = 0.88 
PIP for all four fingers (SD=0.10, R²=0.77). This allows the data 
glove to be reduced by 8 sensors boards, one per finger, three for 
the thumb, and one on the back of the hand as an orientation 
baseline for modeling the whole hand through. Even though we 
found a joint flexing relationship also for the thumb, we decided 
to retain 3 sensor units here, as the relationship varied more 
(R²=0.59). Our hand model could potentially serve for rich hand-
model-based gestural interaction as it covers all 26 DOF in the 
human hand. 

Categories and Subject Descriptors 
H5.2 [Information interfaces and presentation]: User Interfaces. - 
Input Devices and Strategies.  
General Terms 
Algorithms, Design, Human Factors. 

Keywords 
Biomechanics; Gesture; Glove; Hand model; Wearable. 

1. INTRODUCTION 
Gestural interaction is an important research topic because 
human-computer interaction has, for many years, not been limited 
to desktop environments, and within research concerning 
interaction in mobile scenarios and within smart environments, 
many questions have yet to be answered. We address the field of 
input technologies for mobile interaction in ubiquitous computing 

  

 

 
Figure 1. Our initial whole hand model based on 16 motion 

sensor boards mounted on the green and red marked 
positions. Applying bio-mechanics allows the hand to be 
modeled using just the 8 green marked sensor positions 

shown. 
and investigate how wearable sensors extend the design space of 
free hand gestures, by which is meant those gestures that are not 
currently detected with sensors integrated with mobile devices 
(such as capacitive screens or inertia sensors). 

Optical sensors and cameras are widespread for free gesture 
detection through augmenting environments [Wilson 2010, 
Harrison 2012] although less frequently used for mobile scenarios 
as these techniques are limited in mobility. More recently, 
researchers attached cameras to users’ bodies [Bailly 2012] that 
required a stable camera focus on the hand performing the 
gesture, although this approach can be limited by occlusion if 
users hold devices, such as phones or tablets. The Magic Finger 
interface [Yang 2012] is attached at the fingertip and detects 
movements on and above a given surface. Optical sensors have 
some limitations, such as light-dependency, occlusion, computing 
efficiency and form-factor. Our device overcomes these problems, 
because the recognition is achieved by the use of cheap and tiny 
sensors that require less computing power such as Inertial 
Measurement Units (IMU) or Magnetic Angular Rate and 
Gravity-Sensors (MARG). In contrast to Magic Finger [Yang 
2012] that is a camera attached on the fingertip, we developed a 
gesture-based input device that allows for rich gestural input but 
does not limit the rich human sensitivity of touch. Therefore we 
attach motion sensors on top of the finger.  

In order to be able to interpret highly complex hand gestures, our 
aim is to detect the whole hand with any finger configurations 
while the possibility of holding devices shall be given. This goal 
could be reached through attaching a sensor at every finger 
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segment and an additional sensor at the back of the hand (see 
Figure 1). We do not use cameras, as occlusion usually limits 
gesture detection for free hand scenarios. Being aware of a lack in 
usability if users have to wear 16 sensors per hand, we 
investigated the relationship within the orientation of finger 
segments for each finger, by considering biomechanics. Taking 
biomechanics into account actually limits the DOF of humans’ 
hands because each finger joint has just one degree of freedom. 
Others [Wu 1999] have found that there is a stable linear 
relationship between the flexion angles of both joints for each 
finger. In a user study we tested whether the flexion relationship 
of Wu et al. [Wu 1999] can be confirmed with our input interface 
using 16 wearable motions sensor boards. Moreover we introduce 
an approach of applying biomechanics that allows the whole hand 
configuration to be predicted through using just 8 instead of 16 
sensor boards. We conclude with exploring the emerging gestural 
design space when using our interface approach and show that 
using 8 wearable sensors allows for a rich free-hand gesture 
vocabulary that is not limited through occlusion and which does 
not limit the sense of touch or the mobility of the user. 

2. RELATED WORK 
Here we give an overview on wearable sensors for hand 
movement detection and hand configuration modeling. Moreover, 
we are discussing approaches that aim to predict the configuration 
of the hand based on biomechanics and intra-finger joint 
dependencies. 

2.1 Wearable Sensors 
For detecting hand or finger gestures, glove-based devices have 
been used and explored for decades [Dipietro 2008]. Glove-based 
devices, mostly using bend-sensors and accelerometers, are able 
to fulfill the requirement of reliable recognition and allow a 
detailed virtual model of the human hand to be represented, 
however they lack usability, as they restrict tactile feedback and 
are not suitable to wear in everyday use. Another limitation of 
gloves might be that they usually not fit to small hands. We 
experienced some accuracy problems due to the sensors not 
staying in their recommended position in cases where the users’ 
fingers are slim.  

Another type of interface enables gesture input without 
augmenting the hand or finger, but instead attaching the interface 
at the wrist. The GestureWatch [Kim 2007] allows simple 
direction based gestures to be executed by the hand with the use 
of proximity sensors, but has only a limited gesture design space 
and requires both hands for interaction. GestureWrist [Rekimoto 
2001] allows for body-centric pointing with three different handed 
gestures. That interface has a limited gesture design space, 
because the device is measuring the hand capacitance that allows 
only for the recognition of very simple hand shapes (such as 
body-centric pointing: up-, down-, and to the side) with three 
different hand configurations: stretched index finger, stretched 
index and middle finger or with clenched fist. Digits [Kim 2012] 
is an inner wrist mounted depth-camera combined with an IMU, 
which enables precise finger-gesture tracking due to extensive use 
of inverse kinematics in conjunction with biomechanics. But like 
all computer-vision based approaches Digits suffers from strong 
limitations due to both occlusion and motion beyond its field of 
view. These limitations pose particular difficulties for everyday 
mobile interaction outside of controlled environments, such as 
executing gestures while holding another device. 

One solution to the occlusion problem is to use motion sensors 
rather than a camera. Fukumoto and Tonomura [Fukumoto 1997] 

augmented each finger and the wrist of one hand and have shown 
with Body coupled FingeRing that accelerometers can be used for 
simplified keyboard-less typewriting as they do not distinguish 
between different letters per finger. However, Fukumoto and 
Toromura found an interesting solution for wireless sensor 
connection to the wrist-worn microcontroller by using the skin for 
conduction; their gesture vocabulary is very basic as they had not 
interpreted more detailed gestures than tapping with different 
fingers. UbiFinger [Tsukada 2002] enables pointing at locations 
and objects in the environment through infrared light, and allows 
simple gestures (such as turning a volume knob or pushing a 
switch) to be recognized, based on bend and acceleration sensors 
that are attached to the index finger. , 

Taking advantage of biomechanical constraints of the human hand 
would allow for an advanced hand model to be built with only a 
limited amount of sensors. Our work also uses accelerometers, but 
because they sometimes lack information details and can suffer 
from drift-based errors, our interface also contains gyroscopes and 
magnetometers. This combined sensor approach actually allows a 
more detailed gesture vocabulary and even permits the modeling 
of the whole hand, as is described later in section 5.1.3. 

Nenya [Ashbrook 2011] uses a ring-type device that includes a 
strong permanent magnet, as well as a wrist-device with a 
magnetometer for recognizing the rotation of the ring relative to 
the wrist. The magnetic ring has the advantage of not requiring a 
power supply; however the technology only allows one ring to be 
fitted per hand, thereby strongly limiting the gesture design space. 
Moreover their user study shows that this device is only suitable 
for two-hand usage.  

Our aim is to enable complex gesture detection that is not limited 
to a controlled environment. Therefore we wanted our device to 
be able to provide rich information on hand configuration in a 
manner similar to data gloves, while simultaneously keeping hand 
augmentation to a minimum, in order to maximize usability.  

Our goal therefore is to build an interface that can potentially be 
integrated into jewelry, such as rings, wristbands, and watches. 
This means that we must reduce the number of sensors used 
(when compared to data gloves), which will potentially lead to a 
loss of information. Information that would have been supplied by 
a greater range of sensors is, in our approach, gained through the 
application of biomechanics.  

2.2 Biomechanics for Hand Modeling 
Much research in investigating biomechanical constraints is done 
for realistic hand modeling, e.g. in computer vision. This work 
covers mainly inter-finger and intra-finger constraints.  

 
Figure 2. Joint notation and angular relationship between 
upper finger joint DIP and mid finger joint PIP as well as 

upper thumb joint TDIP and mid thumb joint TMCP. 

4th Augmented Human International Conference (AH’13)

22



As one of our aims is to be able to predict the tilt angle of a 
particular finger-segment based on the tilt angle of another 
segment on the same finger, we first present and discuss 
explorations of intra-finger constraints. 

Each single finger joint has just one degree of freedom (DOF). 
Several researchers [Fahn 2005, Cobos 2007, Wu 1999] 
investigated whether or not a linear angular relationship might 
exist between the two upper joints of one finger, the distal 
interphalangeal (DIP) and proximal interphalangeal (PIP) joint 
(see Figure 2). They identified an approximate relation of DIP ≈ 
2/3 PIP of joints within the same finger. The thumb differs in 
anatomy from the other fingers and a linear angular relationship 
for the joints of the thumb was defined by Cobos et al. [Cobos 
2007] as an appropriate angular relation of thumb distal 
interphalangeal joint (TDIP) ≈ ½ thumb metacarpophalangeal 
joint (TMCP).  

We felt that the relationship between the angles of the joints ought 
to be checked for our interface because of the following three 
reasons: 1) in the study mentioned above, neither the gender or the 
total number of participants is reported; 2) Secondly they consider 
the relation is an approximated result; 3) the data is detected 
through gloves, which, as outlined above, can produce data errors 
due to a bad fit, particularly for users with small hands. 

Fahn and Sun [Fahn 2005] actually reduced the numbers of 
sensors in their glove. They used magnetic induction and were 
able to model the expressiveness of ten DOF while using five 
sensors. Our approach uses a combination of accelerometers, 
gyroscopes, and magnetometers and aims to model the hand with 
the full set of 26 DOF [Vardy 1998].  

3. METHOD 
The proposed appropriate joint flexion relationships of DIP ≈ 2/3 
PIP within the same finger and of TDIP ≈ ½ TMCP for the thumb 
have been found through the study of biomechanics.  

Similar to Fahn and Sun [Fahn 2005], identifying an exact linear 
relationship (rather than an approximate one) would allow for 
interpolation of one finger joint from the other. Due to this 
relation it would then be possible to reduce the amount of hand-
attached sensors used for measuring the hand configuration. In 
contrast to Fahn and Sun, our interface would allow for reducing 
the number of sensors to eight instead of five, but with the 
advantage of retaining the full set of 26 DOF [Vardy 1998] 
instead of the ten DOF that Fahn and Sun could provide. 

For checking the angular joint relationship proposed by Wu et al. 
[Wu 1999], Fahn and Sun [Fahn 2005] for finger joints and for the 
joints of the thumb that was proposed by Cobos et al. [Cobos 
2007], a user-study was conducted with 19 participants in order to 
check the relation of the linear angular relations of joint flexion 
from previous work (as well as the precision) because the 
proposed related were mentioned to be approximated values: 

H1: The linear angular relation of joint flexion is: 
                for the index, middle, ring, and little finger 
with an error < 5%.  

H2: The linear angular relation of joint flexion for the thumb is  
                  with an error rate < 5%. 

As the finger joint flexibility might depend on the hand 
orientation or wrist tilt angle [Spalteholz 1861], we are moreover 
questioning: 

 
Figure 3. Hand orientations in which positions the 

participants were asked to flex their fingers. 
 

Q1: Are both angular relationships stable for four different hand 
orientations?  

Q2: Are both angular relationships stable for both, left and right 
hand?  

3.1 Design 
Dependent variables were the measured angle between the finger 
segments neighboring the DIP, PIP, as well as the TDIP and 
TMCP joints of all fingers. Independent variables were hand 
orientation, finger, and hand. The hand orientation had four 
stages: palm facing down, palm to the side, palm raised, and palm 
facing up (see Figure 3). The joint angles were measured for all 
participants for all four fingers and the thumb of both hands, while 
flexing the thumb and fingers. The flexion was measured for each 
finger separately twenty times. Therefore we had a within 4x2x5 
design with twenty repeated measurements per participant.  

3.2 Participants 
We invited a heterogenic group of participants regarding gender, 
age, and body size. 19 participants, 11 male and 8 female, 
between 20 and 70 years (mean=40, SD=16) volunteered in our 
experiment. Their height ranged between 160 and 190 cm 
(mean=175, SD=7) and one was left-handed. 

3.3 Apparatus 
Our apparatus is a hand-augmented sensor interface that transmits 
motion data to a PC, in order to serve as a basis for modeling the 
human hand based on motion sensor data. For modeling the hand, 
we developed software that generates a hand model but also logs 
the raw sensor data, which allows for the analysis of hand 
motions, such as finger joint flexion angles and motion paths. 
We propose using four multiplexed MARG (Magnetic Angular 
Rate Gravity) – sensors that contain acceleration sensors and 
magnetometers in combination with gyroscopes for joint 
orientation tracking. 

3.3.1 Hardware 
Our apparatus consists of four sensor sticks1 with nine degrees of 
freedom through a gyroscope (ITG3200), an accelerometer 
(ADXL345), and a magnetometer (HMC5883L) which  
                                                                 
1 SparkFun Electronics Item Nr. SEN-10724. 
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Figure 4. Hardware interface with 4 sensor sticks attached to 

the middle finger and the palm 
communicate over an I2C interface with a wrist-worn Arduino 
Nano V3 (see Figure 4) together with an I²C-Switch for 
multiplexing several sensors. The Arduino is attached to the PC-
Application with a USB-Serial-Interface. After shortening the 
sensor sticks to a size of 30 mm, they were small enough to attach 
them to each single finger segment for modeling the whole finger. 
The sensors were attached on gloves and, for a better fit, we 
secured each sensor with an elastic band. This prevented 
unwanted sensor movements that did not refer directly to finger 
movements. The current prototype is powered through a USB 
connection to a PC. For future versions it is intended to use 
batteries, in order to provide additional freedom.  

3.3.2 Data processing 
The apparatus is capable of tracking the configuration of single 
finger joints with over 30Hz in real time.  
The microcontroller software is only responsible for the logging 
of the raw sensor data. All further processing is done at a higher 
level in the PC-Application. To do this, a Java-based PC-
Application fuses the raw sensor data from the accelerometer, 
gyroscope and magnetometer. Mahony’s [Mahony2008] 
complementary filter extended with a magnetic distortion filter by 
Madgwick [Madgwick2010] is used in order to fuse the sensor 
data and calculate a three dimensional orientation. In order to 
remove the influence of drift and noise of the MARG-sensors 
from the calculated joint orientations, an extended error correction 
technique is applied to the orientation values, by using a 
biomechanics based hand model. The result of the hand model 
based error correction feeds back into the complementary filter 
algorithm. 

3.3.3 Hand Model 
Based on an initial calculated joint orientation calculation, the 
extended hand model error correction mentioned above is 
executed. The error correction checks for plausibility and takes 
the possible DOF (see Figure 5) and motion radius (see Figure 6) 
of each joint into account. 
Figure 5 gives an overview of the DOF for each finger joint. All 
fingers without thumb are mapped in the same way, with one 
DOF for both upper joints and two DOF for the base joint. The 
thumb has also either one DOF for both upper joints, but three 
DOF for the saddle joint. The whole hand has 3 DOF, too. 
In Figure 6 the possible motion radius for thumb and index are 
shown [Fahn 2010, Lin 2000, Wu 1999]. All other fingers are 
mapped like the index finger. For simplification of the figure the 

 
 

Figure 5. DOF for each joint 
overflexion of all fingers is not shown. While recording, one 
sensor stick is always attached to the back of the hand and serves 
as a reference orientation for the whole hand. The reference is 
used to calculate the finger orientation relative to the palm. Three 
sensor boards can be worn at each individual segment of a finger, 
which allows the position and orientation of every segment (and 
therefore the entire finger) to be modeled 16 sensors would 
provide sufficient data for modeling the whole hand at once. As 
we wish to detect the measurements finger-wise, we also attach 
three sensors to the finger whose motion we want to track. 

3.4 Measurements 
Our apparatus captured the raw sensor data from four sensor 
boards at a rate of 30 Hz. The data is stored in a relational 
database. Each board delivers the x-, y-, and z-values of the 
accelerometer, the gyroscope, and the magnetometer, respectively. 
For ensuring that the measurements were not influenced by 
tiredness, we used the SMEQ questionnaire for measuring 
perceived task load. The questionnaire was answered twice by all 
participants, (i.e. once for each time after completing the tasks 
with a particular hand).  

 
Figure 6. Motion radius for each joint of thumb and index 

finger 
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3.5 Task 
With the motion sensors attached, the participants were asked to 
move their fingers from a starting point of complete stretching to 
complete flexion with twenty repetitions. For each set of 20 
repetitions, only one finger at a time was measured in order to 
simplify the experiment setup and to keep finger feasibility 
limitations to a minimum. Participants were asked to use all 
fingers in the task in order to overcome the problem of motion 
dependence between individual fingers as a result of shared 
sinews and ligaments between fingers.  
Procedure 
Each participant executed the same task. The flexion of the 
fingers was first shown by the instructor and afterwards practiced 
by participants a number of times until we were certain that the 
instruction had been clearly understood. The order in which 
fingers were measured was permutated across all participants, in 
order to eliminate the influence of tiredness. 

4. RESULTS 
The data was checked for normal distribution with a Kolmogorov-
Smirnov-Test. The angular relationships between the fingers were 
calculated with linear regression analysis. We tested with 
ANOVA whether the hand, the hand orientation, the finger or the 
participant had a significant influence on the angular relationship 
of joint flexion. 

These linear angular relationships between the two upper finger 
joints DIP and PIP and upper thumb joints TDIP and TMCP, 
which are determined with a linear regression analysis over the 
whole dataset for each finger and thumb, are show in figure 7 and 
lead to the regression equations that are presented underneath. 

Little finger:                            

Ring finger:                                         

Middle finger:                                     

Index finger:                                        

Thumb:                               

 
Figure 7. Angular relationship between two upper finger 

joints DIP and PIP based on coefficient of linear regression 
analysis over entire dataset per finger for little (ß=0.79, 

SD=0.12), ring (ß =0.88, SD=0.09), middle (ß =0.87, SD=0.13), 
index finger (ß =0.88, SD=0.09), and thumb (ß =0.77, SD=0.12) 

The used finger has only a significant influence on consideration 
of all five fingers together (F4,545235=3.523, p=0.007). The factor 
finger is not significant without the thumb (F3,4406955=1.432, 
p=0.234), therefore it shows, that only the thumb has a different 
relationship. Hence it follows the relationship for all fingers 
without the thumb. 

All Fingers without thumb:                            

Index, ring and middle finger:                            
The ANOVA showed, that neither hand orientation (Q1, see 
Figure 3) (F3,545235=0.043, p=0.984) nor whether the left or right 
hand (Q2) was used (F1,545235=0.202, p=0.653) had a significant 
influence on the angular relationship between the two upper finger 
joints. That means the linear angular relationships above can be 
taken for both hands in all tested hand orientations: palm raised, 
palm facing the ground, palm facing up, or palm to the side. 

The linear angular relationship between the two upper finger 
joints, which was proposed in H1 to be                 , is 
based on our whole aggregated dataset different:  
                  with a coefficient of determination (R²) of 
0.74 and SD = 0.11. Because the angular relationship of the index 
finger might be affected by noise of sensor board movements, as 
described in the discussion, we also calculated the angular 
relationship without the little finger that is                   
and shows an expectable slightly higher coefficient of 
determination (R²) of 0.77 with a standard deviation of SD = 0.10. 
Thus, we argue that the angular relationship of 0.88 is 
representable for each, even for the little finger those data were 
affected by noise. 

In contrast to the assumed angular relation of H2 for the thumb of 
                  , our data showed a linear angular 
relationship of                      with a coefficient of 
determination (R²) of 0.59 and SD = 0.11. 

The evaluation of the user surveys reveal, that the participants did 
not feel increased effort over the experiment execution time 
(F1,36=0.093, p=0.762). 
Finally the determined linear relationships between the upper 
finger joints for all fingers were integrated into our hand model. 
Hence the results were reviewed with qualitative comparison on 
the recorded finger movements with sensors on all limbs and 
without sensors on the tip by the use of the real-time visualization 
of our developed software. 

5. DISCUSSION 
In this section we discuss our results on the linear angular 
relationship between the upper and mid joints of the fingers and 
the thumb. Furthermore we show how our found angular relation 
of the finger joints serves for improving the initial hand model of 
our apparatus. Finally we show how the hand model, which 
covers all 26 DOF of the human hand, could serve as a gestural 
design space and how that design space allows the gesture 
repertoire of the existing gestural input devices we introduced in 
the section on related work, to be greatly extended.  

5.1.1 Linear angular relationship 
The results of our user study expose a significant difference to 
both hypotheses; the first hypothesis based on the related work 
from Fahn and Sun, and Wu et al. [Fahn 2005, Wu 1999] who 
proposed a relationship of                  for the finger 
joint. The second hypothesis based on Cobos et al. [Cobos 2007] 
proposed an angular relation of                   for the 
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joints of the thumb that is different from ours. As mentioned 
above, the researchers did not provide much detail on how they 
determined the linear angular relationship. This makes it difficult 
to suggest why our results differ from angular relationship found 
and reported by them. The authors did not give information about 
the instructions given in the task with respect to how to flex the 
fingers, nor did they provide information about the age, gender or 
height of the participants. Moreover just one angular relationship 
was given for all fingers, which furthermore was described to be 
appropriate. We suggest that the authors perhaps noticed some 
experiment limitations, e.g. data gloves tend to slip a bit out of 
position while flexing fingers, and were aware about the fact that 
the relationship can be identified more exactly in future work. 
Therefore, we suggest that our results give a more accurate 
relationship of the two upper finger joints (                 , 
R²=0.74), because we were able to attach single sensors tightly to 
the specific finger segments and consider different hand sizes with 
flexible sensor positioning. This safety against sensor slipping is 
not given for data gloves, because most of them use bend sensors 
for determining the bending angles. 
The comparable low coefficients of determination for the 
measurement of the thumb (R²=0.59) and the little finger 
(R²=0.63) might have different reasons. The little finger suffered 
from the non-appropriate size of our sensors boards, which leads 
to collision between the boards and therefore produced more data 
noise for the little finger. Hence we suggest the results for the 
little finger would be more accurate if sensor boards that are 
shorter than the little finger segments are used. Assuming that the 
little finger has the same biomechanical constraints than the other 
three fingers, we re-calculated the linear angular relation without 
that digit and got a new angular relation of                   
that improves our results because the new formula has a slightly 
increased R² of 0.77 and lower standard deviation of 0.10. 
For the thumb we assume the attachment of the sensor board for 
the saddle joint was more difficult and less tight compared to the 
others. We assume, however, that our results for the thumb are 
still more precise than former work on this topic due to the 
sensors being tightly attached to the upper two thumb joints. 
However we recommend a repeat of the study for the thumb with 
a slightly adjusted setup for the lowest thumb joint. A possible 
solution could be to stick the sensors directly onto the skin. 
In general we were able to prove that neither the hand orientation 
or pose (Q1) nor the used hand (Q2) have an influence on the 
linear relationship between the two upper finger joint angles. This 
implies, that the results can be used for general-purpose and 
therefore allow for an improvement of the hand model. 

5.1.2 Hand model improvement 
We are able to eliminate the need for attached to the fingertips, by 
using the linear angular relationship between the two upper finger 
joints for the four fingers without the thumb. The relationship we 
found allows the amount of sensor-boards necessary for a full 
featured hand model to be reduced by 4, shown in Figure 8. This 
could have a high impact on usability, because, compared to data 
gloves and also to our initial setup, the fingertip would not be 
augmented at all and therefore the sense of touch would not be 
limited, something with implications for the usability of the 
interface in everyday life. 

Again through considering biomechanics, it is possible to save 
additional 4-5 sensors. This is possible due to the single DOF for 
the two upper finger joints and the limited freedom of movement, 
shown in Figure 6. 

 
Figure 8. Possible reduction of necessary sensors for detecting 

a full featured hand model by the use of the linear angular 
relationship between DIP and PIP joints. 

Therefore we are able to interpolate the state of the base joint 
from the orientation of an upper joint by using a carry from the 
upper joint to the base joint, when the upper joint has reached its 
movement bounds. For example if the PIP joint with one DOF 
allows a maximum flexion angle of 100°, but the measurement 
from the motion sensors gives a flexion angle of 130°, measured 
between the middle limb of the finger and the palm. The flexion 
out of the movement bounds of 30° can be carried to the finger 
base joint together with the information of the second DOF, which 
is not available at all on the PIP joint. This method of 
interpolation is illustrated in Figure 9 using the example of the 
index DIP and PIP joint. 

This approach operates particularly well for the four fingers 
without the thumb, because it seems like the PIP joint is used 
more often in common conditions. But like all interpolation  
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Figure 9. Example interpolation of PIP joint state by the use 

of a carry from the DIP joint 
methods, this approach has a loss of precision, which leads to a 
somewhat unnatural looking finger motion for a dynamically 
generated hand model visualization. The reason is, that the single 
joints of the finger are moving in sequence and not like naturally 
observed at the same time. Indeed this approach still provides 
rather accurate information about continuous finger motion, which 
would only lack on gestures based on the relative joint 
relationship on single fingers. 

Based on the linear angular relationship of the two upper joints 
and an interpolation of the base joint it is possible to use a sensor 
board setup like that shown in Figure 10. This setup gives suitable 
precision and still allows for a wide range of gestures even though 
as a result of the interpolation less accurate feedback is given, 
than that provided by the setup shown in Figure 8. 

It is important to note, that we have kept all sensors on the thumb, 
although it would be possible to apply a sensor reduction based on 
presented results and methods. However, conditioned on the high 
importance of the thumb for gesture interaction, we recommend 
the shown configuration for a high precision hand model, until we 
complete further research on the thumb.  

The presented hand model for wearable sensors allows for a 
precise and graded tracking of the human hand. Through the 
highly increased usability and the independence of environmental 
conditions this qualifies for everyday interaction. 

5.1.3 Gestural design space 
The gesture vocabulary that is covered by the related work is very 
limited: Nenya [Ashbrook 2011] recognizes finger ring rotation 
relative to the wrist as a 1D parameter. GestureWatch [Kim 2007] 
allows only for pointing whilst GestureWrist [Rekimoto 2001] 
allows for body-centric pointing with three hand configurations. 
UbiFinger [Tsukada 2002] allows for simple gestures, such as 
turning a volume knob or pushing a switch whilst pointing, Body 
coupled FingeRing [Fukomoto 1997] detects a tapping fingers or 
thumb and therefore has a gesture vocabulary of five binary finger 
states per hand, namely whether each finger is tapping or not. 
Data gloves are able to detect whole hand motion with all 26 
DOF, but as we doubt that glove interfaces fulfill the usability 
requirements of everyday usage, we aim for augmenting the hand 
as little as possible. Fahn and Sun [Fahn 2005] were reducing the 
number of sensors to five and could provide ten DOF of the hand 
movability. The mentioned interfaces do not allow for recognizing 
a gesture vocabulary sets that considers complex hand and finger 
movements. But as shown in the microgesture taxonomy [Wolf 
2011], the gestural design space that considers those finger 
movements that are ergonomically feasible is much more complex 
than those movements that the interfaces mentioned above could 
detect. Therefore a gestural interface that is able to detect gestures 
out of the continuous movements of the whole hand in 26 DOF 

would be an important contribution to the field of ubiquitous 
gestural interaction. 

In contrast to the related work our interface provides the motion 
data that is needed for recognizing 26 DOF and would therefore 
potentially allow for a complex gesture vocabulary, such as 
continuous and relative movements in detailed graduation, to be 
recognized. Our proposed interface provides rather accurate 
information about continuous finger motion, which only lacks 
gestures based on the relative joint relationship on single fingers 
but will still detect any hand movement that is part of the 
microgesture vocabulary proposed by Wolf et al. [Wolf 2011] and 
is actually able to detect whole hand movements of all 26 DOF 
[Vardy 1998] that are feasible. Therefore our proposed hand 
model (which considers biomechanics) could be used for 
providing motion data for gestural interactions in everyday life in 
manifold environments, like smart living, automotive, smart office 
and other mobile application. 

 
Figure 10. Possible reduction of necessary sensors for 

detecting a full featured hand model with reduced precision 
by the use of the linear angular relationship between DIP and 

PIP joints and interpolation with movement bound carry. 
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6. CONCLUSION 
We presented a new approach for precise modeling of the whole 
hand with wearable motion sensors by applying anatomic 
relationships.  

Our user study regarding the linear angular relationship between 
the two upper finger joints of all fingers showed new and more 
precise results than former work in this field. It points out a 
relationship of                  for all four fingers and 
                     for the thumb, which were different to 
our assumptions that refer to angular relationships defined by 
others. Moreover we were able to show, that our results are 
generalizable hence we proofed there is no dependence on the 
hand orientation (Q1) or used hand (Q2). 

Based on the found linear angular relationship it is possible to 
reduce the number of sensors for a full featured hand model by 
four sensor-boards on the finger tips. This reduction avoids 
augmenting the fingertip, which leads to better tactile sensitivity 
in the fingertips and therefor a much better usability, especially in 
daily use. Moreover, a new approach for interpolation of the 
finger base joint by the use of movement bounds and carry 
calculation allows an additional sensor reduction of one sensor per 
finger. Thereby that makes possible to track the whole hand with 
all fingers with only 8 motion sensors. Thus the thumb is still 
fully attached with motion-sensors and we aim for few as possible 
sensors per finger, we aim to work on better sensor fixation for 
the lowest thumb sensor in future work. That would again reduce 
the amount of required sensors by two and allow for modeling the 
whole hand based on six sensor boards. 

Our new developed hand model and motion sensor setup allows 
for hand and finger tracking with graduated and precise results to 
enable the recognition of a rich gesture set including continuous 
and relative movements of the whole hand independent of 
environmental conditions. 

Although the used sensor-boards are already small enough to fit 
on an individual finger segment, a further reduction in size is 
necessary to integrate them in unobtrusive items like rings. 
Another question which has to be answered in the future is a small 
wireless energy supply for the finger attached sensors. Both would 
enable our vision of unobtrusive, wearable, ring shaped devices 
which can be used as input device in all smart environments in 
everyday life.  
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